請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6857完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡振國(Jenn-Gwo Hwu) | |
| dc.contributor.author | Li Lin | en |
| dc.contributor.author | 林立 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:19:38Z | - |
| dc.date.available | 2017-07-18 | |
| dc.date.available | 2021-05-17T09:19:38Z | - |
| dc.date.copyright | 2012-07-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-06-25 | |
| dc.identifier.citation | [1] J. S. Kilby, U. S. Patent 3,138,743, June 23, 1964.
[2] R. N. Noyce, U. S. Patent 2,981,877, April 25, 1961. [3] Wikipedia, “Moore’s law,” 2012, http://en.wikipedia.org/wiki/Moore's_law [4] P. F. Schmidt and W. Michel, “Anodic Formation of Oxide Films on Silicon,” Journal of the Electrochemical Society, vol. 104, p. 230, 1957. [5] V. Parkhutik, “New Effects in the Kinetics of the Electrochemical Oxidation of Silicon,” Electrochimica Acta, vol. 45, pp. 3249-3254, 2000. [6] M. Grecea, C. Rotaru, N. Nastase, and G. Craciun, “Physical Properties of SiO2 Thin Films Obtained by Anodic Oxidation,” Journal of Molecular Structure, pp. 607-610, 1999. [7] S. K. Ghandhi, VLSI Fabrication Principles, 2nd ed., Wiley-Interscience, pp. 487-495, 1994. [8] H. J. Lewerenz, “Anodic Oxides on Silicon,” Electrochimica Acta, vol. 37, pp. 847-864, 1992. [9] C. C. Ting, Y. H. Shih, and J. G. Hwu, “Ultra Low Leakage Characteristics of Ultra-thin Gate Oxides (~3 nm) Prepared by Anodization Followed by High Temperature Annealing,” IEEE Transactions on Electron Devices, Vol.49, No.1, pp. 179-181, 2002. [10] W. Kern and D. Poutinen, RCA Rev., 31, 187 (1970) [11] J. R. Hauser and K. Ahmed, “Characterization of Ultra-thin Oxides Using Electrical C-V and I-V Measurement,” AIP Conf. Proc. 449, 1998, pp. 235-239. [12] K. J. Yang, and C. Hu, “MOS Capacitance Measurements for High-Leakage Thin Dielectrics,” IEEE Trans. Electron Devices, vol. 46, pp. 1500-1501, July 1999. [13] K. Yang, Y. C. King, and C. Hu, “Quantum Effect in Oxide Thickness Determination from Capacitance Measurement,” in Symp. VLSI Tech. Dig., pp. 77-78, 1999. [14] Berkeley Device Group. [Online]. Available: www-device.eecs.berkeley. edu/qmcv/ [15] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed., John Wiley & Sons, New York, pp. 209, 2007. [16] R. F. Pierret, “A Linear-Sweep MOS-C Technique for Determining Minority Carrier Lifetimes,” IEEE Transactions on Electron Devices, Vol. 19, pp. 869-873, 1972. [17] M. S. Liang, C. Chang, Y. T. Yeow, C. Hu and R. W. Brodersen, “Creation and Termination of Substrate Deep Depletion in Thin Oxide MOS Capacitors by Charge Tunneling,” IEEE Electron Devices Letters IEEE Electron Device Lett., Vol. 4, pp. 350-352, 1983. [18] C. Y. Liu, B. Y. Chen, and T. Y. Tseng, “Deep depletion phenomenon of SrTiO3 gate dielectric capacitor,” Journal of Applied Physics, Vol. 95, pp. 5602-5607, 2004. [19] C. W. Liu, W. T. Liu, M. H. Lee, W. S. Kuo, B. C. Hsu, 'A Novel Photodetector Using MOS Tunneling Structures,' Electron Device Letters, IEEE , Vol.21, No.6, pp. 307-309, 2000. [20] Y. P. Lin and J. G. Hwu, “Oxide Thickness Dependent Suboxide Width and Its Effect on Inversion Tunneling Current,” Journal of The Electrochemical Society, Vol.151, No.12, pp. G853-G857, 2004. [21] C. H. Chen, K. C. Chuang and J. G. Hwu, “Characterization of Inversion Tunneling Current Saturation Behavior for MOS(p) Capacitors with Ultra-thin Oxides and High-k Dielectrics,” IEEE Transactions on Electron Devices, Vol.56, No.6,, pp. 1262-1268, 2009. [22] Y. Naitou, A. Ando, H. Ogiso, S. Kamiyama, Y. Nara, K. Yasutake, and H. Watanabe, 'Investigation of local charged defects within high-temperature annealed HfSiON/SiO2 gate stacks by scanning capacitance spectroscopy,' Journal of Applied Physics, Vol. 101, pp. 083704-1~083704-6, 2007. [23] J. Y. Cheng, C. T. Huang, and J. G. Hwu, “Comprehensive study on the deep depletion capacitance-voltage behavior for metal-oxide-semiconductor capacitor with ultra-thin oxides,” Journal of Applied Physics, Vol.106, No.7, pp. 074507-1~074507-7, 2009. [24] K. M. Chen and J. G. Hwu, “Area dependent deep depletion behavior in the capacitance-voltage characteristics of metal-oxide-semiconductor structures with ultra-thin oxides,” Journal of Applied Physics, Vol.110, No.11, pp. 114104-1~114104-4, 2011. [25] R. M. Patrikar, R. Lal, and J. Vasi, “High field characteristics of metal-oxide-semiconductor capacitors with the silicon in inversion,” Journal of Applied Physics, Vol. 73, No. 8, pp.3857-3859, 1993. [26] J. Y. Cheng, H. T. Lu, and J. G. Hwu, “Metal-Oxide-Semiconductor Tunneling Photodiodes with Enhanced Deep Depletion at Edge by High-k Material,” Applied Physics Letters, Vol.96, No. 23, pp. 233506-1~233506-3, 2010. [27] J. Y. Cheng and J. G. Hwu, “Characterization of Edge Fringing Effect on the C-V Responses From Depletion to Deep Depletion of MOS(p) Capacitors With Ultrathin Oxide and High-k Dielectric,” IEEE Transactions on Electron Devices, Vol. 59, No. 3, pp. 565-572, 2012. [28] M. I. Vexler, A. F. Shulekin, C. Dieker, V. Zaporojtschenko, H. Zimmermann, W. Jager, I. V. Grekhov, and P. Seegebrecht, “Current model considering oxide thickness non-uniformity in a MOS tunnel structure,” Solid State Electronics, Vol. 45, No. 1, pp. 19–25, 2001. [29] J. Y. Cheng and J. G. Hwu, “Investigation of Illuminated High-Frequency Capacitance-Voltage Response in Deep Depletion of HfO2 and SiO2 MOS Capacitors with Ultra-thin Gate Oxides,” in International Conference on Solid State Devices and Materials, 2010, P-3-19, pp.289-290. [30] K. M. Chen, 'Deep Depletion Phenomenon in The C-V Characteristics of MOS Structure,” M.S. thesis, National Taiwan University, Taiwan, 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6857 | - |
| dc.description.abstract | 本篇論文主要關注於超薄閘極氧化層金氧半電容元件之深空乏現象,為了深入瞭解此現象,引入各元件的光反應作為對照。首先,製造並加以量測具有簡單正方形圖案之金氧半電容元件。當少數載子的生成電流無法供給漏電流時,深空乏現象將會發生,且伴隨著閘極電流的飽和。側面不均勻性之加劇,如照光或氧化層厚度減少,均會強化邊緣電場,使得飽和電流更容易流經電容元件之邊緣。
接著,為了進一步探討邊緣區域的尺度,設計出變化邊緣相關參數之圖案。電極寬度大於10μm,且電極間距為30μm之元件的電容-電壓及電流-電壓曲線,與簡單正方形圖案的相近。然而,電極間距小於20μm,且電極寬度為30μm之元件的電流-電壓曲線,在電流飽和之過程中出現特別的過渡區;本文提出可能的解釋與圖例,認為此現象起因於兩臨近電極之邊緣空乏區耦合及少數載子共享。照光後,由於少數載子數量充足,此一過渡區將會消失。 | zh_TW |
| dc.description.abstract | In this thesis, deep depletion behavior of MOS capacitors with ultrathin oxides is of major concern, while the photoresponse of each sample is also included for better understanding of this behavior. First, MOS capacitors with simple square patterns are fabricated and measured. Accompanied by saturation of gate current, deep depletion behavior occurs when the generation current of minority carriers fails to supply the leakage current. Enhancement of lateral nonuniformity such as illumination or decrease in oxide thickness intensifies the fringing field at edge and makes the saturation current pass through the edge of MOS capacitors more likely.
Subsequently, patterns with various changes in the edge-related parameters are designed so as to further recognize the approximate scales of edge regions. The capacitance-voltage and current-voltage curves of samples with electrode width lager than 10 μm and electrode separation of 30 μm are similar to those with simple square patterns. However, current-voltage curves of samples with electrode separation smaller than 20 μm and electrode width of 30 μm exhibit particular transition regions during the saturation of gate currents. Explanation and illustration are consequently proposed, supposing that the behavior originates from the coupling of edge depletion region and the sharing of minority charges between two adjacent electrodes. Under illumination, the transition regions disappear due to the abundant minority carriers. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:19:38Z (GMT). No. of bitstreams: 1 ntu-101-R99943110-1.pdf: 1426429 bytes, checksum: 354766ebe379a111c9cb9e098202502a (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Abstract (Chinese) I
Abstract (English) II Contents III Table Captions V Figure Captions VI Chapter 1 Introduction 1 1-1 Motivation of This Work 1 1-2 Ultrathin Oxide Prepared by Anodization 2 1-3 Experimental Setup and Measurement Systems 5 1-4 Determination of Ultrathin Oxide Thickness 6 1-5 Deep Depletion Behavior in Capacitance-Voltage Curve 8 Chapter 2 Fundamental Characteristics of MOS Structures 16 2-1 Introduction 16 2-2 Correlation Between Deep Depletion Behavior and Saturation Current 17 2-3 Capacitance-Voltage Characteristics of MOS Capacitors under Illumination 21 2-4 Summary 24 Chapter 3 Characterization of Deep Depletion Behavior by Pattern Design 34 3-1 Introduction 34 3-2 Parameters of Designed Patterns 35 3-3 Results and Discussion 36 3-3-1 Samples with Different Electrode Width 36 3-3-2 Samples with Different Electrode Separation 37 3-4 Summary 43 Chapter 4 Conclusions and Suggestions for Future Work 57 4-1 Conclusions 57 4-2 Suggestions for Future Work 58 References 61 | |
| dc.language.iso | en | |
| dc.title | 深空乏現象對超薄閘極氧化層金氧半電容元件光反應之影響 | zh_TW |
| dc.title | Deep Depletion Behavior in the Photoresponse of MOS Capacitors with Ultrathin Oxides | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林致廷(Chih-Ting Lin),田維誠(Wei-Cheng Tian) | |
| dc.subject.keyword | 金氧半電容元件,深空乏現象,光反應, | zh_TW |
| dc.subject.keyword | MOS Capacitors,Deep Depletion Gehavior,Photoresponse, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-06-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 1.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
