Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68974
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊永裕
dc.contributor.authorHao-Wei Chenen
dc.contributor.author陳澔緯zh_TW
dc.date.accessioned2021-06-17T02:45:03Z-
dc.date.available2017-08-24
dc.date.copyright2017-08-24
dc.date.issued2017
dc.date.submitted2017-08-16
dc.identifier.citation[1] S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixe, D. Cremers, and L. V. Gool. One-shot video object segmentation. In CVPR, 2017. [2] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. V. Gool, M. Gross, and A. Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmentation. In CVPR, 2016.[3] J. Chang, D. Wei, and J. W. Fisher III. A video representation using temporal superpixels. In CVPR, 2013. [4] M. Grundmann, V. Kwatra, M. Han, and I. A. Essa. Effi- cient hierarchical graph-based video segmentation. In CVPR, 2010. [5] S. A. Ramakanth and R. V. Babu. Seamseg: Video object segmentation using patch seams. In CVPR, 2014. [6] Q. Fan, F. Zhong, D. Lischinski, D. Cohen-Or, and B. Chen. Jumpcut: Non-successive mask transfer and interpolation for video cutout. ACM Trans. Graph., 34(6), 2015. [7] F. Perazzi, O. Wang, M. Gross, and A. Sorkine-Hornung. Fully connected object proposals for video segmentation. In ICCV, 2015. [8] N. Nicolas Marki, F. Perazzi, O. Wang, and A. Sorkine Hornung. Bilateral space video segmentation. In CVPR, 2016. [9] A. Faktor and M. Irani. Video segmentation by non-local consensus voting. In BMVC, 2014. [10] A. Papazoglou and V. Ferrari. Fast object segmentation in unconstrained video. In ICCV, 2013. 21 [11] P. Tokmakov, K. Alahari, and C. Schmid. Learning motion patterns in videos. arXiv:1612.07217, 2016. [12] S. D. Jain, B. Xiong, and K. Grauman. Fusionseg: Learning to combine motion and appearance for fully automatic segmention of generic objects in videos. arXiv:1701.05384, 2017. [13] W. Wang and J. Shen. Super-trajectory for video segmentation. arXiv:1702.08634, 2017. [14] Y.-H. Tsai, M.-H. Yang, and M. J. Black. Video segmentation via object flow. In CVPR, 2016. [15] A. Khoreva, F. Perazzi, R. Benenson, B. Schiele, and A. Sorkine-Hornung. Learning video object segmentation from static images. In CVPR, 2017. [16] V. Jampani, R. Gadde, and P. V. Gehler. Video propagation networks. In CVPR, 2017 [17] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015. [18] A. Faktor and M. Irani. Video segmentation by non-local consensus voting. In BMVC, 2014. [19] J. Shen, W. Wenguan, and F. Porikli. Saliency-Aware geodesic video object segmentation. In CVPR, 2015. [20] B. Taylor, V. Karasev, and S. Soatto. Causal video object segmentation from persistence of occlusions. In CVPR, 2015. [21] F. Perazzi, P. Krahenb ‥ uhl, Y. Pritch, and A. Hornung. ‥ Saliency filters: Contrast based filtering for salient region detection. In CVPR, 2012. [22] S. D. Jain and K. Grauman. Click carving: Segmenting objects in video with point clicks. In HCOMP, 2016. [23] T. V. Spina and A. X. Falcao. Fomtrace: Interactive video segmentation by image graphs and fuzzy object models. arXiv preprint arXiv:1606.03369, 2016. 22 [24] Q. Fan, F. Zhong, D. Lischinski, D. Cohen-Or, and B. Chen. Jumpcut: Non-successive mask transfer and interpolation for video cutout. SIGGRAPH Asia, 2015. [25] F. Zhong, X. Qin, Q. Peng, and X. Meng. Discontinuityaware video object cutout. TOG, 2012. [26] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015. [27] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, and A. Yuille. The role of context for object detection and semantic segmentation in the wild. In CVPR, 2014. [28] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Con- ’ tour detection and hierarchical image segmentation. TPAMI, 33(5):898–916, 2011. [29] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv:1606.00915, 2016. [30] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Epicflow: Edge-preserving interpolation of correspondences for optical flow. In CVPR, 2015. [31] Simonyan, K. and Zisserman, A. Two-stream convolutional networks for action recognition in videos. CoRR, abs/1406.2199, 2014. Published in Proc. NIPS, 2014. [32] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. Flownet 2.0: Evolution of optical flow estimation with deep networks. In CVPR, 2017. [33] P. Krahenbuhl and V. Koltun. Efficient inference in fully connected crfs with gaussian edge potentials. In NIPS.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68974-
dc.description.abstract本篇論文探討部分監督式影片物體分割演算法,此問題是給定第一幀的物體分割資訊,要求解剩下每一幀此物體之分割結果。我們不同於以往方法,結合影片中的色彩資訊及光流資訊當作輸入來訓練卷積類神經網路,提出了合併架構及分別訓練兩種方法,以及採用分次訓練的策略,首先使用訓練資料訓練好模型,在測試時使用每段影片的第一幀來進行加強學習,最後使用條件隨機域來後處理我們得到的分割結果。我們也做了一些實驗來比較不同訓練條件或是後處理方法得到之結果不同。最後我們最佳的方法在 DAVIS 此影片物體分割資料集中得到了 81.2%的精準度,優於當前最佳技術的 79.8%。zh_TW
dc.description.abstractThis thesis is about the task of semi-supervised video object segmentation. That is, the segmentation of an object from the video given the mask of the first frame. We combine the appearance and the optical flow as our convolution neural network’s input and propose two methods to solve this problem. And we use the offline / online training strategy to fine-tune the model with first frame annotation at the test time. Finally, we use the CRF as our refinement. We also do some ablation study to compare the results with the different conditions. And our best algorithm improves the state of the art from 79.8% to 81.2%.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:45:03Z (GMT). No. of bitstreams: 1
ntu-106-R04944038-1.pdf: 1853257 bytes, checksum: 0620ec3e268e369edcde7e88372341b2 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents v
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
Chapter 2 Related Work 3
2.1 Unsupervised Video Object Segmentation 3
2.2 semi-supervised Video Object Segmentation 3
2.3 Supervised Video Object Segmentation 4
Chapter 3 Methodology 5
3.1 Review of OSVOS 5
3.2 Review of MaskTrack 7
3.3 2-stream architecture 9
3.4 Training details 11
Chapter 4 Experiments and Results 14
Chapter 5 Conclusion 19
Biography 20
dc.language.isoen
dc.subject條件隨機域zh_TW
dc.subject卷積類神經網路zh_TW
dc.subject物體分割zh_TW
dc.subjectobject segmentationen
dc.subjectconvolution neural networksen
dc.subjectconditional random fielden
dc.title利用卷積類神經網路以色彩資訊及光流進行影片物體分割zh_TW
dc.titleVideo Object Segmentation Using Appearance and Optical Flow
with Convolutional Neural Network
en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉正聖,吳賦哲
dc.subject.keyword物體分割,卷積類神經網路,條件隨機域,zh_TW
dc.subject.keywordobject segmentation,convolution neural networks,conditional random field,en
dc.relation.page22
dc.identifier.doi10.6342/NTU201703425
dc.rights.note有償授權
dc.date.accepted2017-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
1.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved