Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69077
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏鴻威
dc.contributor.authorYu-Chen Linen
dc.contributor.author林昱辰zh_TW
dc.date.accessioned2021-06-17T02:50:41Z-
dc.date.available2022-08-25
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-15
dc.identifier.citation[1] Yang, H. and H. Bhadeshia, Austenite grain size and the martensite-start temperature. Scripta Materialia, 2009. 60(7): p. 493-495.
[2] Kitahara, H., et al., Crystallographic features of lath martensite in low-carbon steel. Acta Materialia, 2006. 54(5): p. 1279-1288.
[3] Kelly, P. M., et al., Crystallography of lath martensite in steels,Materials transactions JIM, 1992. 33(3): p.235-244.
[4] Umemoto, M., et al., Electron-microscopy studies of butterfly martensite. Acta Metallurgica, 1984. 32(8): p. 1191-1203.
[5] Kitahara, H., et al., Crystallographic analysis of plate martensite in fe-28.5 at.% ni by fe-sem/ebsd. Materials Characterization, 2005. 54(4-5): p. 378-386.
[6] Reed, R.P., Plate-like martensite transformation in fe-ni alloys. Acta Metallurgica, 1967. 15(8): p. 1287-&.
[7] Ishida, K., et al., Calculation of the effect of alloying elements on the ms temperature in steels. Journal of Alloys and Compounds 220: p.126-131.
[8] Lyle, E.S.R.a.S.R., The application of ms points to case depth measurement. Transactions of the American Institute of Mining and Metallurgical Engineers, 1946. 37: p. 27-47.
[9] Payson, P.S., C.H., Martensite reactions in alloy steels. Transactions of the American Institute of Mining and Metallurgical Engineers, 1944. 33: p. 261-275.
[10] Lee, S.-J. and K.-S. Park, Prediction of martensite start temperature in alloy steels with different grain sizes. Metallurgical and Materials Transactions A, 2013. 44(8): p. 3423-3427.
[11] Kelly, P. M., et al., The martensite transformation in steels with low stacking fault energy. Acta Metallurgica, 1965. 13: p.635.
[12] Kurdjumow G., S.G., The mechanism of steel hardening. Zeitschrift fur Physik, 1930.
[13] Bain, E.C., Trans. Amer. Inst. Min. Metall. Eng,, 1924: p. 25.
[14] Cayron, C. Master Thesis.
[15] Ken'ichi Shimizu, Yasuji Tanala, The γ→ε→α′ martensitic transformations in an Fe–Mn–C alloy, Materials Transactions the Japan Institute of Metals and Materials, 1978. 19: p.686
[16] Pisarik, S.T., Crystallographic orientation of the ε → α′ martensitic (athermal) transformation in a femnalsi steel. Metallurgical & Materials Transactions A. 45.
[17] Suikkanen, P.P., et al., Crystallographic analysis of martensite in 0.2c-2.0mn-1.5si-0.6cr steel using ebsd. Journal of Materials Science & Technology, 2011. 27(10): p. 920-930.
[18] Beladi, H., et al., Crystallographic analysis of nanobainitic steels. Scripta Materialia, 2009. 60(6): p. 455-458.
[19] Chang, Y.L., et al., Crystallographic analysis of lenticular martensite in fe–1.0c–17cr stainless steel by electron backscatter diffraction. Materials Characterization, 2016. 113: p. 17-25.
[20] Patterson, R. L., et al., The crystallography and growth of partially-twinned martensite plates in fe-ni alloy. Acta Metallurgica, 1966. 14: p.347.
[21] Murata, Y., Formation mechanism of lath martensite in steels. Journal of the Japan Institute of Metals, 2016. 80(11): p. 669-683.
[22] Bhadeshia, H.K.D.H., Steel.
[23] Shibata, A., et al., Local orientation change inside lenticular martensite plate in fe–33ni alloy. Scripta Materialia, 2005. 53(5): p. 597-602.
[24] Lee, H.-Y., et al., Substructures of martensite in fe–1c–17cr stainless steel. Scripta Materialia, 2010. 62(9): p. 670-673.
[25] Stormvinter, A., et al., Effect of carbon content on variant pairing of martensite in fe–c alloys. Acta Materialia, 2012. 60(20): p. 7265-7274.
[26] Krauss, G., Heat-treated martensitic steels - microstructural systems for advanced manufacture. Isij International, 1995. 35(4): p. 349-359.
[27] Krauss, G., Martensite in steel strength and structure. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1990. A273-275: p. 18.
[28] Krauss, G., Deformation and fracture in martensitic carbon steels tempered at low temperatures. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2001. 32(4): p. 861-877.
[29] Niino, T., et al., Effects of solute carbon on the work hardening behavior of lath martensite in low-carbon steel. Isij International, 2017. 57(1): p. 181-188.
[30] Babu, S.S., et al., Atom probe field ion microscopy study of the partitioning of substitutional elements during tempering of a low-alloy steel martensite. Metallurgical & Materials Transactions A, 1994. 25A: p. 499.
[31] Bhadeshia, H., et al., Tempered MArtensite Embrittlement: Role of Retained Austenite and Cementite. Metal Science, 1979. p:325
[32] Show, B.K., et al., Effect of vanadium and titanium modification on the microstructure and mechanical properties of a microalloyed hsla steel. Materials Science and Engineering: A, 2010. 527(6): p. 1595-1604.
[33] Mujahid, M., et al., Hsla-100 steels influence of aging heat treatment on microstructure and propertie. ASM international, 1998. 7: p. 247-257.
[34] Galindo-Nava, E.I. and P.E.J. Rivera-Díaz-del-Castillo, Understanding the factors controlling the hardness in martensitic steels. Scripta Materialia, 2016. 110: p. 96-100.
[35] Saha, D.C., et al., Effect of tempering temperatures on the mechanical properties and microstructures of hsla-100 type copper-bearing steels. Materials Science and Engineering: A, 2016. 673: p.467-475.
[36] Maruyama, N., et al., Precipitation and phase transformation of copper particles in low alloy ferritic and martensitic steels. Materials Transactions JIM, 1999. 40(4): p.268-277.
[37] Krauss, G., Steels: Processing structure and performance. ASM international, 2005.
[38] Johnson, W.H., On some remarkable changes produced in iron and steel by the action of hydrogen and acids. Proceeding of the Royal Society A, 1874. 23(1): p.168
[39] Herring, D.H., Hydrogen embrittlement. Wire Forming Technology International, 2010.
[40] Owen, C.V., Relation between hydrogen embrittlement and the formation of hydride in the group v transition metals. Metallurgical Transactions, 1972. 3: p.1715.
[41] Nagao, A., et al., The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel. Acta Materialia, 2012. 60(13-14): p. 5182-5189.
[42] Martin, M.L., et al., On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels. Acta Materialia, 2011. 59(4): p. 1601-1606.
[43] McMahon, C.J., et al., Hydrogen-induced intergranular fracture of steels. Engineering Fracture Mechanics, 2001. 60: p.773-788.
[44] Lassila, D.H., et al., intergranular fracture of nickel the effect of hydrogen-sulfur co-segregation. Acta Metallurgica, 1987. 35(7): p.1815-1822.
[45] Robertson, I.M., et al., An hvem study of hydrogen effects on the deformation and fracture of nickel. Acta Metallurgical, 1986. 34(3): p.353-366.
[46] Gahr, S., hydrogen embrittlement of nb i—macroscopic behavior at low temperatures. Acta Metallurgica, 1978. 25: p.125-133.
[47] Gahr, S., Hydrogen embrittlement of niobium—iii. High temperature behavior. Acta Metallurgica, 1978. 26: p.1781-1787.
[48] Grossbecj, M.L., et al., Low temperature hydrogen embrittlement of niobium ii—microscopic observations. Acta Metallurgica, 1976. 25(13): 135
[49] Birnbaum, H. K., et al., Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture. Materials Science and Engineering, 1994. A176: p. 191-202.
[50] Sanchez, J., et al., Measurement of hydrogen and embrittlement of high strength steels. Engineering Failure Analysis, 2016. 59: p. 467-477.
[51] Sofronis, P., et al., Mechanics of the hydrogen-dislocation-impurity interactions .1. Increasing shear modulus.J Mech Phys Solids 1995. 43(1): 49.
[52] Song, J. and W.A. Curtin, Mechanisms of hydrogen-enhanced localized plasticity: An atomistic study using α-fe as a model system. Acta Materialia, 2014. 68: p. 61-69.
[53] Kimura, A., et al., Hydrogen induced grain boundary and fracture in high purity nickel and its alloys- enhanced hydrogen diffusion along grain boundaries. Acta Metallurgica, 1988. 36(3): p. 757-766.
[54] Martin, M.L., et al., Hydrogen-induced intergranular failure in nickel revisited. Acta Materialia, 2012. 60(6-7): p. 2739-2745.
[55] Craig, B.D., et al., The structure of tempered martensite and its susceptibility to hydrogen stress cracking. Metallurgical & Materials Transactions A, 1980. 11A: p. 1799.
[56] Kiuchi, K., et al., The solubility and diffusivity of hydrogen in well-annealed and deformed iron. Acta Metallurgica, 1983. 31(7): p. 961-984.
[57] Shewmon, P.G. , et al., Hydrogen attack of carbon steel.Metallurgical Transactions A, 1976. 7A: p.279..
[58] Chiba, R, et al., Effect of carbon on hydrogen attack of 2.25cr-1mo steels. ISIJ International, 1985. 14: p. 1639.
[59] Eliezer, D., et al., High-temperature hydrogen attack of carbon steel. Journal of Materials Science, 1981. 16: p. 2962-2966.
[60] Bhadeshia, H.K.D.H., Prevention of hydrogen embrittlement in steels. ISIJ International, 2016. 56(1): p. 24-36.
[61] Darken , L.G. and R.P. Smith, Corrosion 1949. 5: p. 1.
[62] Pound, B.G., Hydrogen trapping in high-strength steels. Acta Metaluurgica, 1998. 46(16): p. 5733.
[63] Takai, Kenichi, et al., Hydrogen in trapping states innocuous to environmental. ISIJ International, 43(4): p. 520-526
[64] Nagumo, M., Nature of hydrogen trapping sites in steels induced by plastic deformation. Journal of Alloys andCompunds, 1999. 293-295: p.311
[65] Sun Xuikui, et al., Hydrogen permeation behaviour in austenitic stainless steels. Materials Science and Engineering, 1989. A114: p. 179.
[66] Frappart, S., et al., Study of the hydrogen diffusion and segregation into fe–c–mo martensitic hsla steel using electrochemical permeation test. Journal of Physics and Chemistry of Solids, 2010. 71(10): p. 1467-1479.
[67] Frappart, S., et al., Hydrogen trapping in martensitic steel investigated using electrochemical permeation and thermal desorption spectroscopy. Scripta Materialia, 2011. 65(10): p. 859-862.
[68] Caskey, G.R., et al., Effect of trapping on hydrogen permeation. Metallurgical Transactions A,1975. 6A:467.
[69] Pressouyre, G.M., A quantitative analysis of hydrogen trapping. Metallurgical & Materials Transactions A, 1978. 9A: p. 1571.
[70] Fielding, L.C.D., et al., Hydrogen diffusion and the percolation of austenite in nanostructured bainitic steel. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014. 470(2168): p. 20140108-20140108.
[71] Izumi, T. and G. Itoh, Thermal desorption spectroscopy study on the hydrogen trapping states in a pure aluminum. Materials Transactions, 2011. 52(2): p. 130-134.
[72] Pérez Escobar, D., et al., Evaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopy. Materials Science and Engineering: A, 2012. 551: p. 50-58.
[73] Zhao, Y., et al., The role of hydrogen in hardening/softening steel: Influence of the charging process. Scripta Materialia, 2015. 107: p. 46-49.
[74] Redhead, P.A., Thermal-desorption-of-gases. Vacuum, 1962.
[75] Choo, W. Y., et al., thermal analysis of trapped hydrogen in pure iron. Metallurgical Transaction A, 1982. 13A: p. 135.
[76] Kissinger, H.E., Analytical chemistry, 1957. 29: p. 1702.
[77] Cheng, L., M. Enomoto, and F.-G. Wei, Further assessment of the kissinger formula in simulation of thermal desorption spectrum of hydrogen. ISIJ International, 2013. 53(2): p. 250-256.
[78] Carter, G., Thermal resolution of desorption energy spectra. Vacuum, 1962.
[79] Mcnabb , A. and P.K. Foster, Metallurgical & Materials Transactions A, 1963. 227: p. 618.
[80] Oriqani, R.A., The diffusion and trapping of hydrogen in steel. Acta Metallurgica, 1970. 18: p.147.
[81] Ebihara, Ken-ichi, et al., Modeling of hydrogen thermal desorption profile of pure iron and eutectic steel. ISIJ international, 2007. 47(8):1131.
[82] Enomoto,Masato, et al., Modeling thermal desorption analysis of hydrogen in steel. ISIJ International, 2006. 46(9): p.1382..
