Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68340
Title: 具有多模式介面的輔助行走機器人之共同控制策略
Learning-based Shared Control for A Smart Walker with Multimodal Interface
Authors: Xiaobei Qian
錢曉蓓
Advisor: 傅立成(Li-Chen Fu)
Keyword: 共享控制,認知人機互動介面,輔助行走,模糊記憶神經元網絡,強化學習,
Shared Control,Cognitive HRI,Walking-aid Robot,Fuzzy LSTM Network,Reinforcement Learning,
Publication Year : 2017
Degree: 碩士
Abstract: 行走輔助機器人是幫助老年人或殘疾人安全、穩定、高效地移動的輔助設備。與傳統助行器提供的步行和復健功能相比,主動式輔助行走機器人爲特殊的使用者提供了不同程度的人工智慧以提升使用者的操控性和舒適度。
在本文中我們提出了一種多模態界面的基於學習的共享控制系統。該多模態介面包括利用步態分析所得特徵的認知人機互動介面和傳統的測量使用者施力狀態的物理互動介面。該介面通過一種新穎的傳感器資訊融合方法來預測使用者意圖,即一種結合模糊決策與具有長短期記憶的神經元網絡的架構:(一)深度相機用來估計使用者下肢運動和推斷使用者偏離機器人的速度方向的傾向;(二)力傳感器用來測量使用者手部作用于助行器扶手上的力。在此基礎上,考慮到機器人需具有自主適應不同使用者的操作習慣和運動能力的能力,我們提出了基於強化學習的共享控制算法,使機器人可以根據觀察到的具有個體差異性的控制效率及步行環境以動態地調整使用者控制的權重,從而提供適當的輔助以提高使用者在使用設備時的舒適度,以達到自動適應使用者行爲的效果。最後,通過仿真實驗和真實環境下的真人實驗,我們驗證了該算法在特定環境下的有效性。
Walking-aid robot is developed as an assistance device for enabling safe, stable and efficient locomotion for elderly or disabled individuals, which, furthermore, provides different levels of intelligence as additional aids to suit certain applications, such as navigation and rehabilitation function.
In this thesis, a learning-based shared control system with multimodal interface is proposed, containing both cognitive human-robot interaction (HRI) for gait analysis and traditional physical HRI for measuring user's exerted force. The interface extracts navigation intentions from a novel neural network based method, which combines features from: (i) a depth camera to estimate the user legs' kinematics and to infer user orientation deviating from robot's velocity direction, and (ii) force sensors to measure the physical interaction between the human's hands and the robotic walker. Then, considering the robot's ability to autonomously adapt to different user's operation preference and motor abilities, a reinforcement learning-based shared control algorithm is proposed. By dynamically adjusting the user control weight according to different user's control efficiencies and walking environments, the robot not only can improve the user's degree of comfort while using the device but also can automatically adapt to user's behavior. Finally, the effectiveness of our algorithm is verified by simulation and experiments in a specified environment.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68340
DOI: 10.6342/NTU201703901
Fulltext Rights: 有償授權
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-106-1.pdf
  Restricted Access
6.99 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved