Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69089Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 王弘毅(Hurng-Yi Wang) | |
| dc.contributor.author | Emory Yeh | en |
| dc.contributor.author | 葉雁華 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:51:21Z | - |
| dc.date.available | 2018-08-24 | |
| dc.date.copyright | 2017-08-24 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-15 | |
| dc.identifier.citation | Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403-410.
Baba, M. L., Darga, L. L., Goodman, M., & Czelusniak, J. (1981). Evolution of cytochromec investigated by the maximum parsimony method. Journal of molecular evolution, 17(4), 197-213. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological), 289-300. Blier, P. U., Dufresne, F., & Burton, R. S. (2001). Natural selection and the evolution of mtDNA-encoded peptides: evidence for intergenomic co-adaptation. TRENDS in Genetics, 17(7), 400-406. Castro, L., Austin, A., & Dowton, M. (2002). Contrasting rates of mitochondrial molecular evolution in parasitic Diptera and Hymenoptera. Molecular Biology and Evolution, 19(7), 1100-1113. Chen, Y., Compton, S. G., Liu, M., & CHEN, X. Y. (2012). Fig trees at the northern limit of their range: the distributions of cryptic pollinators indicate multiple glacial refugia. Molecular Ecology, 21(7), 1687-1701. Cock, P. J., Fields, C. J., Goto, N., Heuer, M. L., & Rice, P. M. (2009). The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic acids research, 38(6), 1767-1771. Cruaud, A., Rønsted, N., Chantarasuwan, B., Chou, L. S., Clement, W. L., Couloux, A., . . . Hanson, P. E. (2012). An extreme case of plant–insect codiversification: figs and fig-pollinating wasps. Systematic Biology, 61(6), 1029-1047. Doan, J. W., Schmidt, T. R., Wildman, D. E., Uddin, M., Goldberg, A., Hüttemann, M., . . . Grossman, L. I. (2004). Coadaptive evolution in cytochrome c oxidase: 9 of 13 subunits show accelerated rates of nonsynonymous substitution in anthropoid primates. Molecular phylogenetics and evolution, 33(3), 944-950. Dowton, M., & Austin, A. D. (1999). Evolutionary dynamics of a mitochondrial rearrangement' hot spot' in the Hymenoptera. Molecular Biology and Evolution, 16(2), 298-309. Elsik, C. G., Tayal, A., Diesh, C. M., Unni, D. R., Emery, M. L., Nguyen, H. N., & Hagen, D. E. (2015). Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine. Nucleic acids research, 44(D1), D793-D800. Fontanillas, P., Depraz, A., Giorgi, M. S., & Perrin, N. (2005). Nonshivering thermogenesis capacity associated to mitochondrial DNA haplotypes and gender in the greater white‐toothed shrew, Crocidura russula. Molecular Ecology, 14(2), 661-670. Gastin, P. B. (2001). Energy system interaction and relative contribution during maximal exercise. Sports medicine, 31(10), 725-741. Gershoni, M., Templeton, A. R., & Mishmar, D. (2009). Mitochondrial bioenergetics as a major motive force of speciation. Bioessays, 31(6), 642-650. Grossman, L. I., Wildman, D. E., Schmidt, T. R., & Goodman, M. (2004). Accelerated evolution of the electron transport chain in anthropoid primates. TRENDS in Genetics, 20(11), 578-585. Harrison, R. D. (2003). Fig wasp dispersal and the stability of a keystone plant resource in Borneo. Proceedings of the Royal Society of London B: Biological Sciences, 270(Suppl 1), S76-S79. Hawkins, A. (1996). Temperature adaptation and genetic polymorphism in aquatic animals. Animals and temperature: Phenotypic and evolutionary adaptation, 103-126. Hill, G. E. (2016). Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap. Ecology and evolution, 6(16), 5831-5842. Hinchliffe, P., Carroll, J., & Sazanov, L. A. (2006). Identification of a novel subunit of respiratory complex I from Thermus thermophilus. Biochemistry, 45(14), 4413-4420. Ho K-Y, Lu F-Y, Ou C-H (1998) An observation on syconia development and reproductive cycle of Ficus pumila L. var. pumila. Journal of Experimental Forest of National Chung-Hsing University, 20, 27–40. Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols, 4(1), 44. Janzen, D. H. (1979). How to be a fig. Annual review of ecology and systematics, 10(1), 13-51. Jermiin, L. S., & Crozier, R. H. (1994). The cytochrome b region in the mitochondrial DNA of the ant Tetraponera rufoniger: sequence divergence in Hymenoptera may be associated with nucleotide content. Journal of molecular evolution, 38(3), 282-294. Koressaar, T., & Remm, M. (2007). Enhancements and modifications of primer design program Primer3. Bioinformatics, 23(10), 1289-1291. Lai, B., Lin, R., & Nee, C. (2010). Improved cultivation method of jelly fig (Ficus pumila L. var. awkeotsang (Makino) Corner) and ecological habit of its pollinating fig wasp. Horticulture NCHU, 35, 31-44. Larkin, M. A., Blackshields, G., Brown, N., Chenna, R., McGettigan, P. A., McWilliam, H., . . . Lopez, R. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. Lin, T., Liu, C., Yang, C., Huang, R., Lee, Y., & Chang, S. (1990). Morphological and biochemical comparison of syconium of Ficus awkeotsang and Ficus pumila. B Taiwan Forest Res Inst, 5(1), 37-43. Lin, Y.-Y., Hsieh, C.-H., Chen, J.-H., Lu, X., Kao, J.-H., Chen, P.-J., . . . Wang, H.-Y. (2017). De novo assembly of highly polymorphic metagenomic data using in situ generated reference sequences and a novel BLAST-based assembly pipeline. BMC bioinformatics, 18(1), 223. Machado, C. A., Robbins, N., Gilbert, M. T. P., & Herre, E. A. (2005). Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proceedings of the National Academy of Sciences, 102(suppl 1), 6558-6565. Nei, M., & Gojobori, T. (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution, 3(5), 418-426. Oliveira, D. C., Raychoudhury, R., Lavrov, D. V., & Werren, J. H. (2008). Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Molecular Biology and Evolution, 25(10), 2167-2180. Pörtner, H.-O., Mark, F. C., & Bock, C. (2004). Oxygen limited thermal tolerance in fish?: Answers obtained by nuclear magnetic resonance techniques. Respiratory physiology & neurobiology, 141(3), 243-260. Peng, Z., Cheng, Y., Tan, B. C.-M., Kang, L., Tian, Z., Zhu, Y., . . . Tan, X. (2012). Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nature biotechnology, 30(3), 253-260. Quail, M. A., Smith, M., Coupland, P., Otto, T. D., Harris, S. R., Connor, T. R., . . . Gu, Y. (2012). A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC genomics, 13(1), 341. Shih N-Y (1988) Preliminary observation on the reproductive cycle of jelly fig (Ficus pumila L. var. awkeotsang). Journal of Experimental Forest of National Taiwan University, 2, 63–66. Shoemaker, D. D., Dyer, K. A., Ahrens, M., McAbee, K., & Jaenike, J. (2004). Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics, 168(4), 2049-2058. Singer, S. J., & Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science, 175(4023), 720-731. Sommer, A., & Pörtner, H.-O. (2002). Metabolic cold adaptation in the lugworm Arenicola marina: comparison of a North Sea and a White Sea population. Marine Ecology Progress Series, 240, 171-182. Stryer, L., & Latchman, D. S. (1995). Biochemistry (4th edn). Trends in Biochemical Sciences, 20(11), 488. Tajima, F. (1993). Simple methods for testing the molecular evolutionary clock hypothesis. Genetics, 135(2), 599-607. Turelli, M., Hoffmann, A., & McKechnie, S. W. (1992). Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Genetics, 132(3), 713-723. Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3—new capabilities and interfaces. Nucleic acids research, 40(15), e115-e115. Wang, H. Y., Hsieh, C. H., Huang, C. G., Kong, S. W., Chang, H. C., Lee, H. H., . . . Wu, W. J. (2013). Genetic and physiological data suggest demographic and adaptive responses in complex interactions between populations of figs (Ficus pumila) and their pollinating wasps (Wiebesia pumilae). Molecular Ecology, 22(14), 3814-3832. Weiblen, G. D. (2002). How to be a fig wasp. Annual review of entomology, 47(1), 299-330. Wiebes, J. (1979). Co-evolution of figs and their insect pollinators. Annual review of ecology and systematics, 10(1), 1-12. Wu, W., Schmidt, T. R., Goodman, M., & Grossman, L. I. (2000). Molecular evolution of cytochrome c oxidase subunit I in primates: is there coevolution between mitochondrial and nuclear genomes? Molecular phylogenetics and evolution, 17(2), 294-304. Xiao, J.-H., Yue, Z., Jia, L.-Y., Yang, X.-H., Niu, L.-H., Wang, Z., . . . Li, Z. (2013). Obligate mutualism within a host drives the extreme specialization of a fig wasp genome. Genome biology, 14(12), R141. Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69089 | - |
| dc.description.abstract | 環境溫度會對生物適應能力進行選汰,形成不同地區之間的族群分化。榕屬植物Ficus pumila在台灣有兩個變種,分別為生長在海拔低於500公尺的薜荔 (Ficus pumila var. pumila) 與海拔高於800公尺的愛玉 (Ficus pumila var. awkeotsang)。比較兩個親緣相近的薜荔榕小蜂 (Wiebesia pumilae) 與愛玉榕小蜂 (Wiebesia sp.) 族群,發現兩族群之間粒線體cox1基因有演化速率提高的現象;並且愛玉榕小蜂族群在低溫有較長的半致死時間,可能已適應低溫環境。推測愛玉榕小蜂粒線體基因的演化速率被提高是因應低溫環境下能量需求增加而形成的選汰壓力,需要重新塑造電子傳輸鏈 (Electronic transport chain, ETC) 提高能量產生。由於電子傳遞鏈中所包含的粒線體基因與核基因關聯緊密,前者受環境壓力所產生的置換可能導致後者跟著產生補償性置換。本論文假設愛玉榕小蜂族群的電子傳遞鏈基因演化速率會被提高,以補償粒線體基因加快的演化速率。使用兩個榕小蜂族群的轉錄組,比對同義與非同義置換比率、置換發生的方向性,以及其餘核基因是否在特定功能群有富集 (enrichment) 現象。發現電子傳遞鏈基因的非同義置換率 (0.0025) 相較於其餘核基因 (0.0011) 高出約兩倍,同義置換率值兩者相似 (前者為0.0091,後者為0.0098)。並且發生在愛玉榕小蜂支系中的電子傳遞鏈基因非同義置換位點 (26.5) 顯著高於薜荔榕小蜂支系 (17),顯示愛玉榕小蜂族群可能受到選汰影響而有適應性演化發生。同義與非同義置換比率較高的其餘核基因列表中糖解作用與細胞膜相關基因皆有富集現象,顯示愛玉榕小蜂的基因分化可能並非僅由粒線體基因帶動,而是受到能量需求改變影響使得能量產生相關的基因皆受到選汰壓力而被提高演化速率。 | zh_TW |
| dc.description.abstract | Temperature may cause selection to adaptation ability of lining things, promoting divergence between populations. Ficus pumila has two variants in Taiwan, called creeping-fig (Ficus pumila var. pumila) and jelly-fig (Ficus pumila var. awkeotsang). The two variants grow at different latitude, creeping-fig < 500 m and jelly-fig > 800 m. Between two closely related pollinating wasps, creeping- (Wiebesia pumilae) and jelly-fig wasps (Wiebesia sp.), previous study found accelerated and perhaps adaptive evolution in their mitochondrial cox1 gene. Also, jelly-fig wasps have longer LT50, showing that jelly-fig wasps may have adapted clod environment. Suppose that the accelerated amino acid changes in the mitochondrial genome of jelly-fig wasps may result from increased energy demands due to cold adaptation which would need a remolding of the electronic transport chain (ETC). Furthermore, because the functions of mtDNA and nDNA encoded ETC genes are tightly linked, mutations in the former may cause compensatory changes in the latter. We hypothesize that evolutionary rate of nDNA encoded ETC genes in jelly-fig wasps are elevated to compensate for the accumulation of amino acid changes in mtDNA-encoded ETC genes. We thus sequenced the transcriptome of two fig wasps. While the Ka (0.0025) of ETC genes are two times higher than the rest of genes (0.0011), their Ks are similar (0.0091 in the former and 0.0098 in the latter). More importantly, most of these non-synonymous changes of ETC complexes are in the lineage leading to jelly-fig wasps (26.5), suggesting their role in cold adaptation. We also found that glycolysis function genes and membrane-related genes has been enriched in the rest of nuclear genes with higher Ka/Ks, suggesting that gene differentiation in the lineage leading to jelly-fig wasps is not only driven by mitochondrial genes but also nuclear genes related to energy production. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:51:21Z (GMT). No. of bitstreams: 1 ntu-106-R04B44019-1.pdf: 1136075 bytes, checksum: d195c329056090242157d1873e96f7dd (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii 英文摘要 iii 目錄 v 圖目錄 vi 表目錄 vii 1 前言 1 2 材料與方法 4 2.1 榕小蜂樣本來源 4 2.2 榕小蜂樣本保存 4 2.3 RNA萃取 4 2.4 轉錄組定序 5 2.5 轉錄組組裝 5 2.6 引子 (primer) 設計 7 2.7 反轉錄PCR (RT-PCR) 8 2.8 聚合酶連鎖反應 (PCR) 8 2.9 PCR樣本純化 9 2.10 桑格定序 10 2.11 同義置換發生率與非同義置換發生率之計算 10 2.12 演化支系發生置換的方向性測試之計算 10 2.13 功能基因群富集 (enrichment) 分析 11 3 結果 13 3.1 轉錄組組裝 13 3.2 同義與非同義置換比率分析 17 3.3 演化支系發生置換的方向性測試 19 3.4 基因富集檢測 20 4 討論 24 4.1 轉錄組定序結果與篩選 24 4.2 基因演化速率的影響 26 4.3 非同義置換發生的方向性 27 4.4 不同基因功能上的富集情形 28 5 結論 31 參考文獻 32 論文附表 36 | |
| dc.language.iso | zh-TW | |
| dc.subject | 能量需求 | zh_TW |
| dc.subject | 愛玉榕小蜂 | zh_TW |
| dc.subject | 分化 | zh_TW |
| dc.subject | 薜荔榕小蜂 | zh_TW |
| dc.subject | 電子傳遞鏈 | zh_TW |
| dc.subject | creeping-fig wasps | en |
| dc.subject | divergence | en |
| dc.subject | jelly-fig wasps | en |
| dc.subject | electron transport chain | en |
| dc.subject | energy demands | en |
| dc.title | 愛玉榕小蜂電子傳遞鏈複合基因的加速分化 | zh_TW |
| dc.title | Accelerated divergence in electron transport complex genes in jelly-fig wasps | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周蓮香,丁照棣,吳文哲,李壽先 | |
| dc.subject.keyword | 愛玉榕小蜂,薜荔榕小蜂,電子傳遞鏈,能量需求,分化, | zh_TW |
| dc.subject.keyword | jelly-fig wasps,creeping-fig wasps,electron transport chain,energy demands,divergence, | en |
| dc.relation.page | 38 | |
| dc.identifier.doi | 10.6342/NTU201703209 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-15 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| Appears in Collections: | 生態學與演化生物學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-106-1.pdf Restricted Access | 1.11 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