[83] Turnbull, A., et al., Modelling of thermal desorption of hydrogen from metals. Materials Science and Engineering, 1997. A238: p. 318
[84] Tal-Gutelmacher, E., D. Eliezer, and E. Abramov, Thermal desorption spectroscopy (tds)—application in quantitative study of hydrogen evolution and trapping in crystalline and non-crystalline materials. Materials Science and Engineering: A, 2007. 445-446: p. 625-631.
[85] Turnbull, A., M.W. Carroll, and D.H. Ferriss, Analysis of hydrogen diffusion and trapping in a 13% chrominuum martensite stainless steel. Acta Metallurgica, 1989. 37(7): p. 8.
[86] Hagi, H., et al., Diffusion coefficient of hydrogen in iron without trapping by dislocation and impurities.Materials Transactions, JIM, 1994.35(2): 112 .
[87] Turnbull, A., D.H. Ferriss, and H. Anzai, Modelling of the hydrogen distribution at a crack tip. Materials science and engineering, 1996. A206.
[88] Yamaguchi, T., et al., Simulation of hydrogen thermal desorption under reversible trapping by lattice defects.ISIJ International, 2003. 43(4): p.514.
[89] Song, E.J., D.-W. Suh, and H.K.D.H. Bhadeshia, Theory for hydrogen desorption in ferritic steel. Computational Materials Science, 2013. 79: p. 36-44.
[90] Ono, K. and M. Meshii, Hydrogen detrapping from grain-boundaries and dislocations in high-purity iron. Acta Metallurgica Et Materialia, 1992. 40(6): p. 1357-1364.
[91] Nagumo, M., et al., Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels. Metallurgical & Materials Transactions A, 2001.32A: p. 339.
[92] Lee, S.M. and J.Y. Lee, Hydrogen trapping phenomenon in metals with b.C.C. And fcc crystal structures by the desorption thermal amalysis technique. surface and coating technology, 1986. 28: p. 14.
[93] Wei, Fu-Gao, et al., Quantitative analysis on hydrogen trapping of tic particles in steel. Metallurgical & Materials Transactions A, 2006. 37A: p.331.
[94] Turnbull, A., Perspectives on hydrogen uptake, diffusion and trapping. International Journal of Hydrogen Energy, 2015. 40(47): p. 16961-16970.
[95] Myers, S.M., S.T. Picraux, and R.E. Stoltz, Defect trapping of ion‐implanted deuterium in fe. Journal of Applied Physics, 1979. 50(9): p. 5710-5719.
[96] Kumnick, A.J. and H.H. Johnson, Deep trapping states for hydrogen in deformed iron. Acta Metallurgica, 1980. 28.
[97] Au, J.J. and H.K. Birnbaum, Magnetic relaxation studies of the motion of hydrogen and deuterium in iron. Acta Metallurgica, 1977. 26.
[98] Song, E.J., H.K.D.H. Bhadeshia, and D.-W. Suh, Interaction of aluminium with hydrogen in twinning-induced plasticity steel. Scripta Materialia, 2014. 87: p. 9-12.
[99] Hagi, H. and Y. Hayashi, Effect of dislocation trapping on hydrogen and deuterium diffusion in iron. Transactions of the Japan Institute of Metals, 1987. 28(5): p. 7.
[100] Shirley, A.I. and C.K. Hall, Trapping of hydrogen by substitutional and interstitial impurities in α-iron. Scripta metallurgica, 1985. 17.
[101] Hong, G.W. and J.Y. Lee, The interaction of hydrogen and the cementite-ferrite interface in carbon steel. Journal of Materials Science, 1983.
[102] Lee, J.Y., et al., hydrogen trapping by tic particles in iron.Acta Metallurgical, 1984. 32(1): p. 131 .
[103] Asahi, H., D. Hirakami, and S. Yamasaki, Hydrogen trapping behavior in vanadium-added steel. ISIJ International, 2003. 43(4): p. 7.
[104] Serra, E., A. Perujo, and G. Benamati, Influence of traps on the deuterium behaviour in the low activation martensitic steels f82h and batman. Journal of Nuclear Materials, 1997. 245.
[105] Wright, S.I., M.M. Nowell, and D.P. Field, A review of strain analysis using electron backscatter diffraction. Microsc Microanal, 2011. 17(3): p. 316-29.
[106] Wang, M., E. Akiyama, and K. Tsuzaki, Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test. Corrosion Science, 2007. 49(11): p. 4081-4097.
[107] Mangnusson, H. and K. Frisk, Diffusion, Permeation and solubility of hydrogen in copper. Journal of Phase Equilibrium, 2017. 38: p. 5.
[108] Momotani, Y., et al., Effect of strain rate on hydrogen embrittlement in low-carbon martensitic steel. International Journal of Hydrogen Energy, 2017. 42(5): p. 3371-3379.
[109] Tavares, S.S.M., et al., Slow strain rate tensile test results of new multiphase 17%cr stainless steel under hydrogen cathodic charging. International Journal of Hydrogen Energy, 2015. 40(47): p. 16992-16999.
[110] Wang, M., E. Akiyama, and K. Tsuzaki, Hydrogen degradation of a boron-bearing steel with 1050 and 1300mpa strength levels. Scripta Materialia, 2005. 52(5): p. 403-408.
[111] Zhou, H. B., et al.,Dissolution and diffusion behaviors of hydrogen in copper: A first- principle investigation. Compuational Material science, 2013. 79(5): p. 923-928.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69077-
dc.description.abstract麻田散鐵在淬火回火製程中析出的銅顆粒擁有二次硬化的效果。然而,僅有少數的研究論及銅析出顆粒在鋼鐵中的吸氫能力.這份工作目標在於指出麻田散鐵中析出的銅顆粒具備氫陷阱的效果,並且使材料擁有抗氫脆的能力。為了與傳統淬火回火麻田散鐵比較,S690Q等級之海洋用鋼亦使用於研究中。研究中使用光學顯微鏡,掃描式電子顯微鏡,與穿透式電子顯微鏡來完成顯微結構的觀察。試片利用陰極電化學方式充氫後置於管型爐內加熱,過程中利用氣相層析儀量測其熱脫氫行為。材料的抗氫脆能力使用開槽之拉伸試片進行慢速率拉伸檢測其抗氫脆能力。在傳統淬火回火鋼中,大量的氫儲存於淬火下產生之差排與晶界,在回火後氫含量隨差排與晶界減少而減少,同時回火條件中產生之雪明碳鐵並沒有顯著的吸氫能力。而在含銅淬火回火鋼中,回火過程中析出之銅顆粒具備了明顯的氫陷阱的效果。使用Kissinger與 McNabb-Foster方法分析後得知,銅顆粒氫陷阱的熱脫活化能介於35至40 kJ/mol 之間,相較於差排與晶界能夠更有效的限制氫在材料中的擴散。在慢速率拉伸試驗中,含銅回火淬火鋼在回火 540度到600度之間析出高密度銅顆粒產生的氫陷阱明顯延緩了拉伸過程中氫往應力集中處擴散的現象,有效的提升材料抗氫脆能力。總結來說,含銅顆粒析出之淬火回火鋼具備相當好的吸氫能力,成為設計抗氫脆能力鋼種的冶金方法。zh_TW
dc.description.abstractPrecipitation of copper in martensitic steel after tempering is known to trigger secondary hardening effect in quenched-and-tempered (Q&T) martensitic steel. However, there have been few studies conducted to the ability of copper to trap hydrogen in steels. The current work aims at characterizing the effects of copper on hydrogen desorption and resistance to hydrogen embrittlement in Q&T martensitic steels. Moreover, in order to compare with conventional Q&T steel, S690Q offshore steel was also studied. In this research, microstructure was investigated by using optical microscope, scanning electron microscope, and transmission electron microscope. Specimens electrochemically charged with hydrogen was measured in the house-constructed thermal desorption spectroscopy (TDS), and hydrogen desorption models were utilized to analyze experiment results. Resistance to hydrogen embrittlement was finally tested via the notched slow strain rate tensile testing. In conventional Q&T steel, ability to store hydrogen is high in as-quenched steel due to high dislocation density and grain boundary and it will degrade after tempering. Cementite particles, formed by tempering in conventional Q&T steel, have weak ability to trap hydrogen. However, precipitation of copper can enhance the hydrogen trapping in the copper-containing Q&T steel. Based on the analyses by Kissinger method and McNabb-Foster method, the binding energy of copper particle was estimated to be 35 to 40 kJ/mol. Strong enhancement in hydrogen trapping was observed when the steel was tempered at 540 oC or 600 oC. This is consistent with the fact that high-density copper particles were also observed in steels under these tempering conditions. In SSRT tests, steel with copper precipitation shows better resistance to hydrogen embrittlement. In conclusion, precipitation of copper is a metallurgical approach in designing a strong and tough Q&T steel with high resistance to hydrogen embrittlement.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:50:41Z (GMT). No. of bitstreams: 1
ntu-106-R04527037-1.pdf: 12726215 bytes, checksum: f685f952d778437572955ee70571600e (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xvi
Chapter 1 Introduction 1
Chapter 2 General Literature Review 2
2.1 Martensite & Tempered Martensite 2
2.1.1 Introduction of Martensite 2
2.1.2 Transformation Characteristics 2
2.1.3 Microstructure of Martensite 11
2.1.4 Tempering process of Martensitic Steel 17
2.1.5 Strength and Toughness of Martensite 23
2.2 Hydrogen Embrittlement 26
2.2.1 Hydrogen Embrittlement and Hydrogen Attack 26
2.2.2 Hydrogen Trapping Mechanism 36
2.2.3 Hydrogen Trapping Detection Method 38
2.3 Theory of Hydrogen Desorption Model 44
2.3.1 Introduction of Thermal Desorption Model 44
2.3.2 Kissinger’s Model 47
2.3.3 McNabb and Foster’s Model 51
2.3.4 Oriani’s Model 56
2.3.5 Kinetic Model 57
2.3.6 Summary for Hydrogen Desorption Models 58
2.3.7 Detected Hydrogen Trapping Site in Steels 59
Chapter 3 Experimental Procedures 62
3.1 Experiment alloys 62
3.1.1 Alloy Design & Materials Preparation 62
3.1.1 Heat Treatment 62
3.2 Microstructure characterization 64
3.2.1 Optical Metallography Observation 64
3.2.2 Hardness Test 64
3.2.3 Scanning Electron Microscope (SEM) 64
3.2.4 Electron Back Scattered Diffraction Observation 65
3.2.5 X-Ray Diffractometer (XRD) Observation 66
3.2.6 TEM Observation and analysis 66
3.3 Hydrogen desorption & SSRT characterization 67
3.3.1 Hydrogen Thermal Desorption Spectrometry 67
3.3.2 Slow Strain Rate Test 68
Chapter 4 Microstructure Evolution 69
4.1 Macrostructure Observation and Hardness 69
4.1.1 Optical Metallography 69
4.1.2 Vickers Hardness Evolution 69
4.1.3 X-Ray Diffraction Analysis 69
4.1.4 EBSD and KAM analysis 70
4.2 Microstructure Investigation 76
4.2.1 TEM Micrograph 76
4.2.2 HRTEM Micrograph 77
4.3 Discussion 83
4.3.1 Tempering Process of Martensite 83
4.4 Summary 85
Chapter 5 Characterization on Hydrogen Desorption 86
5.1 Characteristics of Trapping Sites 86
5.1.1 Thermal Desorption Spectrometry 86
5.1.2 Activation Energy Characterization 91
5.2 Trapping Sites Observation and Modelling 95
5.2.1 Flow chart for hydrogen desorption modelling 95
5.2.2 Calibration on Choo and Lee Method by Tube Diffusion 97
5.2.3 Modelling TDS Curve by McNabb- Foster equation 101
5.3 Discussion 106
5.4 Summary 111
Chapter 6 Hydrogen delayed fracture 112
6.1 Effects of Trapping Site on Mechanical Properties 112
6.1.1 Slow Strain Rate Test 112
6.1.2 Fracture Surface Analysis 113
6.2 Discussion 119
6.3 Summary 122
Chapter 7 Future work 123
REFERENCE 124
dc.language.isoen
dc.subject氫脆現象zh_TW
dc.subject銅顆粒析出zh_TW
dc.subject熱脫分析儀zh_TW
dc.subject回火型麻田散鐵鋼zh_TW
dc.subject慢速率拉伸試驗zh_TW
dc.subjecttempered martensiteen
dc.subjecthydrogen embrittlementen
dc.subjectcopper precipitatesen
dc.subjectthermal desorption spectroscopyen
dc.subjectslow strain rate testen
dc.title含銅焠火-回火型麻田散鐵鋼之熱脫氫行為zh_TW
dc.titleHydrogen desorption in copper-containing quenched-&-tempered martensitic steelsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡哲瑋,鄭偉鈞,林俊銘
dc.subject.keyword氫脆現象,銅顆粒析出,熱脫分析儀,回火型麻田散鐵鋼,慢速率拉伸試驗,zh_TW
dc.subject.keywordhydrogen embrittlement,copper precipitates,thermal desorption spectroscopy,tempered martensite,slow strain rate test,en
dc.relation.page130
dc.identifier.doi10.6342/NTU201703049
dc.rights.note有償授權
dc.date.accepted2017-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
12.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved