請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68321
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳錫侃 | |
dc.contributor.author | Yen-Cheng Wang | en |
dc.contributor.author | 王嚴徵 | zh_TW |
dc.date.accessioned | 2021-06-17T02:17:35Z | - |
dc.date.available | 2017-11-01 | |
dc.date.copyright | 2017-11-01 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-21 | |
dc.identifier.citation | [1] K. Otsuka, C.M. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge, 1998.
[2] K. Otsuka, X.Ren, Prog. Mater. Sci., 50(2005) 511-678 [3] Y. Furuya, M. Matsumoto, H. Kimura, K. Aoki, T. Masumoto, Mater. Trans. Jim, 31 (1990) 504-508. [4] T.H. Nam, T. Saburi, K. Shimizu, Mater. Trans. Jim, 31 (1990) 959-967. [5] R.H. Bricknell, K.N. Melton, Metall. Trans. A, 11 (1980) 1541-1546. [6] Y.C. Lo, S.K. Wu, H.E. Horng, Acta Metall. Mater., 41 (1993) 747-759. [7] Christoph Chluba, Wenwei Ge, Rodrigo Lima de Miranda1, Julian Strobel, Lorenz Kienle, Eckhard Quandt, Manfred Wuttig, Science, 348 (2015) 1004-1007. [8] T.H. Nam, J.H. Lee, K.W. Kim, H.J. Ahn, Y.W. Kim, J. Mater. Sci., 40 (2005) 4925-4927. [9] J.H. Lee, T.H. Nam, H.J. Ahn, Y.W. Kim, Mater. Sci. Eng. A, 438 (2006) 691-694. [10] T.H. Nam, J.H. Lee, J.M. Nam, K.W. Kim, G.B. Cho, Y.W. Kim, Mater. Sci. Eng. A, 483-84 (2008) 460-463. [11] S.K. Wu, K.H. Chang, S.H. Chang, Thin Solid Films, 519 (2011) 5302-5306. [12] S.H. Chang, T.H. Chen, S.K. Wu, K.N. Lin, Phys. Scripta, T139 (2010) 014012. [13] S.H. Chang, S.K.Wu, G.H. Chang, Scripta Mater., 52 (2005) 1341-1346. [14] S.H. Chang, S.K. Wu, L.M. Wu, Intermetallics, 18 (2010), 965. [15] L.M. Wu, S.H. Chang, S.K. Wu, J. Alloys Comps., 505(2010) 76. [16] L.M. Wu, S.K. Wu, Phil Mag Lett, 90 (2010) 261. [17] K. Mehrabi, M. Brucko, A.C. Kneissl, J. Alloys Comps., 526 (2012) 45-52. [18] C.H. Chen, S.K Wu, Mater. Sci. Eng. A, 593 (2014) 85-91. [19] C.H. Chen, S.Y. Cheng, S.K Wu, Intermetallics, 36 (2013) 109-117. [20] L.C. Chang, T.A. Read, T. AIME, 191 (1951) 47-52. [21] 林新智,國立台灣大學材料科學與工程學研究所博士論文,1992,台北. [22] W.J. Buehler, R.C. Wiley, J.V. Gilfrich, J. Appl. Phys., 34 (1963) 1475-1477. [23] Garrett J. Pataky, Elif Ertekin, Huseyin Sehitoglu, Acta Materialia, 96 (2015) 420-427. [24] H. Kessler, W. Pitsch, Acta Metall., 15 (1967) 401-405. [25] T. Tadaki, K. Otsuka, K. Shimizu, Annu. Rev. Mater. Sci., 18 (1988) 25-45. [26] J.W. Christian, The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, 1965. [27] D.P. Dunne, C.M. Wayman, Metall. Trans., 4 (1973) 147-152. [28] K. Otsuka, K. Shimizu, Shape Memory Effects in Alloys, Plenum Press, New York, 1975. [29] C.M. Wayman, MRS Bulletin, 18 (1993) 49-56. [30] 徐嘉隆, 中國醫藥大學醫學研究所碩士論文, 2006, 台中. [31] K. Otsuka, K. Shimizu, International Metals Reviews, 31 (1986) 93-114. [32] K. Otsuka, K. Shimizu, Metals Forum, 4 (1981) 142-152. [33] K. Otsuka, C.M. Wayman, P. Feltham (Ed.) in: Reviews on the Deformation Behavior of Materials, Freund Publ. House Ltd., Tel Aviv, Israel, 2 (1977) p. 81-172. [34] K. Otsuka, K. Shimizu, Proc. Int. Conf. on Solid to Solid Phase Transformations Pittsburg, Pennsylvania, U.S.A., 1981, pp.1267-1286. [35] Donald M. Brunette, Pentti Tengvall, Marcus Textor, Peter Thomsen, Titanium in Medicine:Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, Berlin, Germany (2001) p.69-72. [36] J. Beyer, M. Chandrasekaran, Proc. 75th Meeting of the AGARD Structures and Materials Panel, Lindau, Germany Vol.1, 1992, p.1311-1317. [37] K. Otsuka, X.B. Ren, Intermetallics, 7 (1999) 511-528. [38] C.M. Jackson, H.J. Wagner, R.J. Wasilewski, Tech. Rep. NASA SP-5110, (1972). [39] K. Otsuka, T. Sawamura, K. Shimizu, Phys. Stat. Sol. A, 5 (1971) 457-470. [40] O. Matsumoto, S. Miyazaki, K. Otsuka, H. Tamura, Acta Metall Mater, 35 (1987) 2137-2144. [41] K.M. Knowles, D.A. Smith, Acta Metall., 29 (1981) 101-110. [42] T. Onda, Y. Bando, T. Ohba, K. Otsuka, Mater. Trans., Jim, 33 (1992) 354-359. [43] M. Nishida, N. Ohgi, I. I, A. Chiba, K. Yamauchi, Acta Metall., 43 (1995) 1219-1227. [44] G.D. Sandrock, A.J. Perkins, R.F. Hehemann, Metall. Trans., 2 (1971) 2769-2781. [45] O. Mercier, K.N. Melton, Y. Depreville, Acta Metall. Mater., 27 (1979) 1467-1475. [46] E. Goo, R. Sinclair, Acta. Metall. Mater., 33 (1985) 1717-1723. [47] S.K. Wu, H.C. Lin, Scripta Metall. Mater., 25 (1991) 1529-1532. [48] L. Bataillard, R. Gotthardt, J. Phys. IV, 5 (1995) 647-652. [49] L. Bataillard, J.E. Bidaux, R. Gotthard, Philos. Mag. A, 78 (1998) 327-344. [50] M.C. Carroll, C. Somsen, G. Eggeler, Scripta Mater., 50 (2004) 187-192. [51] J.K. Allafi, X. Ren, G. Eggeler, Acta Mater., 50 (2002) 793-803. [52] J. Khalil-Allafi, A. Dlouhy, G. Eggeler, Acta Mater., 50 (2002) 4255-4274. [53] A. Dlouhy, J. Khalil-Allafi, G. Eggeler, Philos. Mag., 83 (2003) 339-363. [54] G. Fan, Y. Zhou, W. Chen, S.Yang, X.Ren, K. Otsuka, Mat. Sci. Eng. A, 438 (2006) 4351. [55] J. Michutta, C. Somsen, A. Yawny, A. Dlouhy, G. Eggeler, Acta Mater, 54(2006) 3525-3542. [56] J.E. Flinn, Rapid solidification technology for reduced consumption of strategic materials, Noyes Publications, 1985. [57] Y.W. Kim, T.H. Nam, Scripta Mater., 51 (2004) 653-657. [58] A.G. Gillen, B. Cantor, Acta Metall Mater, 33 (1985) 1813. [59] R. Nagarajan, K. Chattopadhyay, Acta Metall. Mater., 42 (1994) 947-958. [60] H. Xing, H.Y. Kim, S. Miyazaki, Materials Science Forum, 561-565 (2007) 1481-1484. [61] Xing Hing-Yan, H.Y. Kin, S. Miyazaki, Trans. Nonferrous Met. Soc. China 16(2006) 92-95. [62] P. Donner, S. Eucken, Materials Science Forum, 56-58 (1991) 723-728. [63] Yunxiang Tong , Yong Liu , Zeliang Xie, Mehrdad Zarinejad, Acta Mater. 56 (2008) 1721–1732. [64] D. Tabor, The hardness of metals, Oxford university press, 2000. [65] W.C. Oliver, G.M. Pharr, J. Mater. Res., 7 (1992) 1564-1583. [66] G.M. Pharr, W.C. Oliver, MRS Bulletin, 17 (1992) 28-33. [67] M.F. Doerner, W.D. Nix, J. Mater. Res., 1 (1986) 601-609. [68] W.D. Nix, Metall. Mater. Trans. A, 20 (1989) 2217-2245. [69] J.W. Harding, I.N. Sneddon, Proc. Cambridge Philos. Soc., 41 (1945) 16-26. [70] I.N. Sneddon, Int. J. Eng. Sci., 3 (1965) 47-57. [71] J.L. Loubet, J.M. Georges, O. Marchesini, G. Meille, J Tribol-T ASME, 106 (1984) 43-48. [72] R.B. King, T.C. Osullivan, Int. J. Solids Struct., 23 (1987) 581-597. [73] P.E. Wierenga, A.J.J. Franken, J. Appl. Phys., 55 (1984) 4244-4247. [74] W.C. Oliver, G.M. Pharra, J. Mater. Res., 19 (2004). [75] W.D. Nix and H. Gao, J. Mech. Phys. Solids,46 (1998) 411. [76] J.Y. Kim, S.K. Kang, J.J. Lee, J.I. Jang, Y.H. Lee, D. Kwon, Acta Mater., 55 (2007) 3555-3562. [77] J.Y. Kim, J.J. Lee, Y.H. Lee, J.I. Jang, D. Kwon, J. Mater. Res., 21 (2006) 2975-2978. [78] X.G. Ma, K. Komvopoulos, Appl. Phys. Lett., 83 (2003) 3773-3775. [79] X.G. Ma, K. Komvopoulos, Appl. Phys. Lett., 84 (2004) 4274-4276. [80] K. Komvopoulos, X.G. Ma, Appl. Phys. Lett., 87 (2005). [81] X.G. Ma, K. Komvopoulos, J. Mater. Res., 20 (2005) 1808-1813. [82] A.J.M. Wood, T.W. Clyne, Acta Mater., 54 (2006) 5607-5615. [83] A.J.M. Wood, S. Sanjabi, Y.Q. Fu, Z.H. Barber, T.W. Clyne, Surf. Coat. Tech., 202 (2008) 3115-3120. [84] H. Zheng, J.C. Rao, J. Pfetzing, J. Frenzel, C. Somsen, G. Eggeler, Scripta Mater, 58 (2008) 743-746. [85] J. Pfetzing, A. Schaefer, C. Somsen, M.F.X. Wagner, Int. J. Mater. Res., 100 (2009) 936-942. [86] H.X. Zheng, J. Pfetzing, J. Frenzel, G. Eggeler, Int. J. Mater. Res., 100 (2009) 594-602. [87] J. Pfetzing, M.F.-X. Wagner, T. Simon, A. Schaefer, Ch. Somsen, G. Eggeler: TEM investigation of the microstructural evolution during nanoindentation of NiTi. Proc. of ESOMAT 2009, EDP Sciences, open access: http://dx.doi.org/10.1051/esomat/200906027 [88] 陳志軒,國立台灣大學材料科學與工程學研究所碩士論文,2012,台北. [89] 王昕愷,國立台灣大學材料科學與工程學研究所碩士論文,2015,台北. [90] 陳志軒,國立台灣大學材料科學與工程學研究所博士論文,2015,台北 [91] H.J. Moon, S.J. Chun, T.H. Nam, H.J. Moon, Su-jin Chun, and Tae-hyun Nam, Transactions on Electrical and Electronics Materials, 13 (2012) 19-22. [92] T. H. Nam, J. H. Kim, M. S. Choi, H. W. Lee, and Y. W. Kim, J. de Phys. 112, 893 (2003) [Doi: 10.1051/jp4:20031025]. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68321 | - |
dc.description.abstract | 本研究使用快速凝固製程(RSP)製備2000rpm Ti51.9Ni48Si0.1與Ti52.6Ni46.8Si0.6 SMA 箔帶(Ribbon),並分析其於as-spun狀態與經500℃時效後之相變態行為、析出行為、顯微結構以及機械性能等。兩成分之箔帶於as-spun狀態皆為完全結晶的狀態,且基地中已有部分奈米級Ti2Ni析出物,由於兩成分之箔帶皆含有RSP製程時摻入的Si,因此經過時效處理後,基地將產生數目更多或尺寸較大的Ti2Ni,使基地逐漸轉為富鎳,進而產生Ti3Ni4析出物,並誘發B2↔R↔B19’的相變態發生。經過DSC、XRD與TEM的分析後,得知Ti51.9Ni48Si0.1基地經時效處理後有兩階段的Ti3Ni4析出行為;而Ti52.6Ni46.8Si0.6經時效後,Ti2Ni與Ti3Ni4兩者先後於不同時效時間產生較明顯的析出行為;隨著時效時間持續增長,Ti51.9Ni48Si0.1箔帶基地中的Ti3Ni4會於500℃時效54hrs以上時逐漸喪失其與基地之整合性應力場,而Ti52.6Ni46.8Si0.6箔帶於時效336hrs時仍無法觀察到此現象。Ti2Ni與Ti3Ni4除了影響箔帶的相變態行為之外,也會對基地產生析出硬化的效果,使Ti51.9Ni48Si0.1與Ti52.6Ni46.8Si0.6箔帶的硬度值提升,並改善其超彈性回復率與形狀記憶效應。本研究顯示Ti51.9Ni48Si0.1箔帶於500℃時效5hrs,硬度值可達3.86GPa,超彈性回復率及應變回復率皆大於90%;而Ti52.6Ni46.8Si0.6箔帶於500℃時效3hrs時,硬度值可達3.48GPa,超彈性回復率大於90%,應變回復率大於97%。因此可得知Ti51.9Ni48Si0.1與Ti52.6Ni46.8Si0.6箔帶兩者經過500℃短時間時效後,可以得到最佳的機械性能。 | zh_TW |
dc.description.abstract | Ti51.9Ni48Si0.1 and Ti52.6Ni46.8Si0.6 SMAs’ ribbons prepared by rapid solidification process(RSP) are aged at 500℃ for different times to investigate their transformation sequence, microstructure, precipitation behavior, mechanical properties, etc. As-spun ribbons have fine grains at the contact side and cylindrical grains at the free side with lots of Ti2Ni precipitation(ppts) exsisting at grain boundaries. Compared to ribbons containing less Ti content (Ti <51.5 at.%), Ti51.9Ni48Si0.1 and Ti52.6Ni46.8Si0.6 ribbons require longer aging time to make Ti-rich matrix turn into Ni-rich one due to the precipitation and growth of nanoscale Ti2Ni ppts enhanced by the existence of slight Si content in ribbons. Afterward, Ti3Ni4 ppts will precipitate, which can induce more B2-->R transformation and generate the precipitation hardening effect. The precipitation behavior of Ti2Ni and Ti3Ni4 ppts are confirmed by the potential △H value of DSC tests and the ppts peaks’ intensity of XRD tests. These ppts are also found to affect the ribbons’ phase transformation behavior and mechanical properties. For Ti51.9Ni48Si0.1 ribbons, the precipitation hardening of Ti3Ni4 ppts significantly appears when the ribbons aged at 500℃ for 5hrs and 54hrs, and thus can exhibit higher hardness, better pseudoelasticity(PE)/shape memory effect(SME), as revealed by nanoindentation and dynamic mechanical analysis(DMA) tests. For Ti52.6Ni46.8Si0.6 ribbons, the precipitation hardening induced by both Ti2Ni and Ti3Ni4 ppts appears when the ribbons are 500℃-aged at 3hrs and at the time longer than 10hrs individually, in which the ribbons aged at 500℃ for 3hrs possess the better mechanical properties. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:17:35Z (GMT). No. of bitstreams: 1 ntu-105-R03527017-1.pdf: 8492748 bytes, checksum: bcbc97e2c19416c3b3bd1f8417006434 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 iii 摘要 v Abstract vii 目錄 ix 第一章 前言 1 第二章 文獻探討 3 2-1 形狀記憶合金簡介 3 2-2 形狀記憶合金之特性 4 2-2-1 熱彈性麻田散鐵變態 4 2-2-2 形狀記憶效應(SME) 5 2-2-3 超彈性(PE) 7 2-3 TiNi基形狀記憶合金 9 2-4 快速凝固製程(RSP) 12 2-4-1快速凝固製程介紹 12 2-4-2 RSP 製程摻入之Si 雜質與其影響 14 2-5 奈米壓痕試驗 15 2-5-1 技術起源及基本原理 15 2-5-2 奈米壓痕分析模型 16 2-5-3 實驗校正參數 17 2-5-4 影響試驗之參數 19 2-5-5 奈米壓痕試驗在形狀記憶合金上之應用 20 第三章 實驗方法與步驟 47 3-1 RSP 製備富鈦TiNi 形狀記憶合金箔帶 47 3-2 TiNi 形狀記憶合金箔帶熱處理 48 3-3 DSC熱分析實驗 48 3-4 XRD晶體結構分析 49 3-5 SEM觀察 49 3-6 DMA形狀記憶效應試驗 49 3-7奈米壓痕硬度與超彈性測試 50 3-8 TEM觀測顯微組織與析出行為 51 第四章 Ti51.9Ni48Si0.1 SMA箔帶之結果與討論 59 4-1Ti51.9Ni48Si0.1 SMA箔帶之DSC相變態分析 59 4-2 Ti51.9Ni48Si0.1 SMA之SEM顯微組織觀察 64 4-3 Ti51.9Ni48Si0.1 SMA箔帶XRD常溫相組成與析出物分析 65 4-4 Ti51.9Ni48Si0.1 SMA箔帶之TEM顯微組織觀察 67 4-5 Ti51.9Ni48Si0.1 SMA箔帶之奈米壓痕試驗 69 4-5-1 Ti51.9Ni48Si0.1 SMA箔帶之奈米壓痕硬度試驗 69 4-5-2 Ti51.9Ni48Si0.1 SMA箔帶之奈米壓痕超彈性試驗結果 71 4-6 Ti51.9Ni48Si0.1 SMA箔帶之形狀記憶效應 72 4-7總結 74 第五章 Ti52.6Ni46.8Si0.6 SMA箔帶之結果與討論 101 5-1 Ti52.6Ni46.8Si0.6 SMA箔帶之DSC相變態分析 101 5-2 Ti52.6Ni46.8Si0.6 SMA之SEM顯微組織觀察 103 5-3 Ti52.6Ni46.8Si0.6 SMA箔帶XRD常溫相組成與析出物分析 104 5-4 Ti52.6Ni46.8Si0.6 SMA箔帶之TEM 顯微組織觀察 106 5-5 Ti52.6Ni46.8Si0.6 SMA箔帶之奈米壓痕試驗 107 5-5-1 Ti52.6Ni46.8Si0.6 SMA箔帶之奈米壓痕硬度試驗 107 5-5-2 Ti52.6Ni46.8Si0.6 SMA箔帶之奈米壓痕超彈性試驗結果 108 5-6 Ti52.6Ni46.8Si0.6 SMA箔帶之形狀記憶效應 109 5-7總結 110 第六章 結論 133 參考文獻 135 | |
dc.language.iso | zh-TW | |
dc.title | 富鈦 (Ti>51.5 at.%) 鈦鎳形狀記憶合金箔帶相變態行為及性能研究 | zh_TW |
dc.title | Transformation Behaviors and Properties of Ti-rich (Ti > 51.5 at%) TiNi Shape Memory Alloys Ribbons | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 周棟勝,張世航,陳志軒 | |
dc.subject.keyword | 富鈦形狀記憶合金,Ti2Ni與Ti3Ni4析出物,快速凝固製程,相變態,奈米壓痕試驗, | zh_TW |
dc.subject.keyword | Ti-rich shape memory ribbons,Precipitates,Rapid solidification process,Phase transformation,Nanoindentation,DMA, | en |
dc.relation.page | 138 | |
dc.identifier.doi | 10.6342/NTU201601078 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-07-21 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 8.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。