Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68376
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂廷璋(Ting-Jang Lu)
dc.contributor.authorHsueh-Ting Wangen
dc.contributor.author王雪婷zh_TW
dc.date.accessioned2021-06-17T02:19:10Z-
dc.date.available2018-08-24
dc.date.copyright2017-08-24
dc.date.issued2017
dc.date.submitted2017-08-21
dc.identifier.citation王鐘凰, 菇蕈中活性多醣 (1, 3; 1, 6)-β-D-葡萄聚醣的分析與功能評估. 臺灣大學食品科技研究所學位論文 2014, 1-118.
余惠菁, 巴西洋菇菌絲水溶性多醣之劃分與理化特性. 臺灣大學食品科技研究所學位論文 2007, 1-69.
林念蓁, 巴西洋菇發酵物對 BALB/c 鼠之非特異性免疫調節及其免疫調節蛋白純化與生理活性之探討. 臺灣大學食品科技研究所學位論文 2006, 1-154.
黃炘雯, 臺灣茶非消化水溶性多醣之分子特徵. 臺灣大學食品科技研究所學位論文 2017, 1-174.
楊, 梅.; 林, 琳.; 張, 其., 姬松茸菌絲深層培養及胺基酸分析研究. 中國食用菌 1997, 16, 41-42.
楊俐穎, 巴西洋菇水溶性多醣之特徵. 臺灣大學食品科技研究所學位論文 2005, 1-110.
趙紀峰; 王海軍; 蘇晶; 高太平, 中藥多醣的提取分離工業研究. 重慶中草藥研究 2007, 1, 29.
劉明學; 李瓊芳; 劉強; 黃治強; 邱樊, 天麻分離結構分析與自由基清除作用研究. 食品科學 2009, 30, 29.
Adachi, Y.; Ohno, N.; Ohsawa, M.; Sato, K.; Oikawa, S.; Yadomae, T., Physicochemical properties and antitumor activities of chemically modified derivatives of antitumor glucan grifolan le from grifola-frondosa. Chem. Pharm. Bull. (Tokyo) 1989, 37, 1838-1843.
Agrawal, P. K., NMR-spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry 1992, 31, 3307-3330.
Anderson, D. M. W.; Cree, G. M., Studies on uronic acid materials part xiv. methylation with the sodium hydride-methyl iodidedimethyl sulphoxlde system. Carbohydr. Res. 1966, 2, 162-166.
Baldwin Jr, A. S., The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 1996, 14, 649-681.
Bao, H.; Choi, W. S.; You, S., Effect of Sulfated Modification on the Molecular Characteristics and Biological Activities of Polysaccharides from Hypsizigus marmoreus. Biosci., Biotechnol., Biochem. 2010, 74, 1408-1414.
Barker, C. C.; Hirst, E. L.; Jones, J. K. N., Methylation of beta-methylglucopyranoside and alpha-beta-methylxylopyranosides by thallous hydroxide and methyl iodide. J. Chem. Soc. 1946, 783-784.
Becker, D. J.; Lowe, J. B., Fucose: biosynthesis and biological function in mammals. Glycobiology 2003, 13, 41R-53R.
Bernardshaw, S.; Johnson, E.; Hetland, G., An extract of the mushroom Agaricus blazei Murill administered orally protects against systemic Streptococcus pneumoniae infection in mice. Scand. J. Immunol. 2005, 62, 393-398.
Bertaud, F.; Sundberg, A.; Holmbom, B., Evaluation of acid methanolysis for analysis of wood hemicelluloses and pectins. Carbohydr. Polym. 2002, 48, 319-324.
Berven, L.; Karppinen, P.; Hetland, G.; Samuelsen, A. B. C., The polar high molecular weight fraction of the Agaricus blazei Murill extract, AndoSan™, reduces the activity of the tumor-associated protease, legumain, in RAW 264.7 cells. J. Med. Food 2015, 18, 429-438.
Beutler, B.; Rietschel, E. T., Innate immune sensing and its roots: the story of endotoxin. Nature Reviews Immunology 2003, 3, 169-176.
Biedron, R.; Tangen, J.; Maresz, K.; Hetland, G., Agaricus blazei Murill-immunomodulatory properties and health benefits. Functional Foods in Health and Disease 2012, 2, 428-447.
Biermann, C. J., Analysis of carbohydrates by GLC and MS. CRC Press, Inc.: Florida, 1989.
Blaschek, W.; Kasbauer, J.; Kraus, J.; Franz, G., Pythium-aphanidermatum - culture, cell-wall composition, and isolation and structure of antitumor storage and solubilized cell-wall (1 - 3), (1 - 6)-beta-d-glucans. Carbohydr. Res. 1992, 231, 293-307.
Blumenkr.N; Asboehan.G, New method for quantitative-determination of uronic acids. AnBio 1973, 54, 484-489.
Bohn, J. A.; BeMiller, J. N., (1->3)-beta-D-glucans as biological response modifiers: A review of structure-functional activity relationships. Carbohydr. Polym. 1995, 28, 3-14.
Borchers, A. T.; Stern, J. S.; Hackman, R. M.; Keen, C. L.; Gershwin, M. E., Mushrooms, tumors, and immunity. PSEBM 1999, 221, 281-293.
Bradford, M. M., Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. AnBio 1976, 72, 248-254.
Brauman, J. I.; Bryson, J. A.; Kahl, D. C.; Nelson, N. J., Equilibrium acidities in dimethyl sulfoxide. J. Am. Chem. Soc. 1970, 92, 6679-&.
Brimacombe, J. S.; Jones, B. D.; Stacey, M.; Willard, J. J., Alkylation of carbohydrates using sodium hydride. Carbohydr. Res. 1966, 2, 167.
Carswell, E.; Old, L. J.; Kassel, R.; Green, S.; Fiore, N.; Williamson, B., An endotoxin-induced serum factor that causes necrosis of tumors. Proceedings of the National Academy of Sciences 1975, 72, 3666-3670.
Chen, C.-H.; Sheu, M.-T.; Chen, T.-F.; Wang, Y.-C.; Hou, W.-C.; Liu, D.-Z.; Chung, T.-C.; Liang, Y.-C., Suppression of endotoxin-induced proinflammatory responses by citrus pectin through blocking LPS signaling pathways. Biochem. Pharmacol. 2006, 72, 1001-1009.
Ciucanu, I.; Kerek, F., A simple and rapid method for the permethylation of carbohydrates. Carbohydrate Research 1984, 131, 209-217.
Ciucanu, I.; Costello, C. E., Elimination of oxidative degradation during the per-O-methylation of carbohydrates. Journal of the American Chemical Society 2003, 125, 16213-16219.
Ciucanu, I., Per-O-methylation reaction for structural analysis of carbohydrates by mass spectrometry. Anal. Chim. Acta 2006, 576, 147-155.
Collins, T.; Read, M. A.; Neish, A. S.; Whitley, M.; Thanos, D.; Maniatis, T., Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. The FASEB Journal 1995, 9, 899-909.
Cui, S. W., Food carbohydrates: chemistry, physical properties, and applications. CRC press: 2005.
Deruiter, G. A.; Schols, H. A.; Voragen, A. G. J.; Rombouts, F. M., Carbohydrate analysis of water-soluble uronic acid-containing polysaccharides with high-performance anion-exchange chromatography using methanolysis combined with tfa hydrolysis is superior to 4 other methods. AnBio 1992, 207, 176-185.
Dong, Q.; Yao, J.; Yang, X. T.; Fang, J. N., Structural characterization of a water-soluble beta-D-glucan from fruiting bodies of Agaricus blazei Murr. Carbohydr. Res. 2002, 337, 1417-1421.
Dourado, F.; Cardoso, S. M.; Silva, A. M. S.; Gama, F. M.; Coimbra, M. A., NMR structural elucidation of the arabinan from Prunus dulcis immunobiological active pectic polysaccharides. Carbohydr. Polym. 2006, 66, 27-33.
Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F., Colorimetric method for determination of sugars and related substances. AnaCh 1956, 28, 350-356.
Ellertsen, L. K.; Hetland, G., An extract of the medicinal mushroom Agaricus blazei Murill can protect against allergy. Clin. Mol. Allergy 2009, 7, 6.
Endress, H.-U., Non food uses pectins, in The Chemistry and Technology of pectin. ed. R. H. Walter Academic Press, San Diego, 1991; p 251-268.
Førland, D.; Johnson, E.; Saetre, L.; Lyberg, T.; Lygren, I.; Hetland, G., Effect of an extract based on the medicinal mushroom Agaricus blazei Murill on expression of cytokines and calprotectin in patients with ulcerative colitis and Crohn’s disease. Scand. J. Immunol. 2011, 73, 66-75.
Falch, B. H.; Espevik, T.; Ryan, L.; Stokke, B. T., The cytokine stimulating activity of (1 -> 3)-beta-D-glucans is dependent on the triple helix conformation. Carbohydr. Res. 2000, 329, 587-596.
Falconer, E. L.; Adams, G. A., The aldobiouronic acids of hemicellulose-b of oat hulls. Canadian Journal of Chemistry-Revue Canadienne De Chimie 1956, 34, 338-344.
Fear, C. M.; Menzies, R. C., Applications of thallium compounds in organic chemistry. Part III. Alkylations. J. Chem. Soc. 1926, 937-940.
Fujimiya, Y.; Kobori, H.; Oshiman, K.; Soda, R.; Ebina, T., Tumoricidal activity of high molecular weight polysaccharides derived from Agaricus blazei via oral administration in the mouse tumor model. Journal of the Japanese Society for Food Science and Technology-Nippon Shokuhin Kagaku Kogaku Kaishi 1998a, 45, 246-252.
Fujimiya, Y.; Suzuki, Y.; Oshiman, K.; Kobori, H.; Moriguchi, K.; Nakashima, H.; Matumoto, Y.; Takahara, S.; Ebina, T.; Katakura, R., Selective tumoricidal effect of soluble proteoglucan extracted from the basidiomycete, Agaricus blazei Murill, mediated via natural killer cell activation and apoptosis. Cancer Immunology Immunotherapy 1998b, 46, 147-159.
Fujimiya, Y.; Suzuki, Y.; Katakura, R.; Ebina, T., Tumor-specific cytocidal and immunopotentiating effects of relatively low molecular weight products derived from the basidiomycete, Agaricus blazei Murill. Anticancer Res. 1999, 19, 113-118.
Gibbons, M., The determination of methylpentoses. Analyst 1955, 80, 268-276.
Gonzaga, M. L. C.; Menezes, T. M.; de Souza, J. R.; Ricardo, N. M.; Freitas, A. L.; Soares, S. d. A., Analgesic Activity of a glucan polysaccharide isolated from Agaricus blazei Murill. International Journal of Carbohydrate Chemistry 2013, 2013.
Gur'yanov, O.; Gorshkova, T.; Kabel, M.; Schols, H.; van Dam, J. E. G., Structural characterization of tissue-specific galactan from flax fibers by H-1 NMR and MALDI TOF mass spectrometry. uss. J. Bioorg. Chem. 2006, 32, 558-567.
Hakomori, S. I., Rapid permethylation of glycolipid + polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J. Biochem. 1964, 55, 205-&.
Handa, S.; Nakamura, K., Modification of sialic-acid carboxyl group of ganglioside. J. Biochem. 1984, 95, 1323-1329.
Hauthal, H. G.; Lorenz, D., Darstellung und reaktionen des methylsulfinyl-carbanions in dimethyl sulfoxid. Akademie Verlag Berlin: Martin, 1971; p 344-362.
Haworth, W. N., A new method of preparing alkylated sugars. J. Chem. Soc. 1915, 107, 8-16.
Hirst, E. L.; Percival, E., Method of carbohydrate chemistry 5. 1965; p 287-296.
Holst, O.; Moll, H.; Brade, H.; Thiem, J., Methylation analysis of non-glycosidic phosphoric diesters of carbohydrates. Carbohydr. Res. 1989, 188, 219-221.
Ishii, T., O-acetylated oligosaccharides from pectins of potato tuber cell walls. Plant Physiol. 1997, 113, 1265-1272.
Ito, H.; Shimura, K.; Itoh, H.; Kawade, M., Antitumor effects of a new polysaccharide-protein complex (ATOM) prepared from Agaricus blazei (Iwade strain 101) 'Himematsutake' and its mechanisms in tumor-bearing mice. Anticancer Res. 1997, 17, 277-284.
Jackson, C. L.; Dreaden, T. M.; Theobald, L. K.; Tran, N. M.; Beal, T. L.; Eid, M.; Gao, M. Y.; Shirley, R. B.; Stoffel, M. T.; Kumar, M. V., Pectin induces apoptosis in human prostate cancer cells: correlation of apoptotic function with pectin structure. Glycobiology 2007, 17, 805-819.
Janeway Jr, C. A.; Medzhitov, R., Innate immune recognition. Annu. Rev. Immunol. 2002, 20, 197-216.
Jarvis, M. C.; Apperley, D. C., Chain conformation in concentrated pectic gels: evidence from 13C NMR. Carbohydr. Res. 1995, 275, 131-145.
Kim, J. B.; Carpita, N. C., Changes in esterification of the uronic-acid groups of cell-wall polysaccharides during elongation of maize coleoptiles. Plant Physiol. 1992, 98, 646-653.
Kim, W. S.; Ordija, C. M.; Freeman, M. W., Activation of signaling pathways by putative scavenger receptor class A (SR-A) ligands requires CD14 but not SR-A. BBRC 2003, 310, 542-549.
Knox, J. P.; Linstead, P. J.; King, J.; Cooper, C.; Roberts, K., Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 1990, 181, 512-521.
Knox, J. P., The use of antibodies to study the architecture and developmental regulation of plant cell walls. Int. Rev. Cytol. 1997, 171, 79-120.
Koivunen, M. E.; Krogsrud, R. L., Principles of immunochemical techniques used in clinical laboratories. Lab. Med. 2015, 37, 490-497.
Kolar, S. S. N.; Barhoumi, R.; Lupton, J. R.; Chapkin, R. S., Docosahexaenoic acid and butyrate synergistically induce colonocyte apoptosis by enhancing mitochondrial Ca2+ accumulation. Cancer Res. 2007, 67, 5561-5568.
Komura, D. L.; Carbonero, E. R.; Gracher, A. H. P.; Baggio, C. H.; Freitas, C. S.; Marcon, R.; Santos, A. R. S.; Gorin, P. A. J.; Iacomini, M., Structure of Agaricus spp. fucogalactans and their anti-inflammatory and antinociceptive properties. Bioresour. Technol. 2010, 101, 6192-6199.
Kuhn, R.; Trischmann, H.; Low, I., Zur permethylierung von zuckern und glykosiden. Angewandte Chemie-International Edition 1955, 67, 32-32.
Lemal, D. M.; Pacht, P. D.; Woodward, R. B., Synthesis of l-(-)-mycarose and l-(-)-cladinose. Tetrahedron 1962, 18, 1275-&.
Leung, M. Y. K.; Liu, C.; Koon, J. C. M.; Fung, K. P., Polysaccharide biological response modifiers. Immunol. Lett. 2006, 105, 101-114.
Li, X.; Stark, G. R., NFκB-dependent signaling pathways. Exp. Hematol. 2002, 30, 285-296.
Liao, S.-F.; Liang, C.-H.; Ho, M.-Y.; Hsu, T.-L.; Tsai, T.-I.; Hsieh, Y. S. Y.; Tsai, C.-M.; Li, S.-T.; Cheng, Y.-Y.; Tsao, S.-M.; Lin, T.-Y.; Lin, Z.-Y.; Yang, W.-B.; Ren, C.-T.; Lin, K.-I.; Khoo, K.-H.; Lin, C.-H.; Hsu, H.-Y.; Wu, C.-Y.; Wong, C.-H., Immunization of fucose-containing polysaccharides from Reishi mushroom induces antibodies to tumor-associated Globo H-series epitopes. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 13809-13814.
Lindberg, B.; Lonngren, J.; Thompson, J. L., Degradation of polysaccharides containing uronic acid residues. Carbohydr. Res. 1973, 28, 351-357.
Liners, F.; Letesson, J.-J.; Didembourg, C.; Van Cutsem, P., Monoclonal antibodies against pectin recognition of a conformation induced by calcium. Plant Physiol. 1989, 91, 1419-1424.
Liu, L.; Li, Y. H.; Niu, Y. B.; Sun, Y.; Guo, Z. J.; Li, Q.; Li, C.; Feng, J.; Cao, S. S.; Mei, Q. B., An apple oligogalactan prevents against inflammation and carcinogenesis by targeting LPS/TLR4/NF-κB pathway in a mouse model of colitis-associated colon cancer. Carcinogenesis 2010, 31, 1822-1832.
Lowe, J. B., The blood group-specific human glycosyltransferases. Baillieres Clinical Haematology 1993, 6, 465-492.
Lu, Y.-C.; Yeh, W.-C.; Ohashi, P. S., LPS/TLR4 signal transduction pathway. Cytokine 2008, 42, 145-151.
Matsuzaki, K.; Sato, T.; Enomoto, K.; Yamamoto, I.; Oshima, R.; Hatanaka, K. I.; Uryu, T.; Kaku, H.; Sone, Y.; Misaki, A., Synthesis of water-soluble branched polysaccharides and their antitumor-activity .4. synthesis of water-soluble, branched polysaccharides having d-mannopyranose, d-arabinofuranose, or oligo-d-arabinofuranose side-chains and their antitumor-activityi. Carbohydr. Res. 1986, 157, 171-182.
May, M. J.; Ghosh, S., Signal transduction through NF-κB. Immunol. Today 1998, 19, 80-88.
Miyazaki, T.; Nishijima, M., Studies on fungal polysaccharides .32. structural examination of an alkali-extracted, water-soluble heteroglycan of the fungus ganoderma-lucidum. Carbohydr. Res. 1982, 109, 290-294.
Mizuno, M.; Morimoto, M.; Minato, K.; Tsuchida, H., Polysaccharides from Agaricus blazei stimulate lymphocyte T-cell subsets in mice. Biosci., Biotechnol., Biochem. 1998, 62, 434-437.
Mizuno, M.; Minato, K.; Ito, H.; Kawade, M.; Terai, H.; Tsuchida, H., Anti-tumor polysaccharide from the mycelium of liquid-cultured Agaricus blazei mill. Biochem. Mol. Biol. Int. 1999, 47, 707-714.
Mizuno, M.; Shiomi, Y.; Minato, K.; Kawakami, S.; Ashida, H.; Tsuchida, H., Fucogalactan isolated from Sarcodon aspratus elicits release of tumor necrosis factor-alpha and nitric oxide from murine macrophages. Immunopharmacology 2000, 46, 113-121.
Mizuno, T., Bioactive biomolecules of mushrooms - food, function and medicinal effect of mushroom fungi. Food Rev. Int. 1995, 11, 7-21.
Mizuno, T., Medicinal properties and clinical effects of culinary-medicinal mushroom Agaricus blazei Murrill (Agaricomycetideae) (review). Int. J. Med. Mushrooms 2002, 4, 299-312.
Mohnen, D., Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 2008, 11, 266-277.
Moloney, D. J.; Haltiwanger, R. S., The O-linked fucose glycosylation pathway: identification and characterization of a uridine diphosphoglucose: fucose-beta 1,3-glucosyltransferase activity from Chinese hamster ovary cells. Glycobiology 1999, 9, 679-687.
Murakami, A.; Ohigashi, H., Targeting NOX, INOS and COX‐2 in inflammatory cells: chemoprevention using food phytochemicals. Int. J. Cancer 2007, 121, 2357-2363.
Murray, M. G.; Thompson, W. F., Rapid isolation of high molecular weight plant DNA. NAR 1980, 8, 4321-4326.
Needs, P. W.; Selvendran, R. R., Avoiding oxidative-degradation during sodium-hydroxide methyl iodide-mediated carbohydrate methylation in dimethyl-sulfoxide. Carbohydr. Res. 1993, 245, 1-10.
O'NEILL, M.; ALBERSHEIM, P.; DARVILL, A., 12 The Pectic Polysaccharides of Primary Cell Walls. Carbohydrates 1990, 2, 415.
O'Neill, M. A.; Ishii, T.; Albersheim, P.; Darvill, A. G., Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu. Rev. Plant Biol. 2004, 55, 109-139.
Ochoa-Villarreal, M.; Aispuro-Hernández, E.; Vargas-Arispuro, I.; Martínez-Téllez, M. Á., Plant cell wall polymers: function, structure and biological activity of their derivatives. In Polymerization, InTech: 2012.
Ohno, N.; Akanuma, A. M.; Miura, N. N.; Adachi, Y.; Motoi, M., (1fwdarw3)-beta-D-glucan in the fruit bodies of Agaricus blazei. Pharm. Pharmacol. Lett. 2001a, 11, 87-90.
Ohno, N.; Furukawa, M.; Miura, N. N.; Adachi, Y.; Motoi, M.; Yadomae, T., Antitumor beta-glucan from the cultured fruit body of Agaricus blazei. Biol. Pharm. Bull. 2001b, 24, 820-828.
Pacsu, E.; Trister, S. M., Procedure for Preparation of Fully Methylated Carbohydrates and their Derivatives. J. Am. Chem. Soc. 1939, 61, 2442.
Panagiotopoulos, C.; Sempere, R.; Lafont, R.; Kerherve, P., Sub-ambient temperature effects on the separation of monosaccharides by high-performance anion-exchange chromatography with pulse amperometric detection - Application to marine chemistry. Journal of Chromatography A 2001, 920, 13-22.
Parages, M. L.; Rico, R. M.; Abdala-Díaz, R. T.; Chabrillón, M.; Sotiroudis, T. G.; Jiménez, C., Acidic polysaccharides of Arthrospira (Spirulina) platensis induce the synthesis of TNF-α in RAW macrophages. J. Appl. Phycol. 2012, 24, 1537-1546.
Paulsen, B. S.; Barsett, H., Bioactive pectic polysaccharides. In Polysaccharides 1: Structure, Characterization and Use, Heinze, T., Ed. 2005; Vol. 186, pp 69-101.
Pettolino, F. A.; Walsh, C.; Fincher, G. B.; Bacic, A., Determining the polysaccharide composition of plant cell walls. Nat. Protoc. 2012, 7, 1590-1607.
Powell, A. K.; Harvey, D. J., Stabilization of sialic acids in N-linked oligosaccharides and gangliosides for analysis by positive ion matrix-assisted laser desorption ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 1027-1032.
Prasanna, V.; Prabha, T. N.; Tharanathan, R. N., Fruit ripening phenomena - An overview. Crit. Rev. Food Sci. Nutr. 2007, 47, 1-19.
Puhlmann, J.; Bucheli, E.; Swain, M. J.; Dunning, N.; Albersheim, P.; Darvill, A. G.; Hahn, M. G., Generation of Monoclonal Antibodies against Plant Cell-Wall Polysaccharides (I. Characterization of a Monoclonal Antibody to a Terminal [alpha]-(1-> 2)-Linked Fucosyl-Containing Epitope. Plant Physiol. 1994, 104, 699-710.
Purdie, T.; Irvine, J. C., The alkylation of sugars. J. Chem. Soc. 1903, 83, 1021-1037.
Purdie, T.; Irvine, J. C., The stereoisomeric tetramethyl methylglucosides and tetramethyl glucose. J. Chem. Soc. 1904, 85, 1049-1070.
Ridley, B. L.; O'Neill, M. A.; Mohnen, D., Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 2001, 57, 929-967.
Rothwarf, D. M.; Karin, M., The NF-κB activation pathway: a paradigm in information transfer from membrane to nucleus. Science Signaling 1999, 1999, re1-re1.
Ruthes, A. C.; Rattmann, Y. D.; Carbonero, E. R.; Gorin, P. A. J.; Iacomini, M., Structural characterization and protective effect against murine sepsis of fucogalactans from Agaricus bisporus and Lactarius rufus. Carbohydr. Polym. 2012, 87, 1620-1627.
Ruthes, A. C.; Rattmann, Y. D.; Malquevicz-Paiva, S. M.; Carbonero, E. R.; Cordova, M. M.; Baggio, C. H.; Santos, A. R. S.; Gorin, P. A. J.; Iacomini, M., Agaricus bisporus fucogalactan: Structural characterization and pharmacological approaches. Carbohydr. Polym. 2013, 92, 184-191.
Sasaki, T.; Takasuka, N.; Chihara, G.; Maeda, Y. Y., Antitumor activity of degraded products of lentinan: its correlation with molecular weight. GANN Japanese Journal of Cancer Research 1976, 67, 191-195.
Scheller, H. V.; Jensen, J. K.; Sorensen, S. O.; Harholt, J.; Geshi, N., Biosynthesis of pectin. Physiol. Plant. 2007, 129, 283-295.
Schepetkin, I. A.; Quinn, M. T., Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol. 2006, 6, 317-333.
Schols, H. A.; Vierhuis, E.; Bakx, E. J.; Voragen, A. G. J., Different populations of pectic hairy regions occur in apple cell-walls. Carbohydr. Res. 1995, 275, 343-360.
Scott, J. E., Methods in Carbohydrate Chemistry. New York, 1965; Vol. 5, p 38-44.
Shu, C. H.; Wen, B. J.; Lin, K. J., Monitoring the polysaccharide quality of Agaricus blazei in submerged culture by examining molecular weight distribution and TNF-alpha release capability of macrophage cell line RAW 264.7. BiotL 2003, 25, 2061-2064.
Siebenlist, U.; Franzoso, G.; Brown, K., Structure, regulation and function of NF-kappaB. Annu. Rev. Cell Biol. 1994, 10, 405-455.
Souza, R. B.; de Queiroz, I. N. L.; da Silva Neto, A. A.; Carneiro, J. G.; Rodrigues, J. A. G.; Benevides, N. M. B., Analysis of two precipitation methods on the yield, structural features and activity of sulfated polysaccharides from Gracilaria cornea (Rhodophyta). Acta Scientiarum. Biological Sciences 2015, 37, 31.
Srivastava, V.; Gray, G. R., Structural-analysis of sialic acid-containing carbohydrates by the reductive-cleavage method. Carbohydr. Res. 1993, 248, 167-178.
Staudacher, E.; Altmann, F.; Wilson, I. B. H.; Marz, L., Fucose in N-glycans: from plant to man. Biochimica Et Biophysica Acta-General Subjects 1999, 1473, 216-236.
Surenjav, U.; Zhang, L.; Xu, X. J.; Zhang, X. F.; Zeng, F. B., Effects of molecular structure on antitumor activities of (1 -> 3)-beta-D-glucans from different Lentinus Edodes. Carbohydr. Polym. 2006, 63, 97-104.
Surh, Y.-J.; Chun, K.-S.; Cha, H.-H.; Han, S. S.; Keum, Y.-S.; Park, K.-K.; Lee, S. S., Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2001, 480, 243-268.
Talaga, P.; Vialle, S.; Moreau, M., Development of a high-performance anion-exchange chromatography with pulsed-amperometric detection based quantification assay for pneumococcal polysaccharides and conjugates. Vaccine 2002, 20, 2474-2484.
Taylor, R. L.; Conrad, H. E., Stoichiometric depolymerization of polyuronides and glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl groups. Biochemistry 1972, 11, 1383-&.
Teleman, A.; Lundqvist, J.; Tjerneld, F.; Stålbrand, H.; Dahlman, O., Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1 H and 13 C NMR spectroscopy. Carbohydr. Res. 2000, 329, 807-815.
Tretter, V.; Altmann, F.; Kubelka, V.; Marz, L.; Becker, W. M., Fucose alpha-1,3-linked to the core region of glycoprotein n-glycans creates an important epitope for ige from honeybee venom allergic individuals. Int. Arch. Allergy Immunol. 1993, 102, 259-266.
Uthaisangsook, S.; Day, N. K.; Bahna, S. L.; Good, R. A.; Haraguchi, S., Innate immunity and its role against infections. Ann. Allergy, Asthma Immunol. 2002, 88, 253-265.
Valent, B. S.; Darvill, A. G.; McNeil, M.; Robertsen, B. K.; Albersheim, P., A general and sensitive chemical method for sequencing the glycosyl residues of complex carbohydrates. Carbohydr. Res. 1980, 79, 165-192.
Verhoef, R.; Lu, Y.; Knox, J. P.; Voragen, A. G. J.; Schols, H. A., Fingerprinting complex pectins by chromatographic separation combined with ELISA detection. Carbohydr. Res. 2009, 344, 1808-1817.
Viseux, N.; Costello, C. E.; Domon, B., Post-source decay mass spectrometry: Optimized calibration procedure and structural characterization of permethylated oligosaccharides. J. Mass Spectrom. 1999, 34, 364-376.
Volman, J. J.; Ramakers, J. D.; Plat, J., Dietary modulation of immune function by β-glucans. Physiol. Behav. 2008, 94, 276-284.
Wang, Y. Y.; Khoo, K. H.; Chen, S. T.; Lin, C. C.; Wong, C. H.; Lin, C. H., Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: Functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Biorg. Med. Chem. 2002, 10, 1057-1062.
White, E. V.; Rao, P. S., Constitution of the polysaccharide from tamarind seed. J. Am. Chem. Soc. 1953, 75, 2617-2619.
Willats, W. G. T.; McCartney, L.; Mackie, W.; Knox, J. P., Pectin: cell biology and prospects for functional analysis. Plant Mol. Biol. 2001, 47, 9-27.
Willfor, S.; Sjoholm, R.; Laine, C.; Holmbom, B., Structural features of water-soluble arabinogalactans from Norway spruce and Scots pine heartwood. Wood Science and Technology 2002, 36, 101-110.
Wilson, I. B. H.; Harthill, J. E.; Mullin, N. P.; Ashford, D. A.; Altmann, F., Core alpha 1,3-fucose is a key part of the epitope recognized by antibodies reacting against plant N-linked oligosaccharides and is present in a wide variety of plant extracts. Glycobiology 1998, 8, 651-661.
Wu, B.; Cui, J. C.; Zhang, C. G.; Li, Z. H., A polysaccharide from Agaricus blazei inhibits proliferation and promotes apoptosis of osteosarcoma cells. Int. J. Biol. Macromol. 2012, 50, 1116-1120.
Yamada, H.; Kiyohara, H.; Cyong, J. C.; Otsuka, Y., Studies on polysaccharides from angelica-acutiloba .4. characterization of an anti-complementary arabinogalactan from the roots of angelica-acutiloba kitagawa. Mol. Immunol. 1985a, 22, 295-304.
Yamada, H.; Kiyohara, H.; Cyong, J. C.; Otsuka, Y., Characterization of an anti-complementary arabinogalactan from a chinese herb, angelica-acutiloba kitagawa. Int. J. Immunopharmacol. 1985b, 7, 358-358.
Yamada, H.; Komiyama, K.; Kiyohara, H.; Cyong, J. C.; Hirakawa, Y.; Otsuka, Y., Studies on polysaccharides from angelica-acutiloba .13. structural characterization and antitumor-activity of a pectic polysaccharide from the roots of angelica-acutiloba. Planta Med. 1990, 56, 182-186.
Yamada, H., Contribution of pectins on health care , in Pectins and Pectinases. In Progress in biotechnology 14, Visser, j.; Voragen, A. G. J., Eds. Elsevier Science, Amsterdam, 1996; pp 173-190.
Yang, C.; Gou, Y.; Chen, J.; An, J.; Chen, W.; Hu, F., Structural characterization and antitumor activity of a pectic polysaccharide from Codonopsis pilosula. Carbohydr. Polym. 2013, 98, 886-895.
York, W. S.; Darvill, A. G.; McNeil, M.; Albersheim, P., 3-Deoxy-D-manno-2-octulosonic acid (KDO) is a component of rhamnogalacturonan II, a pectic polysaccharide in the primary cell walls of plants. Carbohydr. Res. 1985, 138, 109-126.
York, W. S.; Kiefer, L. L.; Albersheim, P.; Darvill, A. G., Oxidation of oligoglycosyl alditols during methylation catalyzed by sodium-hydroxide and iodomethane in methyl sulfoxide. Carbohydr. Res. 1990, 208, 175-182.
Zandi, E.; Rothwarf, D. M.; Delhase, M.; Hayakawa, M.; Karin, M., The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell 1997, 91, 243-252.
Zhang, H.; Li, W.-J.; Nie, S.-P.; Chen, Y.; Wang, Y.-X.; Xie, M.-Y., Structural characterisation of a novel bioactive polysaccharide from Ganoderma atrum. Carbohydr. Polym. 2012, 88, 1047-1054.
Zhong, H.; Voll, R. E.; Ghosh, S., Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1998, 1, 661-671.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68376-
dc.description.abstract岩藻糖是誘導細胞產生免疫反應的重要抗原結合位;在本研究中以活性導向分離純化了巴西洋菇中含岩藻糖(fucose)之酸性多醣F3_FA;F3_FA具刺激巨噬細胞Raw 264.7分泌TNF-α的生物活性,經活性測試結果顯示岩藻糖在F3_FA刺激小鼠巨噬細胞RAW 264.7分泌TNF-α有著重要的角色;試驗結果並得知F3_FA在RAW 264.7細胞的接受器為TRL-4且其刺激可能為受NF-κB的調控,進一步影響下游TNF-α細胞激素的表現。巴西洋菇多醣F3_FA的化學分析結果顯示其分子量為3.45 x 105 Da.;糖組成莫耳百分比為6.4% L-fucose, 15.6% L-arabinose, 28.7% D-galactose, 14.8% D-xylose 及 24.3% 的D-galacturonic acid 並含少量的D-glucose, D-mannose, L-rhamnose 及 D-glucuronic acid ;利用甲基化衍生試驗得知F3_FA的結構中含大量1-4GalAp (24.3%)、1-4 Galp (22.1%)的鍵結結構並含有末端Fuc (6.4%)、1-5Ara (5.4%)、1-2Rha (5.1%),推論為其結構為類似果膠多醣之結構;以果膠多醣單株抗體辨識也得到F3_FA含有(1, 4)-β-D-galactans、 (1, 5)-α-L-arabinans 及 (1, 4)-α-D-galacturonans的結構特徵;結構特徵結果在NMR圖譜中也得到呼應。本研究以四級銨鹽的選擇性沉降為分離酸性多醣、提高岩藻多醣含量的策略;以去氧糖呈色試驗估算樣品中岩藻糖的含量,結果顯示樣品中去氧糖含量由粗多醣中的4.6%經沉降區分後提升至酸性區分中含15.6%;且經比對證實F3_FA為巴西洋菇菌絲多醣非由發酵基質而來。zh_TW
dc.description.abstractFucose is one of important residues of recognition pattern for many immune cells. In this study, we characterized bioactive fucose-containing acidic polysaccharides from submerged fermentation of Agaricus blazei Murill. We obtained the polysaccharides through a cell-based activity-guided strategy, and used carbohydrate recognition monoclonal antibodies based Enzyme-Linked Immuno Sorbent Assay (ELISA) along with methylation and NMR analyses to investigate the structural characteristics of the polysaccharides. The polysaccharides had Mw of 3.45 × 105 Da. The major sugars were L-fucose, L-arabinose, D-galactose, D-xylose, and D-galacturonic acid in the molar ratio of 6.4, 15.6, 28.7, 14.8, and 24.3% with a small amount of D-glucose, D-mannose, L-rhamnose, and D-glucuronic acid. Results indicated that the bioactive polysaccharides consisted of a (1,4)-Galp and (1,4)-GalAp back bone; (1,2)-Xyl and (1,2)-Rha might also comprise backbone or constitute side chain; linkage (1,5)-Ara and terminal fucosyl residues were also involved in the polysaccharides. Regarding bioactivity, removal of the terminal L-fucosyl residues reduced the TNF-α cytokine stimulating activity of the polysaccharides in a RAW264.7 macrophage cell-line test, whereas NF-kapaB and TLR4 affected the polysaccharide-induced TNF-α production. Quanternary selecting precipitation as a strategy to rapid enriches fucose-containing acidic polysaccharide, deoxyl sugar contain from 4.2% upgrade to 15.6% by one step separated.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:19:10Z (GMT). No. of bitstreams: 1
ntu-106-D95641005-1.pdf: 2238049 bytes, checksum: 2628549d38fa0ba08619bf935ca66648 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents謝誌 i
摘要 ii
Abstract iii
目錄 I
圖目錄 V
表目錄 VII
附表附圖目錄 VIII
壹、 前言 1
貳、 文獻回顧 2
第一章、 巴西洋菇 2
1.1 、巴西洋菇的化學組成 2
1.2 、巴西洋菇多醣與在生理活性的影響 2
1.2.1 、子實體多醣 2
1.2.2 、菌絲體多醣 4
第二章、 多醣結構與生理活性 5
2.1 、骨幹結構與化學修飾對多醣活性的影響 5
2.2 、構型 5
2.3 、分子量與分支度 5
第三章、 果膠多醣結構及其生理活性 7
3.1 、果膠多醣結構 7
3.1.1 、Homogalacturonan(HG) 7
3.1.2 、Rhamnogalacturonan Ⅰ (RGⅠ) 8
3.1.3 、RhamnogalacturonanⅡ (RGⅡ) 11
3.1.4 、Xylogalacturonan(XGA) 12
3.2 、果膠多醣相關的生理活性 12
3.3 、單株抗體辨識果膠多醣 13
第四章、 含岩藻糖(fucose)的多醣其生理上的重要性 17
4.1 、岩藻糖 17
4.2 、岩藻多醣的生理活性 17
4.3 、岩藻多醣的可能鍵結 17
第五章、 巨噬細胞與生理活性 19
5.1 、巨噬細胞及其功能 19
5.2 、脂多醣 (lipopolysaccharide, LPS) 誘發之生理反應與路徑 20
5.3 、核轉錄因子kappa B (nuclear transcription factor kappa B, NF-κB) 20
5.4 、活性評估指標 21
5.4.1 、誘導型環氧化酶 (cyclooxygenase-2, COX-2) 21
5.4.2 、腫瘤壞死因子-α (tumor necrosis factor alpha, TNF-α) 21
第六章、 氣相層析質譜儀於多醣分析 22
6.1 、甲基化的基本化學反應 22
6.2 、鹼試劑對甲基化反應的影響 23
6.2.1 、以金屬氧化物為甲基化鹼試劑 23
6.2.2 、以金屬氧化物的水溶液為甲基化鹼試劑 24
6.2.3 、以鹼金屬氫化物及其衍生物搭配非質子溶劑為甲基化試劑 24
6.2.4 、高鹼無水的反應環境 25
6.3 、分子的立體空間特性與反應性 27
第七章、 核磁共振光譜於多醣結構的分析 28
第八章、 四級銨鹽沉降法 30
參、 材料與方法 31
第一章、 實驗材料 31
1.1 、巴西洋菇熱水萃取 31
第二章、 多醣分析法與純化 32
2.1 、多醣分析相關方法 32
2.1.1 、碳水化合物含量測定(phenol-sulfuric acid method) 32
2.1.2 、醛醣酸之測定 32
2.1.3 、蛋白質含量測定 32
2.1.4 、去氧醣含量測定 32
2.1.5 、單糖組成測定 33
2.1.5.1 、Trifluoroacetic acid (TFA) hydrolysis 33
2.1.5.2 、Methanolysis 33
2.1.5.3 、高效能陰離子交換層析系統(High performance anion exchange chromatography with PAD detector, HPAEC-PAD) 33
2.1.6 、分子量測定 34
2.1.7 、結構特徵測定 34
2.1.7.1 、鍵結分析 (methylation analysis) 34
2.1.7.2 、 核磁共振光譜 (NMR) 37
2.1.7.3 、 果膠抗體辨識 37
2.2 、多醣純化相關方法 38
2.2.1 、 利用多醣表面電荷不同的劃分法 38
2.2.1.1 、四級銨鹽沉降法Quaternary ammonium salt precipitation: 38
2.2.1.2 、鹽度劃分法 38
2.2.1.3 、陰離子交換樹脂 38
2.2.2 、利用多醣分子量不同的劃分法 38
2.2.2.1 、膠體過濾層析法 38
第三章、 活性測試 40
3.1 、NO 測定 40
3.2 、TNF-α測定 40
3.3 、刺激RAW 264.7巨噬細胞株(含報導基因質體COX-2) 之活性評估 40
3.4 、活性路徑推論 41
第四章、 以四級銨選擇性沉降巴西洋菇多醣流程 42
第五章、 巴西洋菇生物活性多醣來源確認 43
第六章、 統計試驗 44
第七章、 實驗藥品與試劑 45
5.1化學試劑 45
5.2標準品 45
肆、 試驗架構 46
伍、 結果與討論 47
第一章、 分離純化 47
巴西洋菇菌絲發酵多醣以生物活性導向為分離純化策略。 47
1.1 、分離純化 47
1.2 、活性評估 50
第二章、 巴西洋菇生物活性多醣化學特性 54
2.1 、分子量 54
2.2 、組成與結構 55
2.2.1 、單醣組成 55
2.2.2 、單株抗體辨識 58
2.2.3 、苷鍵結分析 60
2.2.4 、NMR結構分析 62
2.3 、小結 65
第三章、 多醣F3_FA生物活性試驗 66
3.1 、具報導基因細胞殖株平台及NO釋放檢視巴西洋菇多醣F3_FA的活性表現 66
3.2 、岩藻醣對於巴西洋菇多醣F3_FA活性的影響 69
3.3 、巴西洋菇多醣F3_FA的生理活性路徑推論 71
3.4 、巴西洋菇多醣活性與岩藻糖含量關係的追蹤 74
第四章、 巴西洋菇生物活性多醣F3_FA來源確認及分離方式比較 75
4.1 、F3_FA來源確認 75
4.1.1 、結果 75
4.2 、分離純化方法的比較及確效 77
陸、 結論 84
柒、 參考文獻 85
dc.language.isozh-TW
dc.subject岩藻糖zh_TW
dc.subject腫瘤壞死因子-αzh_TW
dc.subject巴西洋菇zh_TW
dc.subject半乳聚醣zh_TW
dc.subject酸性多醣zh_TW
dc.subjectTNF-α stimulationen
dc.subjectAgaricus blazei Murillen
dc.subjectacidic polysaccharideen
dc.subjectfucoseen
dc.subjectgalactanen
dc.title巴西洋菇菌絲發酵物中含岩藻糖之多醣特質zh_TW
dc.titleCharacteristics of fucose-containing polysaccharides from submerged fermentation of Agaricus blazei Murillen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee張永和(Yung-Ho Chang),謝淑貞(Shu-Chen Hsieh),羅翊禎(Yi-Chen Lo),王惠珠(Huei-Ju Wang)
dc.subject.keyword巴西洋菇,酸性多醣,岩藻糖,半乳聚醣,腫瘤壞死因子-α,zh_TW
dc.subject.keywordAgaricus blazei Murill,acidic polysaccharide,fucose,galactan,TNF-α stimulation,en
dc.relation.page106
dc.identifier.doi10.6342/NTU201704149
dc.rights.note有償授權
dc.date.accepted2017-08-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved