請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68095完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂廷璋 | |
| dc.contributor.author | Yu-Tsung Lee | en |
| dc.contributor.author | 李昱宗 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:12:33Z | - |
| dc.date.available | 2021-01-27 | |
| dc.date.copyright | 2018-01-27 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2017-12-25 | |
| dc.identifier.citation | 蔡玫琳。澱粉顆粒及其分子之成糊行為。博士論文。國立台灣大學,1997。
杜至善。顆粒特性對澱粉凝膠過呈黏彈性之影響。碩士論文。靜宜大學,2002。 AACC, Method 76-21. In Approved methods of the American Association of Cereal Chemists, 10 ed.; American Association of Cereal Chemists Inc.: St. Paul, Minn., 2000. Atwell, W. A.; Hood, L. F.; Lineback, D. R.; Varriano-Marston, E.; Zobel, H. F., The terminology and methodology associated with basic starch phenomena. Cereal foods world. 1988, 33, 306-311. Baker, A. A.; Miles, M. J.; Helbert, W., Internal structure of the starch granule revealed by AFM. Carbohydr. Res. 2001, 330, 249-256. Banks, W.; Greenwood, C. T., Starch and its components. Edinburgh University Press: Edinburgh, 1975. BeMiller, J. N., Iodometric determination of amylose. In Methods in carbohydrate chemistry, BeMiller, J. N.; Shafizadeh, F., Eds. Academic press: New York, 1962; Vol. IV, pp 165-168. Biliaderis, C. G., Structures and phase transitions of starch polymers. In Polysaccharide association structures in food,, Walker, R. H., Ed. Marcel Dekker, Inc.: New York, 1998; pp 57–168. Biliaderis, C. G., Structural transitions and related physical properties of starch. In Starch: chemistry and technology Third ed.; BeMiller, J.; Whistler, R., Eds. Academic: London, 2009; pp 293-371. Blazek, J.; Copeland, L., Pasting and swelling properties of wheat flour and starch in relation to amylose content. Carbohydr. Polym. 2008, 71, 380-387. Chung, H. J.; Liu, Q., Impact of molecular structure of amylopectin and amylose on amylose chain association during cooling. Carbohydr. Polym. 2009, 77, 807-815. Collado, L. S.; Corke, H., Heat-moisture treatment effects on sweetpotato starches differing in amylose content. Food Chem. 1999, 65, 339-346. Cooke, D.; Gidley, M. J., Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition. Carbohydr. Res. 1992, 227, 103-112. Copeland, L.; Blazek, J.; Salman, H.; Tang, M. C., Form and functionality of starch. Food Hydrocolloids. 2009, 23, 1527-1534. Deffenbaugh, L.; Walker, C., Comparison of starch pasting properties in the Brabender Viscoamylograph and the Rapid Visco-Analyzer. Cereal Chem. 1989, 66, 493-499. Delcour, J. A.; Hoseney, R. C., Principles of cereal science and technology (3rd ed.). St. Paul, MN, USA, 2010. Eliasson, A. C., Viscoelastic behaviour during the gelatinization of starch I. Comparison of wheat, maize, potato and waxy‐barley starche. Journal of Texture Studies. 1986, 17, 253-265. Fan, J.; Marks, B., Retrogradation kinetics of rice flours as influenced by cultivar. Cereal Chem. 1998, 75, 153-155. Fannon, J. E.; BeMiller, J. N., Structure of corn starch paste and granule remnants revealed by low-temperature scanning electron microscopy after cryopreparation. Cereal Chem. 1992, 69, 456-460. Gallant, D.; Bouchet, B.; Buleon, A.; Perez, S., Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur. J. Clin. Nutr. 1992, 46, S3-16. Gallant, D. J.; Bouchet, B.; Baldwin, P. M., Microscopy of starch: evidence of a new level of granule organization. Carbohydr. Polym. 1997, 32, 177-191. Gidley, M. J.; Bulpin, P. V., Aggregation of amylose in aqueous systems: the effect of chain length on phase behavior and aggregation kinetics. Macromolecules. 1989, 22, 341-346. Goesaert, H.; Brijs, K.; Veraverbeke, W.; Courtin, C.; Gebruers, K.; Delcour, J., Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci. Tech. 2005, 16, 12-30. Grommers, H. E.; Krogt, D. A. v. d., Potato starch: production, modifications and uses. In Starch: chemistery and technology, Third ed.; BeMiller, J.; Whistler, R., Eds. Academic: London, 2009; pp 511-539. Gunaratne, A.; Corke, H., Gelatinizing, pasting, and gelling properties of potato and amaranth starch mixtures. Cereal Chem. 2007a, 84, 22-29. Gunaratne, A.; Corke, H., Influence of prior acid treatment on acetylation of wheat, potato and maize starches. Food Chem. 2007b, 105, 917-925. Gunaratne, A.; Hoover, R., Effect of heat–moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydr. Polym. 2002, 49, 425-437. Hagenimana, A.; Pu, P.; Ding, X., Study on thermal and rheological properties of native rice starches and their corresponding mixtures. Food Res. Int. 2005, 38, 257-266. Han, J. A.; Lim, S. T., Structural changes of corn starches by heating and stirring in DMSO measured by SEC-MALLS-RI system. Carbohydr. Polym. 2004, 55, 265-272. Hermansson, A.-M.; Svegmark, K., Developments in the understanding of starch functionality. Trends Food Sci. Tech. 1996, 7, 345-353. Hizukuri, S., Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules. Carbohydr. Res. 1985, 141, 295–306. Hizukuri, S., Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr. Res. 1986, 147 342-347. Hizukuri, S.; Abe, j.-i.; Hanashiro, I., Starch: analytical aspects. In Carbohydrates in food, Eliasson, A.-C., Ed. CRC: Boca Raton, FL, 2006; pp 305-390. Hizukuri, S.; Fujii, M.; Nikuni, Z., The effect of inorganic ions on the crystallization of amylodextrin. Biochim. Biophys. Acta. 1960, 40, 346-348. Hizukuri, S.; Takeda, Y.; Maruta, N.; Juliano, B. O., Molecular structures of rice starch. Carbohydr. Res. 1989, 189, 227-235. Hoover, R., Starch retrogradation. Food Rev. Int. 1995, 11, 331-346. Hoover, R., Acid-treated starches. Food Rev. Int. 2000, 16, 369-392. Hoover, R.; Manuel, H., The effect of heat–moisture treatment on the structure and physicochemical properties of normal maize, waxy maize, dull waxy maize and amylomaize V starches. J. Cereal Sci. 1996, 23, 153-162. Hsein-Chih, H. W.; Sarko, A., The double-helical molecular structure of crystalline B-amylose. Carbohydr. Res. 1978, 61, 7-25. Jenkins, P. J.; Cameron, R. E.; Donald, A. M., A universal feature in the structure of starch granules from different botanical sources. Starch/Stärke. 1993, 45, 417-420. Jenkins, P. J.; Donald, A. M., The Effect of Acid Hydrolyis on Native Starch Granule Structure. Starch/Stärke. 1997, 49, 262-267. Jinglin, Y.; Shujun, W.; Fengmin, J.; Sun, L.; Yu, J., The structure of C-type Rhizoma Dioscorea starch granule revealed by acid hydrolysis method. Food Chem. 2009, 113, 585-591. Juhasz, R.; Salgo, A., Pasting behavior of amylose, amylopectin and their mixtures as determined by RVA curves and first derivatives. Starch/Stärke. 2008, 60, 70-78. Kainuma, K.; French, D., Naegeli amylodextrin and its relationship to starch granule structure. I. Preparation and properties of amylodextrins from various starch types. Biopolymers. 1971, 10, 1673-1680. Karim, A. A.; Norziah, M. H.; Seow, C. C., Methods for the study of starch retrogradation. Food Chem. 2000, 71, 9–36. Keetels, C., Retrogradation of concentrated starch systems: mechanism and consequences for product properties. Landbouwuniversiteit te Wageningen.: 1995. Keetels, C.; Vliet, T. v.; Walstra, P., Gelation and retrogradation of concentrated starch systems: 2. Retrogradation. Food Hydrocolloids. 1996, 10, 355-362. Kim, Y. S.; Wiesenborn, D. P.; Lorenzen, J. H.; Berglund, P., Suitability of edible bean and potato starches for starch noodles. Cereal Chem. 1996, 73, 302-308. Kimura, A.; Robyt, J. F., Reaction of enzymes with starch granules: kinetics and products of the reaction with glucoamylase. Carbohydr. Res. 1995, 277, 87-107. Lai, L.; Kokini, J., Physicochemical changes and rheological properties of starch during extrusion.(a review). Biotechnol. Prog. 1991, 7, 251-266. Langton, M.; Hermansson, A., Microstructural changes in wheat starch dispersions during heating and cooling. Food Microstructure. 1989, 8, 29-39. Lauro, M.; Ring, S. G.; Bull, V. J.; Poutanen, K., Gelation of waxy barley starch hydrolysates. J. Cereal Sci. 1997, 26, 347–354. Lii, C.-Y.; Shao, Y.-Y.; Tseng, K.-H., Gelation mechanism and rheological properties of rice starch. Cereal Chem. 1995, 72, 393-400. Lii, C.-Y.; Tsai, M.-L.; Tseng, K.-H., Effect of amylose content on the rheological property of rice starch. Cereal Chem. 1996, 73, 415-420. Lin, A. H.; Chang, Y. H.; Chou, W. B.; Lu, T. J., Interference prevention in size-exclusion chromatographic analysis of debranched starch glucans by aqueous system. J. Agric. Food Chem. 2011, 59, 5890-8. Lin, J.-H.; Kao, W.-T.; Tsai, Y.-C.; Chang, Y.-H., Effect of granular characteristics on pasting properties of starch blends. Carbohydr. Polym. 2013, 98, 1553-1560. Lintner, C. J., Studien über diastase. Journal für Praktische Chemie. 1886, 34, 378–394. Liu, H.; Lelievre, J., A differential scanning calorimetry study of melting transitions in aqueous suspensions containing blends of wheat and rice starch. Carbohydr. Polym. 1992, 17, 145-149. Liu, Q.; Thompson, D. B., Effects of moisture content and different gelatinization heating temperatures on retrogradation of waxy-type maize starches. Carbohydr. Res. 1998, 314 221–235. Lopez‐Rubio, A.; Flanagan, B. M.; Gilbert, E. P.; Gidley, M. J., A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers. 2008, 89, 761-768. Lu, S.; Chen, L.-N.; Lii, C.-Y., Correlations between the fine structure, physicochemical properties, and retrogradation of amylopectins from taiwan rice varieties. Cereal Chem. 1997, 74, 34-39. Maningat, C.; Juliano, B., Properties of lintnerized starch granules from rices differing in amylose content and gelatinization temperature. Starch/Stärke. 1979, 31, 5-10. Manners, D. J., Recent developments in our understanding of amylopectin structure. Carbohydr. Polym. 1989, 11, 87-112. Miao, M.; Jiang, B.; Zhang, T.; Jin, Z.; Mu, W., Impact of mild acid hydrolysis on structure and digestion properties of waxy maize starch. Food Chem. 2011, 126, 506-513. Miles, M. J.; Morris, V. J.; Orford, P. D.; Ring, S. G., The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr. Res. 1985a, 135, 271-281. Miles, M. J.; Morris, V. J.; Ring, S. G., Gelation of amylose. Carbohydr. Res. 1985b, 135, 257-269. Mua, J.; Jackson, D., Relationships between functional attributes and molecular structures of amylose and amylopectin fractions from corn starch. J. Agric. Food Chem. 1997, 45, 3848-3854. Nägeli, C. W., Beitage zur naheren kenntniss der starke group. Annalen der chemie. 1874, 173, 218–227. Obanni, M.; Bemiller, J. N., Properties of some starch blends Cereal Chem. 1997, 74, 431-436. Oostergetel, G. T.; van Bruggen, E. F., On the origin of a low angle spacing in starch. Starch/Stärke. 1989, 41, 331-335. Ortega-Ojeda, F. E.; Larsson, H.; Eliasson, A.-C., Gel formation in mixtures of high amylopectin potato starch and potato starch. Carbohydr. Polym. 2004, 56, 505-514. Ortega‐Ojeda, F. E.; Eliasson, A. C., Gelatinisation and retrogradation behaviour of some starch mixtures. Starch/Stärke. 2001, 53, 520–529. Ott, M.; Hester, E. E., Starch gel formation as related to the concentration of amylose and degree of granule swelling. Cereal Chem. 1965, 42, 476-484. Penfield, M. P.; Campbell, A. D., Starch. In Experimental food science, Penfield, M. P.; Campbell, A. M., Eds. Academic press: San Diego, CA, 1990; pp 358–381. Pfannemüller, B.; Mayerhöfer, H.; Schulz, R., Conformation of amylose in aqueous solution: Optical rotatory dispersion and circular dichroism of amylose–iodine complexes and dependence on chain length of retrogradation of amylose. Biopolymers. 1971, 10, 243-261. Puncha-arnon, S.; Pathipanawat, W.; Puttanlek, C.; Rungsardthong, V.; Uttapap, D., Effects of relative granule size and gelatinization temperature on paste and gel properties of starch blends. Food Res. Int. 2008, 41, 552-561. Qiang, L., Understanding Starches and Their Role in Foods. In Food Carbohydrates, Cui, S. W., Ed. CRC Press: USA, 2005; pp 310-349. Rani, M. S.; Bhattacharya, K., Rheology of rice‐flour pastes: effect of variety, concentration, and temperature and time of cooking. Journal of Texture Studies. 1989, 20, 127-137. Ridout, M. J.; Parker, M. L.; Hedley, C. L.; Bogracheva, T. Y.; Morris, V. J., Atomic force microscopy of pea starch granules: granule architecture of wild-type parent, r and rb single mutants, and the rrb double mutant. Carbohydr. Res. 2003, 338, 2135-2147. Ring, S., Some studies on starch gelation. Starch/Stärke. 1985, 37, 80-83. Ring, S., Molecular interactions in aqueous solutions of the starch polysaccharides: a review. Food Hydrocolloids. 1987, 1, 449-454. Robin, J. P.; Mercier, C.; Charbonniere, R.; Guilbot., A., Lintnerized starches. Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem. 1974, 51, 389 - 405. Ross, A.; Walker, C.; Booth, R.; Orth, R.; Wrigley, C., The rapid Visco-Analyser: A new technique for the estimation of sprout damage. Cereal Foods World. 1987, 32, 827-829. Sasaki, T.; Matsuki, J., Effect of wheat starch structure on swelling power. Cereal Chem. 1998, 75, 525-529. Sasaki, T.; Yasui, T.; Matsuki, J.; Satake, T., Rheological properties of mixed gels using waxy and non-waxy wheat starch. Starch/Stärke. 2002, 54, 410-414. Saunders, J.; Izydorczyk, M.; Levin, D. B., Limitations and Challenges for Wheat-Based Bioethanol Production. In Economic Effects of Biofuel Production, Dr Marco Aurelio Dos Santos Bernardes (Ed), Canada, 2011. Schoch, T. J.; Maywald, E. C., Preparation and properties of various legume starches. Cereal Chem. 1968, 45, 564-573. Shamekh, S.; Forssell, P.; Poutanen, K., Solubility pattern and recrystallization behavior of oat starch. Starch/Stärke. 2006, 46, 129–133. Shi, Y.-C.; Seib, P. A., The structure of four waxy starches related to gelatinization and retrogradation. Carbohydr. Res. 1992, 227, 131-145. Singh, N.; Singh, J.; Kaur, L.; Sodhi, N. S.; Gill, B. S., Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003, 81, 219-231. Singh Sandhu, K.; Singh, N.; Lim, S.-T., A comparison of native and acid thinned normal and waxy corn starches: Physicochemical, thermal, morphological and pasting properties. LWT-Food Science and Technology. 2007, 40, 1527-1536. Srichuwong, S.; Sunarti, T. C.; Mishima, T.; Isono, N.; Hisamatsu, M., Starches from different botanical sources II: Contribution of starch structure to swelling and pasting properties. Carbohydr. Polym. 2005, 62, 25-34. Steeneken, P., Rheological properties of aqueous suspensions of swollen starch granules. Carbohydr. Polym. 1989, 11, 23-42. Stell, R.; Torrie, J.; Dickey, D., Analysis of variance III: factorial experiments In Principles and procedures of statistics: a biometrical approach, 2nd ed.; MacGraw-Hill: New York, 1980; pp 336-376. Szymońska, J.; Krok, F., Potato starch granule nanostructure studied by high resolution non-contact AFM. Int J Biol Macromol. 2003, 33, 1-7. Takeda, Y.; Shibahara, S.; Hanashiro, I., Examination of the structure of amylopectin molecules by fluorescent labeling. Carbohydr. Res. 2003, 338, 471–475. Tang, H.; Mitsunaga, T.; Kawamura, Y., Molecular arrangement in blocklets and starch granule architecture. Carbohydr. Polym. 2006, 63, 555-560. Tester, R. F.; Morrison, W. R., Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal chem. 1990a, 67, 551-557. Tester, R. F.; Morrison, W. R., Swelling and gelatinization of cereal starches. II. Waxy rice starches. Cereal Chem. 1990b, 67, 558-563. Tsai, M.-L.; Li, C.-F.; Lii, C.-Y., Effects of granular structures on the pasting behaviors of starches. Cereal Chem. 1997, 74, 750-757. Tukomane, T.; Varavinit, S., Classification of rice starch amylose content from rheological changes of starch paste after cold recrystallization. Starch/Stärke. 2008, 60, 292-297. Würsch, P.; Gumy, D., Inhibition of amylopectin retrogradation by partial beta-amylolysis. Carbohydr. Res. 1994, 256, 129–137. Walker, C.; Ross, A.; Wrigley, C.; McMaster, G., Accelerated starch-paste characterization with the Rapid Visco-Analyzer. Cereal Foods World. 1988, 33, 491-494. Wang, L.; Wang, Y.-J., Structures and physicochemical properties of acid-thinned corn, potato and rice starches. Starch/Stärke. 2001, 53, 570-576. Wang, S.; Blazek, J.; Gilbert, E.; Copeland, L., New insights on the mechanism of acid degradation of pea starch. Carbohydr. Polym. 2012, 87, 1941-1949. Wang, Y.-J.; Truong, V.-D.; Wang, L., Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydr. Polym. 2003, 52, 327-333. Ward, K. E. J.; Hoseney, R. C.; Seib., P. A., Retrogradation of amylopectin from maize and wheat starches. Cereal Chem. 1994, 71, 150-155. Watanabe, T.; French, D., Structural features of naegeli amylodextrin as indicated by enzymic degradation. Carbohydr. Res. 1980, 84, 115–123. Waterschoot, J.; Gomand, S. V.; Willebrords, J. K.; Fierens, E.; Delcour, J. A., Pasting properties of blends of potato, rice and maize starches. Food Hydrocolloids. 2014, 41, 298-308. Wurzburg, O. B., Modified starches-properties and uses. CRC Press Inc.: 1986. Yao, Y.; Ding, X., Pulsed nuclear magnetic resonance (PNMR) study of rice starch retrogradation. Cereal Chem. 2002, 79, 751-756. Yao, Y.; Zhang, J.; Ding, X., Partial beta-amylolysis retards starch retrogradation in rice products. J. Agric. Food Chem. 2003a, 51, 4066-4071. Yao, Y.; Zhang, J.; Ding, X., Retrogradation of starch mixtures containing rice starch. J. Food Sci. 2003b, 68, 260-265. Yasuhito, T.; Nobuhisa, M.; Susumu, H., Structures of amylose subfractions with different molecular sizes. Carbohydr. Res. 1992, 226, 279–285. Zaidul, I. S. M.; Norulaini, N. A. N.; Omar, A. K. M.; Yamauchi, H.; Noda, T., RVA analysis of mixtures of wheat flour and potato, sweet potato, yam, and cassava starches. Carbohydr. Polym. 2007, 69, 784-791. Zeleznak, K.; Hoseney, R., The role of water in the retrogradation of wheat starch gels and bread crumb. Cereal Chem. 1986, 63, 407-411. Zhang, W.; Jackson, D., Retrogradation behavior of wheat starch gels with differing molecular profiles. J. Food Sci. 1992, 57, 1428-1432. Zhang, Y.; Gu, Z.; Hong, Y.; Li, Z.; Cheng, L., Pasting and rheologic properties of potato starch and maize starch mixtures. Starch/Stärke. 2011, 63, 11-16. Zobel, H. F., Starch crystal transformations and their industrial importance. Starch/Stärke. 1988, 40, 1-7. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68095 | - |
| dc.description.abstract | 自然的澱粉以顆粒型態存在,需要於溶液中提高溫度使其顆粒糊化膨潤後產生黏度與膠體,澱粉的成糊與凝膠性質除受澱粉來源與組成影響外,也受糊化與凝膠的條件的影響。於真實的食品系統中常以混合澱粉的方式進行加工,為瞭解澱粉混合後的成糊與凝膠性質。本研究以直鏈澱粉含量與成糊性質不同的三種澱粉進行混合,探討混合澱粉系統之成糊與凝膠性質之變化。實驗設計利用高膨潤力之馬鈴薯澱粉(Potato starch, PS)與高溶解度之稀沸馬鈴薯澱粉(Thin-boiling potato starch, TBP)做為基底,混合一般玉米澱粉(Normal corn starch, NCS)與糯玉米澱粉(Waxy corn starch, WCS)及其稀沸澱粉,分別為稀沸一般玉米澱粉(Thin-boiling normal corn starch, TBC)與稀沸糯玉米澱粉(Thin-boiling waxy corn starch, TBW),以不同比例(100/0, 75/25, 50/50, 25/75與0/100)進行混合,而天然馬鈴薯混合稀沸馬鈴薯澱粉做為對照組。
結果顯示,於成糊性質觀察,PS/TBP組隨PS比例下降,其相關的黏度指標值均呈簡單的線性趨勢下降,然而混合天然/稀沸NCS與WCS皆偏離此線性趨勢。輔以掃描式熱分析之糊化熱性質數據可知混合澱粉系統中已糊化之澱粉會延緩未糊化澱粉顆粒之糊化溫度。而冷卻過程之最終黏度(Final viscosity, FV)和回升黏度(Setback, SB)偏離PS/TBP組之結果最為顯著,表示混合澱粉冷卻過程其交互作用最為明顯。而於TBP組混合玉米澱粉組(TBP/WCS, TBP/NCS, TBP/TBC與TBP/TBW)其相關指標亦成線性,表示混合系統中,高膨潤力澱粉影響其成糊之黏度。此外於PS/WCS與PS/TBW於50/50下出現雙峰,然高溫之尖峰黏度(Peak viscosity, PV)證實為來自天然馬鈴薯澱粉,而非糯玉米澱粉之尖峰黏度。 使用低剪力之動態流變分析觀察混合澱粉之顆粒膨潤性質,PS/TBP組別其相對指標未與混合比例並非線性關係,表示於低剪切力環境下,易造成澱粉顆粒不易破裂導致此現象。於膠體堅實度於PS/TBC=50/50達最高,表示澱粉溶出物與澱粉顆粒於此比例下達到平衡。綜合上述,混合澱粉系統中,相較於溶解度與直鏈澱粉含量,膨潤力對於成糊性質之黏度指標的影響較為明顯,而直鏈澱粉溶出率與顆粒殘留影響了膠體堅實度。 | zh_TW |
| dc.description.abstract | Native starch exists in granule form, which needs to be heated in solution to make it swell and gelatinize, and form gel. There are many factors that would affect the properties of pasting and gelling of starch, including its source, composition, thermal property, concentration and so on. Blended starch is commonly used in food industry to impart desired properties. This study aims to understand of pasting and gelling properties of blended starch. This study used three pure starches with different amylose contents and pasting properties Native potato starch (PS) and thin-boiling potato starch (TBP) were blended with normal corn (NCS), waxy corn starch (WCS) and their thin-boiling modified starch, thin-boiling normal corn (TBC) and thin-boiling waxy corn (TBW) at different ratios (100/0, 75/25, 50/50, 25/75 and 0/100.). Native/ thin-boiling potato starch blends were used as control.
The results showed that PS/TBP decreased linearly with decreased PS ratio, while PS/WCS, PS/NCS, PS/TBC and PS/TBW did otherwise Using differential thermal analysis (DSC), it was found that starch with lower gelatinization temperature delayed the gelatinization temperature of starch with higher gelatinization temperature in blended starch. Pasting properties- final viscosity (FV) and setback have significant differences compared with PS/TBP group, which indicated that there was obvious interaction of blended starch during cooling procedure. The correlated factors of TBP blended group (TBP/WCS, TBP/NCS, TBP/TBC, and TBP/TBW) also show linearity, which mean that starch high swelling power will affect the pasting viscosity in the blended system. In addition, PS/WCS and PS/TBW show double peaks under 50/50 blended ratio. Yet the peak viscosity at the high temperature is proved to be native potato starch instead of waxy corn starch. Low shear dynamic rheometer was used to observe swelling property of the blended starch. There was no observed linear relationship between dynamic modulus and blend ratio in PS/TBP group. The reason for this might be because starch granules are not easily broken in a low shear environment. Maximum gel firmness was observed for PS/TBC=50/50, which might indicate that leached out amylose and intact starch granule are most stable at this ratio. In summary, considering amylose content, solubility index and swelling power, swelling power has the greatest impact on pasting properties of the blended starch. On the other hand, leached-out amylose and intact starch granules had the greatest impact on gel firmness. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:12:33Z (GMT). No. of bitstreams: 1 ntu-103-R01641003-1.pdf: 9244302 bytes, checksum: 72a9054ecc08762febc116c8f2675e27 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract III 圖目錄 VIII 表目錄 XII 附表目錄 XIV 壹、 前言 1 貳、 文獻回顧 2 一、 天然澱粉 2 (一) 澱粉組成 2 (二) 結晶性 5 (三) 顆粒結構 7 二、 澱粉之糊化 9 三、 澱粉之回凝與凝膠 15 (一) 直鏈澱粉之凝膠 17 1. 直鏈澱粉之鏈長分佈 17 2. 直鏈澱粉含量 17 (二) 支鏈澱粉結構對凝膠系統之影響 19 (三) 澱粉顆粒系統之凝膠 20 1. 分散相(Dispersed phase) 20 1. 連續相(Continuous phase) 23 2. 澱粉組成物質之間的交互作用(Interactions between the components) 23 四、 酸修飾澱粉 (acid modified starch) 25 (一) 酸水解機制 25 (二) 酸水解對澱粉顆粒之影響 25 1. Nägeli-Linter starch 28 2. 稀沸澱粉(Thin-boiling starch) 28 五、 混合澱粉膠體 29 (一) 混合澱粉之糊化性質變化 29 (二) 混合澱粉膠體性質之變化 30 參、 論文架構 33 肆、 材料與方法 34 一、 實驗材料 34 二、 實驗試藥與酵素 34 (一) 試藥 34 (二) 標準品 34 三、 樣品製備 35 (一) 稀沸澱粉之製備 35 (二) 澱粉之混合 35 四、 分析方法 35 (一) 顆粒外觀 35 (二) 平均粒徑 35 (三) 直鏈澱粉含量 36 (四) 平均分子量 36 (五) 鏈長分佈 37 (六) 成糊性質 39 (七) 膨潤力與溶解度指標 39 (八) 糊化熱性質 39 (九) 膠體質地剖面分析 40 (十) 澱粉於加熱與冷卻過程中之流變性質 40 (十一) 統計分析 41 伍、 結果與討論 42 一、 澱粉顆粒基本性質 42 二、 膨潤力與溶解度指標 52 (一) 單一澱粉 52 (二) 混合澱粉 54 三、 成糊性質 60 (一) 單一澱粉 60 (二) 混合澱粉 63 四、 糊化熱性質 88 (一) 單一澱粉 88 (二) 混合澱粉 90 五、 加熱與冷卻過程之流變性質 99 (一) 單一澱粉 99 (二) 混合澱粉 104 六、 膠體性質 125 (一) 單一澱粉 125 (二) 混合澱粉 127 陸、 結論 133 柒、 參考文獻 134 | |
| dc.language.iso | zh-TW | |
| dc.subject | 膨潤力 | zh_TW |
| dc.subject | 溶解度指標 | zh_TW |
| dc.subject | 凝膠 | zh_TW |
| dc.subject | 糊化 | zh_TW |
| dc.subject | 混合澱粉 | zh_TW |
| dc.subject | Solubility index | en |
| dc.subject | Viscoamylograph | en |
| dc.subject | Gelatinization | en |
| dc.subject | Pasting property | en |
| dc.subject | Swelling power | en |
| dc.subject | Blended starch | en |
| dc.title | 探討馬鈴薯、一般玉米與糯性玉米澱粉的混合系統之糊化與凝膠性質變化 | zh_TW |
| dc.title | Changes of pasting and gelling properties of potato, normal corn and waxy corn starch blends | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴喜美,廬訓,張永和,林政樺 | |
| dc.subject.keyword | 混合澱粉,糊化,凝膠,膨潤力,溶解度指標, | zh_TW |
| dc.subject.keyword | Blended starch,Viscoamylograph,Gelatinization,Pasting property,Swelling power,Solubility index, | en |
| dc.relation.page | 182 | |
| dc.identifier.doi | 10.6342/NTU201704486 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-12-25 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 9.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
