Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68175
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何傳愷(Chuan-Kai Ho)
dc.contributor.authorShao-Kuan Yanen
dc.contributor.author顏韶寬zh_TW
dc.date.accessioned2021-06-17T02:14:03Z-
dc.date.available2023-01-04
dc.date.copyright2018-01-04
dc.date.issued2017
dc.date.submitted2017-11-19
dc.identifier.citationAn, Y., Wan, S., Zhou, X., Subedar. A. A., Wallace, L. L., Luo, Y. (2005). Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming. Global Change Biology, 11, 1733–1744.
Basset, Y. (1999). Diversity and abundance of insect herbivores foraging on seedlings in a rainforest in Guyana. Ecological Entomology, 24, 245–259.
Bauerfeind, S. S., Fischer, K. (2013). Increased temperature reduces herbivore host-plant quality. Global Change Biology, 19, 3272–3282.
Berger, D., Walters, R., Gotthard, K. (2008). What limits insect fecundity? Body size- and temperature-dependent egg maturation and oviposition in a butterfly. Functional Ecology, 22, 523–529.
Bergmann, C. (1847). Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien, 3, 595–708.
Bromme, J. E., Hanski, I. K., Kekkonen, J., Väisänen, R. A. (2014). Size differentiation in Finnish house sparrows follows Bergmann's rule with evidence of local adaptation. Journal of Evolutionary Biology, 27, 737–747.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771–1789.
Burkepile, D. E., Fynn, R. W. S., Thompson, D. I., Lemoine, N. P., Koerner, S. E., Eby, S., Hagenah, N., Wilcox, K., Collins, S. L., Kirkman, K., Knapp, A. K., Smith, M. D. (2017). Herbivore size matters for productivity–richness relationships in African savannas. Journal of Ecology, 105, 674–686.
Busby, P. E., Lamit, L. J., Keith, A. R., Newcombe, G., Gehring, C. A., Whitham, T. G., Dirzo, R. (2015). Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure. Ecology, 96, 1974–1984.
Cahoon, S. M. P., Sullivan, P. F., Post, E., Welker, J. M. (2012). Large herbivores limit CO2 uptake and suppress carbon cycle responses to warming in West Greenland. Global Change Biology, 18, 469–479.
Conlis, E., Castanha, C., Germino, M. J., Veblen, T. T., Smith, J. M., Moyes, A. B., Kueppers, L. M. (2017). Seed origin and warming constrain lodgepole pine recruitment, slowing the pace of population range shifts. Global Change Biology, gcb.13840.
Coviella. C. E., Stipanovic, R. D., Trumble, J. T. (2002). Plant allocation to defensive compounds: interactions between elevated CO2 and nitrogen in transgenic cotton plants. Journal of Experimental Botany, 53, 323–331.
De Bruyn, L., Scheirs, J., Verhagen, R. (2002). Nutrient stress, host plant quality and herbivore performance of a leaf-mining fly on grass. Oecologia, 130, 594–599.
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 105, 6668–6672.
Dury, S. J., Good, J. E. G., Perrins, C. M., Buse, A., Kaye, T. (1998). The effects of increasing CO2 and temperature on oak leaf palatability and the implications for herbivorous insects. Global Change Biology, 4, 55–61.
Fajer, E. D., Bowers, M. D., Bazzaz, F.A. (1991). Performance and allocation patterns of the perennial herb, Plantago lanceolata, in response to simulated herbivory and elevated CO2 environments. Oecologia, 87, 37–42.
Gherlenda, A. N., Haigh, A. M., Moore, B. D., Johnson, S. N., Riegler, M. (2015) Responses of leaf beetle larvae to elevated [CO2] and temperature depend on Eucalyptus species. Oecologia, 177, 607–617.
Gilbert, N. (1984). Control of Fecundity in Pieris rapae: II. Differential Effects of Temperature. Journal of Animal Ecology, 53, 589–597.
Ho, C. K., Pennings, S. C. (2013). Preference and Performance in Plant–Herbivore Interactions across Latitude–A Study in U.S. Atlantic Salt Marshes. PloS one, 8, e59829.
Hodkinson, I. D. (2005). Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews, 80, 489–513.
Horn, H. G., Boersma, M., Garzke, J., Löder, M. G. J., Sommer, U., Aberle, N. (2016). Effects of high CO2 and warming on a Baltic Sea microzooplankton community. Journal of Marine Science, 73, 772–782.
IPCC. (2007). Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1–151.
Jang, T., Rho, M. S., Koh, S. H., Lee, K. P. (2015) Host–plant quality alters herbivore responses to temperature: a case study using the generalist Hyphantria cunea. Entomologia Experimentalis et Applicata,154, 120–130.
Jayashree, M., Pavithra, S. (2015). Bioassay studies on carbon dioxide and oxygen gas concentrations against rice weevil Sitophilus oryzae (L.) in storage. Trends in Biosciences, 8, 28–30.
Johnson, M. T. J., Campbell, S. A., Barrett, S. C. H. (2015). Evolutionary interactions between plant reproduction and defense against herbivores. Annual Review of Ecology, Evolution, and Systematics, 46, 191–213.
Kim, E., Donohue, K. (2013). Local adaptation and plasticity of Erysimum capitatum to altitude: its implications for responses to climate change. Journal of Ecology, 101, 796–805.
Kingsolver, J. G., Diamond, S. E., Buckley, L. B. (2013). Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Functional Ecology, 27, 1415–1423.
Klein, J. A., Harte, J., Zhao, X. Q. (2007). Experimental warming, not grazing, decreases rangeland quality on the Tibetan plateau. Ecological Applications, 17 ,541–557.
Lemoine, N. P., Doublet, D., Salminen, J. P., Burkepile, D. E., Parker, J. D. (2017). Responses of plant phenology, growth, defense, and reproduction to interactive effects of warming and insect herbivory. Ecology, 98, 1817–1828.
Lill, J. T., Marquis, R. J. (2001). The effects of leaf quality on herbivore performance and attack from natural enemies. Oecologia, 126, 418–428.
Marshall, D. J., McQuaid, C. D. (2010). Warming reduces metabolic rate in marine snails: adaptation to fluctuating high temperatures challenges the metabolic theory of ecology. Proceedings of the Royal Society B: Biological Sciences, doi:10.1098.
Mitton, J. B., Ferrenberg, S. M. (2012). Mountain Pine Beetle Develops an Unprecedented Summer Generation in Response to Climate Warming. The American Naturalists, 175, 163–171.
Miyata, K., Kikuchi, T., Katoh, H., Kagawa, K., Sonoda, S., Murai, T. (2016). Lethal effects of concentrated CO2 on adult females and eggs of Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) at a high temperature. Applied Entomology and Zoology, 51, 441–444.
Munday, P. L., Crawley, N. E., Nilsson, G. E. (2009). Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Marine Ecology Progress Series, 388, 235–242.
Murray, T. J., Ellsworth, D. S., Tissue, D. T., Riegler, M. (2013). Interactive direct and plant-mediated effects of elevated atmospheric [CO2] and temperature on a eucalypt-feeding insect herbivore. Global Change Biology, 19, 1407–1416.
Piiroinen, T., Valtonen, A., Roininen, H. (2017). The seed-to-seedling transition is limited by ground vegetation and vertebrate herbivores in a selectively logged rainforest. Forest Ecology and Management, 384, 137–146.
Porcelli, D., Gaston, K. J., Butlin, R. K., Snook, R. R. (2017). Local adaptation of reproductive performance during thermal stress. Journal of Evolutionary Biology, 30, 422–429.
Pritchard, S. H., Rogers, H. O., Prior, S. A., Peterson, C. T. (1999). Elevated CO2 and plant structure: a review. Global Change Biology, 5, 807–837.
Robinson, E. A., Ryan, G. D., Newman, J. A. (2012). A meta-analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytologist, 194, 321–336.
Roth, S. K., Lindroth, R. L. (1994). Effects of CO2-mediated changes in paper birch and white pine chemistry on gypsy moth performance. Oecologia, 98, 133–138.
Stiling, P., Cornelissen, T. (2007). How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biology, 13, 1823–1842.
Sunday, J. M., Bates, A. E., Dulvy, N. K. (2011). Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society B: Biological Sciences, 278, 1823–1830.
Taiwan Biodiversity Information Facility. Rorippa indica (L.) Hiern, 1896 葶藶. http://taibif.tw/zh/namecode/202655
Teplitsky, C., Millien, V. (2013). Climate warming and Bergmann's rule through time: is there any evidence? Evolutionary Applications, 7, 156–168.
Van de Vijver, B., Cocquyt, C. (2009). Four new diatom species from La Calera hot spring in the Peruvian Andes (Colca Canyon). Diatom Research, 24, 209–223.
Veteli, T. O., Kuokkanen, K., Julkunen-tiitto, R., Roininen, H., Tahvanainen, J. (2002). Effects of elevated CO2 and temperature on plant growth and herbivore defensive chemistry. Global Change Biology, 8, 1240–1252.
Waller, J. T., Svensson, E. I. (2017). Body size evolution in an old insect order: No evidence for Cope's Rule in spite of fitness benefits of large size. Evolution, 71, 2178–2193.
Wang, D. R., Bunce, J. A., Tomecek, M. B., Gealy, D., McClung, A., McCouch, S. R., Ziska, L. H. (2016). Evidence for divergence of response in Indica, Japonica, and wild rice to high CO2 × temperature interaction. Global Change Biology, 22, 2620–2632.
Wang, Y. J., Nakazawa, T., Ho, C. K. (2017). Warming impact on herbivore population composition affects top-down control by predators. Scientific Reports, 7, 941.
Way, D. A., Oren, R. (2010). Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology, 30, 669–688.
Wetzel, W. C., Kharouba, H. M., Robinson, M., Holyoak, M., Karban, R. (2016). Variability in plant nutrients reduces insect herbivore performance. Nature, 539, 425–427.
Wickstrom, C. E., Castenholz, R. W. (1985). Dynamics of Cyanobacterial and Ostracod Interactions in an Oregon Hot Spring. Ecology, 66, 1024–1041.
Zhang, H., Tian, F., Harvim, P., Georgescu P. (2017). Effects of size refuge specificity on a predator–prey model. Biosystems, 152, 11–23.
Zhang, X., Lei, Y., Ma, Z., Kneeshaw, D., Peng, C. (2014). Insect-induced tree mortality of boreal forests in eastern Canada under a changing climate. Ecology and Evolution, 4, 2384–2394
Zuo, L., Chen, C., Qi, L., Liu, F. X., Yun, Y. L., Peng, Y. (2015). Impact of elevated CO2 on growth, development, and reproduction of the wolf spider, Pardosa astrigera (Araneae: Lycosidae). Journal of Arachnology, 43, 86–89.
呂至堅、陳建仁 (2014)。《蝴蝶生活史圖鑑》。臺中市:晨星。
徐玲明、蔣慕琰 (2009)。《台灣草坪雜草圖鑑》。臺中市:晨星。
鍾明哲 (2011)。《都會野花野草圖鑑》。臺中市:晨星。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68175-
dc.description.abstract氣候變遷(例如:暖化與二氧化碳濃度增加)可以影響生物的生長與發育,進而改變各營養階層間的交互關係與群集結構;但是暖化與二氧化碳濃度增加會如何單獨與共同地影響跨環境梯度(例如:海拔)生物的表現仍然較少被探討。為了回答上述問題,本研究使用緣點白粉蝶(植食者)與葶藶(寄主植物)進行3×2×2複因子實驗,探討暖化、二氧化碳濃度與海拔來源如何影響葶藶上的緣點白粉蝶。3×2×2複因子包含溫度(控制、+3 °C、+6 °C)、二氧化碳濃度(500與1000 ppm)與海拔來源(低海拔[100公尺]與中海拔[1000公尺]的族群),本研究中暖化與二氧化碳濃度增加的程度是依據IPCC模擬西元2100年的結果。實驗結果顯示,單獨的溫度效應,而非單獨的二氧化碳效應,會顯著地影響緣點白粉蝶的表現(例如暖化會減少植食者各階段的重量、減短幼蟲與蛹的發育時間)。另外,海拔來源會影響植食者的表現,例如來自中海拔的緣點白粉蝶有較短的發育期、較重的幼蟲、蛹與成蟲以及較長的成蟲壽命,而海拔與其他因子的共同作用(溫度×二氧化碳、溫度×二氧化碳×海拔)也會影響成蟲表現。本研究彰顯出暖化會顯著影響植食者的表現,而這影響也會同時受到二氧化碳與海拔來源的調控。本研究試圖解開氣候變遷因子(暖化與二氧化碳濃度增加)如何單獨與共同地影響跨海拔植食者的表現,所產生的結果應可幫助建構新的生態模型,以便更準確地預測未來氣候變遷對生物群集的影響。zh_TW
dc.description.abstractClimate change (e.g., elevated temperature and CO2) can affect species growth and development, subsequently shaping trophic interactions and community structure. However, less is known about how elevated temperature and CO2 individually and collectively influence species performance across spatial gradients (e.g., altitudes). To help fill the knowledge gap, we studied the performance of Pieris canidia (herbivore) on Rorippa indica (host plant) by conducting a 3×2×2 factorial experiment: temperature (ambient, +3 °C, +6 °C) × CO2 (500, 1000 ppm) × altitude (species collected from low [100m] and medium [1000m] altitudes). The degree of elevated temperature and CO2 was based on IPCC prediction for 2100. The factorial design allowed us to examine the individual and collective effects of temperature and CO2 on species across altitude (i.e., intraspecific variation). The results showed that temperature (but not CO2) alone, strongly affected P. canidia performance (e.g., reduced larval weight, adult weight, larval period and pupal period under warming). Furthermore, altitudinal origin affected P. canidia performance, either alone or via its interaction with temperature and CO2. For example, P. canidia with a medium-altitude origin had a shorter developmental time, larger larval, pupal and adult weight, and longer longevity than those with a low-altitude origin; there were interaction effects (temperature×CO2, temperature×CO2×altitude) on adult performance. Our study highlights a strong impact of elevated temperature on herbivore performance, which, however, is also mediated by CO2 and altitude. Our attempt to untangle the complexity of individual and collective effects of climate change components across spatial gradients should facilitate new ecological models that will better predict community response to climate change.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:14:03Z (GMT). No. of bitstreams: 1
ntu-106-R03B44016-1.pdf: 2659652 bytes, checksum: 85b923f8ec3179458c8a955d97d7e0ec (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents謝辭-i
摘要-ii
Abstract-iii
Content-v
Introduction-1
Materials & Methods-7
Study system-7
Experimental design-7
Trait measurement-10
Statistical analysis-12
Results-13
Herbivore performance-13
Plant traits-15
Discussion-17
Summary-17
Collective effects of climate change components on herbivore performance-18
Individual effects of climate change components on herbivore performance-19
Climate change impact on herbivores across altitude-21
Potential caveat of this study-23
Conclusions-24
References-26
Tables-33
Figures-43
Appendices-58
dc.language.isoen
dc.subject暖化zh_TW
dc.subject葶藶zh_TW
dc.subject二氧化碳濃度增加zh_TW
dc.subject緣點白粉蝶zh_TW
dc.subject動植物交互作用zh_TW
dc.subject海拔zh_TW
dc.subjectplant-herbivore interactionen
dc.subjectRorippa indicaen
dc.subjectwarmingen
dc.subjectelevated CO2en
dc.subjectaltitudeen
dc.subjectPieris canidiaen
dc.title溫度與二氧化碳濃度增加對跨海拔植食動物表現的單獨與共同效應:以緣點白粉蝶與葶藶為例zh_TW
dc.titleIndividual and collective effects of elevated temperature and CO2 on herbivore performance across altitudes: a study of Pieris canidia butterfly and Rorippa indica planten
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃紹毅(Shao-Yi Huang),郭奇芊(Chi-Chien Kuo),黃淑萍(Shu-Ping Huang)
dc.subject.keyword緣點白粉蝶,葶藶,暖化,二氧化碳濃度增加,海拔,動植物交互作用,zh_TW
dc.subject.keywordPieris canidia,Rorippa indica,warming,elevated CO2,altitude,plant-herbivore interaction,en
dc.relation.page58
dc.identifier.doi10.6342/NTU201704391
dc.rights.note有償授權
dc.date.accepted2017-11-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved