Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68962
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王俊能(Chun-Neng Wang)
dc.contributor.authorHong-Wen Maen
dc.contributor.author馬弘文zh_TW
dc.date.accessioned2021-06-17T02:44:24Z-
dc.date.available2018-08-31
dc.date.copyright2017-08-31
dc.date.issued2017
dc.date.submitted2017-08-16
dc.identifier.citation予茜, 張彦文, 郭友好 (2008). 傳粉生物學常用術語釋譯. 植物分類學報 46, 96-102.
楊智凱, 陳陽發, 洪志遠, 鍾國芳, & 王亞男. (2009). 臺大實驗林溪頭營林區稀有及瀕危植物之調查研究. 臺灣大學生物資源暨農學院實驗林研究報告, 23(4), 309-320.
Agren, J. (1996). Population size, pollinator limitation, and seed set in the self‐incompatible herb Lythrum salicaria. Ecology 77, 1779-1790.
Ashman, T.-L., and Schoen, D. (1997). The cost of floral longevity in Clarkia tembloriensis: an experimental investigation. Evolutionary Ecology 11, 289-300.
Baker, H.G. (1967). Support for Baker's law-as a rule. Evolution 21, 853-856.
Barrett, S.C. (1998). The evolution of mating strategies in flowering plants. Trends in Plant Science 3, 335-341.
Barrett, S.C. (2002). The evolution of plant sexual diversity. Nature Reviews Genetics 3, 274-284.
Becerra, J.X., and Lloyd, D.G. (1992). Competition‐dependent abscission of self‐pollinated flowers of Phormium tenax (Agavaceae): A second action of self‐incompatibility at the whole flower level? Evolution 46, 458-469.
Bechsgaard, J.S., Castric, V., Charlesworth, D., Vekemans, X., and Schierup, M.H. (2006). The transition to self-compatibility in Arabidopsis thaliana and evolution within S-haplotypes over 10 Myr. Molecular Biology and Evolution 23, 1741-1750.
Busch, J.W., and Delph, L.F. (2012). The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Annals of Botany 109, 553-562.

Charlesworth, D., and Charlesworth, B. (1987). Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics 18, 237-268.
Charlesworth, D., and Willis, J.H. (2009). The genetics of inbreeding depression. Nature Reviews Genetics 10, 783-796.
Cheptou, P.O., and Avendano, V.L. (2006). Pollination processes and the Allee effect in highly fragmented populations: consequences for the mating system in urban environments. New Phytologist 172, 774-783.
Cronk, Q., and Möller, M. (1997). Genetics of floral symmetry revealed. Trends in Ecology & Evolution 12, 85-86.
Cruden, R.W. (1977). Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution 31, 32-46.
Dafni, A., Kevan, P.G., and Husband, B.C. (2005). Practical pollination biology. Cambridge, Ontario: Enviroquest.
Darwin, C. (1876). The effects of cross and self fertilization in the vegetable kingdom John Murray London. UK Google Scholar.
Davis, S.L., and Delph, L.F. (2005). Prior selfing and gynomonoecy in Silene noctiflora L.(Caryophyllaceae): opportunities for enhanced outcrossing and reproductive assurance. International Journal of Plant Sciences 166, 475-480.
De Luca, P.A., and Vallejo-Marin, M. (2013). What's the 'buzz' about? The ecology and evolutionary significance of buzz-pollination. Current Opinion in Plant Biology 16, 429-435.
Diggle, P.K. (1995). Architectural effects and the interpretation of patterns of fruit and seed development. Annual Review of Ecology and Systematics 26, 531-552.
Dole, J.A. (1990). Role of corolla abscission in delayed self-pollination of Mimulus guttatus (Scrophulariaceae). American Journal of Botany, 1505-1507.

Duan, Y.W., Dafni, A., Hou, Q.Z., He, Y.P., and Liu, J.Q. (2010). Delayed selfing in an alpine biennial Gentianopsis paludosa (Gentianaceae) in the Qinghai-Tibetan plateau. Journal of Integrative Plant Biology 52, 593-599.
Dubreuil, M., Riba, M., and Mayol, M. (2008). Genetic structure and diversity in Ramonda myconi (Gesneriaceae): effects of historical climate change on a preglacial relict species. American Journal of Botany 95, 577-587.
Eckert, C., and Schaefer, A. (1998). Does self-pollination provide reproductive assurance in Aquilegia canadensis (Ranunculaceae)? American Journal of Botany 85, 919.
Eckert, C.G., and Herlihy, C.R. (2004). Using a cost–benefit approach to understand the evolution of self‐fertilization in plants: the perplexing case of Aquilegia canadensis (Ranunculaceae). Plant Species Biology 19, 159-173.
Eckert, C.G., Samis, K.E., and Dart, S. (2006). Reproductive assurance and the evolution of uniparental reproduction in flowering plants. Ecology and Evolution of Flowers, 183-203.
Fenster, C.B. (1991). Selection on floral morphology by hummingbirds. Biotropica 23, 98-101.
Fisher, R.A. (1941). Average excess and average effect of a gene substitution. Annals of Human Genetics 11, 53-63.
Goodwillie, C., Kalisz, S., and Eckert, C.G. (2005). The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annual Review of Ecology, Evolution, and Systematics 36, 47-79.
Hand, M.L., and Koltunow, A.M. (2014). The genetic control of apomixis: asexual seed formation. Genetics 197, 441-450.
Herlihy, C.R., and Eckert, C.G. (2002). Genetic cost of reproductive assurance in a self-fertilizing plant. Nature 416, 320-323.

Heslop-Harrison, J., Heslop-Harrison, Y., and Shivanna, K. (1984). The evaluation of pollen quality, and a further appraisal of the fluorochromatic (FCR) test procedure. Theoretical and Applied Genetics 67, 367-375.
Johnston, M.O., and Schoen, D.J. (1994). On the Measurement of Inbreeding Depression. Evolution 48, 1735-1741.
Kalisz, S., Vogler, D., Fails, B., Finer, M., Shepard, E., Herman, T., and Gonzales, R. (1999). The mechanism of delayed selfing in Collinsia verna (Scrophulariaceae). American Journal of Botany 86, 1239-1247.
Kalisz, S., and Vogler, D.W. (2003). Benefits of autonomous selfing under unpredictable pollinator environments. Ecology 84, 2928-2942.
Kawai, Y., and Kudo, G. (2009). Effectiveness of buzz pollination in Pedicularis chamissonis: significance of multiple visits by bumblebees. Ecological Research 24, 215.
Keller, L.F., and Waller, D.M. (2002). Inbreeding effects in wild populations. Trends in Ecology & Evolution 17, 230-241.
Klips, R.A., and Snow, A.A. (1997). Delayed autonomous self-pollination in Hibiscus laevis (Malvaceae). American Journal of Botany, 48-53.
Knight, T.M., Steets, J.A., Vamosi, J.C., Mazer, S.J., Burd, M., Campbell, D.R., Dudash, M.R., Johnston, M.O., Mitchell, R.J., and Ashman, T.-L. (2005). Pollen limitation of plant reproduction: pattern and process. Annual Review of Ecology, Evolution, and Systematics 36, 467-497.
Kuo, L.-Y. (2015). Polyploidy and Biogeography in Genus Deparia and Phylogeography in Deparia Lancea.
Kusaba, M., Dwyer, K., Hendershot, J., Vrebalov, J., Nasrallah, J.B., and Nasrallah, M.E. (2001). Self-incompatibility in the genus Arabidopsis: characterization of the S locus in the outcrossing A. lyrata and its autogamous relative A. thaliana. Plant Cell 13, 627-643.

Lande, R., and Schemske, D.W. (1985). The evolution of self‐fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39, 24-40.
Lloyd, D.G., and Schoen, D.J. (1992). Self-and cross-fertilization in plants. I. Functional dimensions. International Journal of Plant Sciences 153, 358-369.
Lyon, D.L. (1992). Bee pollination of facultatively xenogamous Sanguinaria canadensis L. Bulletin of the Torrey Botanical Club, 368-375.
Matzk, F., Meister, A., and Schubert, I. (2000). An efficient screen for reproductive pathways using mature seeds of monocots and dicots. The Plant Journal 21, 97-108.
Pannell, J.R., Auld, J.R., Brandvain, Y., Burd, M., Busch, J.W., Cheptou, P.O., Conner, J.K., Goldberg, E.E., Grant, A.G., Grossenbacher, D.L., et al. (2015). The scope of Baker's law. New Phytologist 208, 656-667.
Peat, J., and Goulson, D. (2005). Effects of experience and weather on foraging rate and pollen versus nectar collection in the bumblebee, Bombus terrestris. Behavioral Ecology and Sociobiology 58, 152-156.
Qu, R., Li, X., Luo, Y., Dong, M., Xu, H., Chen, X., and Dafni, A. (2007). Wind-dragged corolla enhances self-pollination: a new mechanism of delayed self-pollination. Annals of Botany 100, 1155-1164.
Rea, A.C., and Nasrallah, J.B. (2008). Self-incompatibility systems: barriers to self-fertilization in flowering plants. The International Journal of Developmental Biology 52, 627-636.
Sargent, R.D. (2004). Floral symmetry affects speciation rates in angiosperms. Proceedings: Biological Sciences 271, 603-608.
Schoen, D.J. (1982). The Breeding System of Gilia Achilleifolia: Variation in Floral Characteristics and Outcrossing Rate. Evolution 36, 352-360.
Stebbins, G. (1974). Flowering plants: evolution above the species level. 1974 (Cambridge: Belknap Press of Harvard University Press).
Vickery, R.K. (2008). How does Mimulus verbenaceus (Phrymaceae) set seed in the absence of pollinators? Evolutionary Biology 35, 199-207.
Vogler, D.W., and Kalisz, S. (2001). Sex among the flowers: the distribution of plant mating systems. Evolution 55, 202-204.
Wang, Y.-Z., Liang, R.-H., Wang, B.-H., Li, J.-M., Qiu, Z.-J., Li, Z.-Y., and Weber, A. (2010). Origin and phylogenetic relationships of the Old World Gesneriaceae with actinomorphic flowers inferred from ITS and trnL-trnF sequences. Taxon 59, 1044-1052.
Wesselingh, R.A. (2007). Pollen limitation meets resource allocation: towards a comprehensive methodology. New Phytologist 174, 26-37.
Wiens, D., Calvin, C., Wilson, C., Davern, C., Frank, D., and Seavey, S. (1987). Reproductive success, spontaneous embryo abortion, and genetic load in flowering plants. Oecologia 71, 501-509.
Wright, S.I., Kalisz, S., and Slotte, T. (2013). Evolutionary consequences of self-fertilization in plants. Proceedings. Biological Sciences 280, 20130133.
Zhang, Z.Q., and Li, Q.J. (2008). Autonomous selfing provides reproductive assurance in an alpine ginger Roscoea schneideriana (Zingiberaceae). Annals of Botany 102, 531-538.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68962-
dc.description.abstract苦苣苔為一種多年生草本植物,棲息在中海拔森林底下陰暗潮濕的岩壁或溪邊石頭上。由觀察到自然狀況下的結實率高達78%以及套袋處理的花朵依舊能結實,顯示可能存在自發性自交(Autonomous selfing)的機制。同時也多次記錄到熊蜂(Bombus spp. )訪花,代表昆蟲傳粉可能頻繁發生。為了瞭解苦苣苔在自然情況下之生殖策略,我們比較從花苞時期即套袋處理(代表自發性自交)與自然控制組(代表昆蟲傳粉與自發性自交)花朵的結實率,能夠得知自發性自交的能力如何,由套袋處理與自然控制組所得到的種子數分別523.5與541.9個種子(兩者無顯著差異),顯示自發性自交的結實能力和自然情況一樣好。我們也在開花第一天、第三天、第五天進行去雄套袋處理,以及不去雄套袋處理,藉此探討自發性自交發生的時間是否與異交競爭,結果為去雄處理時間越晚的花朵(代表自發性自交發生的時間越久)種子數越多,顯示自發性自交於昆蟲能傳粉的開花期間會持續發生,符合競爭自交(Competing selfing)的模式。接著比較去雄花朵(代表昆蟲傳粉; FE)與自然控制組 (FI) 花朵的結實率,並計算出生殖保障(RA= (FI - FE) / FI),即可得知自交所提供的生殖保障程度,由去雄花朵與自然控制組花朵得到的結果分別為473與541.9個種子,並計算出生殖保障(RA)為0.13顯示自發性自交提供的生殖保障不高,代表自然狀況下生殖策略主要仍靠昆蟲傳粉為主。同時我們也進行人工自花與異花授粉,以種子數與種子萌發率當作適存度(Fitness)的指標,比較自交子代的適存度(Ws)是否明顯低於人工異交 (Wo),並計算出苦苣苔近交衰敗的程度(δ =1- Ws/ Wo)為0.385,當δ小於0.5時代表此自發性自交產生子代的生殖代價不高。綜合結果,我認為苦苣苔演化出同時具有昆蟲傳粉與自發性自交的混合型生殖策略(Mixed breeding system),幫助它生存在森林底下的潮濕且陰暗環境。在昆蟲充足的環境下,苦苣苔能藉由昆蟲傳粉很有效率產生的種子,如果缺乏昆蟲時,也能藉由結籽能力強的的自發性自交機制讓自花授粉,以確保生殖的成功。zh_TW
dc.description.abstractConandron ramondioides is a perennial herb that survives in patches of high humidity habitat in dense shade forest. High fruit set (78%) under natural conditions and bagged flowers imply that autonomous selfing exists. We have observed that bumble bees visited flowers frequently, which indicates insect pollination in C. ramondioides. To determine the capacity of autonomous selfing, we compared the seed set from bagged (prevent insect but autonomous selfing) and intact (natural condition) flowers. The average seed number per fruit are 523 and 541.9, respectively, which suggests that C. ramondioides has well-developed capacity for autonomous selfing. To confirm whether autonomous selfing compete with insect pollination, we emasculated the bagged flowers at the first, third day, and the fifth day. The results show that autonomous selfing can continuously occur during anthesis. The seed sets of bagged flowers that emasculated at different days increased gradually, which indicates the mode of autonomous selfing is competing selfing. In order to measure reproductive assurance, we compared the seed set of emasculated flowers (only allow insect pollination; FE) and that of intact flowers (FI). The seed set was 473 and 541, respectively. Reproductive assurance was 0.13 (RA = (FI – FE) / FI), which indicates that autonomous selfing in C. ramondioides provides low level of reproductive assurance. The calculated inbreeding depression, based on the proportion of difference between artificial outcrossing and selfing in seed germination rate and seed numbers, is low (δ=0.385).
According to our pollination experiment, we conclude that C. ramondioides possesses a mixed breeding system. The well-developed capacity for competing autonomous selfing and low inbreeding depression allows C. ramondioides to survive even when pollinators are lacking.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:44:24Z (GMT). No. of bitstreams: 1
ntu-106-R03b44008-1.pdf: 6552784 bytes, checksum: a5455f59ba69b0b18bb8f2d314528be0 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要 I
英文摘要 II
目錄 III
圖目錄 VI
表目錄 VII
第一章、前言 1
一、植物的生殖系統 1
二、不同自發性自交模式對於生殖系統的影響 3
三、衡量自交提供的優勢與付出的代價 5
四、苦苣苔的生殖策略 7
五、研究目的 9
第二章、材料與方法 10
一、研究樣點與樣區 10
二、研究物種 11
三、植物種植 14
四、花朵結構觀察 14
五、傳粉者紀錄與行為觀察 14
六、檢測有無無配生殖的生殖策略 15
(一)、檢測無配生殖之授粉實驗 15
(二)、流式細胞種子篩選法 15
七、檢測苦苣苔可能的生殖系統 16
(一)、探討生殖系統的授粉實驗 16
八、自交親和性測試 20
(一)、計算自交親和指數 20
(二)、花粉管萌發實驗 21
九、自發性自交能力測試 21
(一)、測試自發性自交能力的授粉實驗 21
(二)、計算自發性自交的結籽能力 22
十、測試自發性自交主要發生的時間 22
(一)、測試自發性自交主要發生時間的授粉實驗 22
(二)、花粉與柱頭活性測試 23
十一、測量自發性自交得生殖保障 25
(一)、測量生殖保障的授粉實驗 25
(二)、計算生殖保障程度 25
十二、近交衰敗程度測試 25
(一)、測試近交衰敗程度的授粉實驗 25
(二)、種子萌發率計算方法 26
(三)、計算近交衰敗的程度 26
十三、花粉、胚珠數量計算及花粉/胚珠數量比 27
第三章、結果 28
一、花朵結構觀察 28
二、花朵時期定義 32
三、訪花者紀錄及訪花行為觀察 33
(一)、訪花者紀錄 33
(二)、訪花行為觀察 33
四、檢測有無無配生殖的生殖策略 36
五、探討苦苣苔的生殖系統 37
六、自交親和性測試 40
(一)、計算自交親和指數 40
(二)、花粉管萌發實驗 40
七、自發性自交的能力測試 42
(一)、測試自發性自交的授粉實驗 42
(二)、計算自發性自交的結籽能力 42
八、測試自發性自交主要發生的時間 44
(一)、不同時間去雄套袋之結實率以測試自發性自交主要發生的授粉實驗 44
(二)、花粉與柱頭活性測試 46
九、測量自交提供的生殖保障 48
(一)、測量生殖保障的授粉實驗 48
(二)、計算生殖保障程度 48
十、測量自交造成的近交衰敗 50
(一)、測試近交衰敗的授粉實驗 50
(二)、計算種子萌發率 50
(三)、計算近交衰敗的程度 50
十一、花粉胚珠比 52
第四章、討論 53
一、熊蜂的訪花行為探討 53
二、苦苣苔的生殖系統探討 54
(一)、混合型生殖系統有利於苦苣苔生存在傳粉者不穩定環境 54
(二)、近交衰敗不會對苦苣苔的生殖造成不利的影響 57
(三)、自發性自交機制被保留的原因 58
三、自發性自交的模式與機制探討 59
(一)、競爭自交有利於苦苣苔的生殖 59
(二)、在苦苣苔發現了新的自發性自交的機制 60
四、苦苣苔發育成輻射對稱花與自發性自交有關 61
五、苦苣苔的生殖系統排除無配生殖可能性 62
六、資源分配對自發性自交的影響 63
第五章、結論 65
參考文獻 67
附錄 73
dc.language.isozh-TW
dc.subject混合型生殖系統zh_TW
dc.subject苦苣苔zh_TW
dc.subject生殖保障zh_TW
dc.subject自發性自交zh_TW
dc.subject近交衰敗zh_TW
dc.subjectReproductive assuranceen
dc.subjectInbreed depressionen
dc.subjectAutonomous selfingen
dc.subjectConandron ramondioidesen
dc.subjectMixed breeding systemen
dc.title苦苣苔自發性自交提供潛在生殖保障zh_TW
dc.titleAutonomous selfing provides potential reproductive assurance in Conandron ramondioides (Gesneriaceae)en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡哲明(Jer-Ming Hu),王震哲(Jenn-Che Wang),呂長澤(Chang-tse Lu)
dc.subject.keyword苦苣苔,自發性自交,生殖保障,近交衰敗,混合型生殖系統,zh_TW
dc.subject.keywordReproductive assurance,Conandron ramondioides,Autonomous selfing,Inbreed depression,Mixed breeding system,en
dc.relation.page73
dc.identifier.doi10.6342/NTU201703234
dc.rights.note有償授權
dc.date.accepted2017-08-16
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
6.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved