Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68974
標題: 利用卷積類神經網路以色彩資訊及光流進行影片物體分割
Video Object Segmentation Using Appearance and Optical Flow
with Convolutional Neural Network
作者: Hao-Wei Chen
陳澔緯
指導教授: 莊永裕
關鍵字: 物體分割,卷積類神經網路,條件隨機域,
object segmentation,convolution neural networks,conditional random field,
出版年 : 2017
學位: 碩士
摘要: 本篇論文探討部分監督式影片物體分割演算法,此問題是給定第一幀的物體分割資訊,要求解剩下每一幀此物體之分割結果。我們不同於以往方法,結合影片中的色彩資訊及光流資訊當作輸入來訓練卷積類神經網路,提出了合併架構及分別訓練兩種方法,以及採用分次訓練的策略,首先使用訓練資料訓練好模型,在測試時使用每段影片的第一幀來進行加強學習,最後使用條件隨機域來後處理我們得到的分割結果。我們也做了一些實驗來比較不同訓練條件或是後處理方法得到之結果不同。最後我們最佳的方法在 DAVIS 此影片物體分割資料集中得到了 81.2%的精準度,優於當前最佳技術的 79.8%。
This thesis is about the task of semi-supervised video object segmentation. That is, the segmentation of an object from the video given the mask of the first frame. We combine the appearance and the optical flow as our convolution neural network’s input and propose two methods to solve this problem. And we use the offline / online training strategy to fine-tune the model with first frame annotation at the test time. Finally, we use the CRF as our refinement. We also do some ablation study to compare the results with the different conditions. And our best algorithm improves the state of the art from 79.8% to 81.2%.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68974
DOI: 10.6342/NTU201703425
全文授權: 有償授權
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
1.81 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved