Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6804
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor姜祖恕
dc.contributor.authorPo-Tso Linen
dc.contributor.author林柏佐zh_TW
dc.date.accessioned2021-05-17T09:18:28Z-
dc.date.available2012-07-19
dc.date.available2021-05-17T09:18:28Z-
dc.date.copyright2012-07-19
dc.date.issued2012
dc.date.submitted2012-07-16
dc.identifier.citationBjork, T. (2009). Arbitrage theory in continuous time (3rd ed.). New York: Oxford.
Karatzas, I., & Shreve, S., E. (1998). Brownian motion and stochastic calculus (2nd ed.). New York: Springer.
Karoui, N. E., Peng, S., & Quenez, M. C. (1997). Backward stochastic differential equations in finance. Mathematical Finance, Vol. 7., No. 1, 1-71.
Lax, P. D., (2002). Functional Analysis. Wiley.
Ma, J., & Yong, J. (2000). Forward-backward stochastic equations and their applications. Springer.
Oksendal, B. (2003). Stochastic differential equations (6th ed.) Springer.
Pham, H. (2000). Continuous-time stochastic control and optimization with Financial Application. Springer.
Zhou, X. Y., & Li, D. (2000). Continuous-time mean-variance portfolio selection: a stochastic LQ framework, Applied Mathematics Optimization, 19-33.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6804-
dc.description.abstract本篇論文中我們探討線性正倒向隨機微分方程的可解性。我們在本篇論文中我們探討特殊情形時( b A = O),可解性的充分必要條件。我們是針對Ma & Yong (2000)工作的延伸。最後我們提出了一個正向微分方程與倒向微分方程的關係,藉由解一個矩陣的常微分方程(里卡蒂方程)提出了類似的充分必要條件。zh_TW
dc.description.abstractIn this paper we investigate the solvability of linear forward-backward stochastic differential equations (FBSDEs, for short). We give sufficient and necessary conditions of the solvability in linear forward-backward stochastic differential equations and prove it in a special case ($widehat A=O$). These results are extensional work of Ma & Yong (2000). Then we introduce the relationship between forward equation and backward equation, we also can get similar sufficient and necessary conditions to solve linear forward-backward stochastic differential equations by solving a matrix ordinary differential equation (a Riccati type equation).en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:18:28Z (GMT). No. of bitstreams: 1
ntu-101-R98221041-1.pdf: 989664 bytes, checksum: eeeb79cb68cee2f6ad708f7b8bf272d9 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsThe Authorization of Oral Members for Research Dissertation i
Acknowledgements ii
Abstract (in Chinese) iii
Abstract (in English) iv
1 Introduction 1
2 Denitions and Notations 6
3 Solvability of Linear FBSDEs 10
3.1 Necessary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Criteria for Solvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 A Riccati Type Equation 31
5 Conclusion 38
Bibliography 39
Appendix 40
dc.language.isoen
dc.subject里卡蒂方程zh_TW
dc.subject正倒向隨機微分方程zh_TW
dc.subjectRiccati Type Equationen
dc.subjectForward-Backward Stochastic Differential Equationen
dc.title線性正倒向隨機微分方程與里卡蒂方程zh_TW
dc.titleLinear Forward-Backward Stochastic Differential Equations and a Riccati Type Equationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor謝南瑞
dc.contributor.oralexamcommittee許順吉,韓傳祥
dc.subject.keyword正倒向隨機微分方程,里卡蒂方程,zh_TW
dc.subject.keywordForward-Backward Stochastic Differential Equation,Riccati Type Equation,en
dc.relation.page42
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-07-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf966.47 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved