請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67833
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 段維新 | |
dc.contributor.author | Chiao-Yi Tsai | en |
dc.contributor.author | 蔡蕎伊 | zh_TW |
dc.date.accessioned | 2021-06-17T01:52:39Z | - |
dc.date.available | 2017-07-28 | |
dc.date.copyright | 2017-07-28 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-24 | |
dc.identifier.citation | [1] M. Nikl, P. Bohacek, E. Mihokova et al., “Excitonic emission of scheelite tungstates AWO4 (A = Pb, Ca, Ba, Sr),” Journal of Luminescence, 87, 1136–1139, 2000.
[2] P. Cerny, P. G. Zverev, H. Jelınkov´a, and T. T. Basiev, “Efficient Raman shifting of picosecond pulses using BaWO4 crystal,” Optics Communications, 177, 397–404, 2000. [3] L. Li, X. Zhang, Z. Liu et al., “A high power diode-side-pumped, Nd:YAG/BaWO4 Raman laser at 1103 nm,” Laser Physics, 23, 2013. [4] T. T. Basiev, V. Osiko, A. M. Prokhorov, and E. M. Dianov, “Crystalline and fiber raman lasers,” Solid-State Mid-Infrared Laser Sources, 89, 359–408, 2003. [5] S. Vidya, Sam Solomon, J. K. Thomas, “Synthesis, characterization, and low temperature sintering of nanostructured BaWO4 for optical and LTCC applications, ” Advances in Condensed Matter Physics, 2013. [6] S. H. Yoon, D. W. Kim, S. Y. Cho, K. S. Hong, “Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds,” Journal of the European Ceramic Society, 26, 2051-2054, 2006. [7] C. A. Kumar, D. Pamu, “Microwave dielectric properties of low temperature fired Ba5Nb4O15‐BaWO4 ceramics supplemented with their own nanoparticles for LTCC applications,” International Journal of Applied Ceramic Technology, 14, 191-199, 2017. [8] R. Freer, F. Azough, “Microstructural engineering of microwave dielectric ceramics, ” Journal of the European Ceramic Society, 1433-1441, 2008. [9] Sebastian, Mailadil T., Dielectric materials for wireless communication. Elsevier, 2008. [10] W.D. Kingery, Introduction to Ceramics, second ed., Wiley, New York, 1976. [11] J. Krupka, “Frequency domain complex permittivity measurements at microwave frequencies, ” Measurement Science and Technology, 16, 2005. [12] G. L. Gurevich and A. K. Tagantsev, “Intrinsic dielectric loss in crystals,” Advances in Physics, 40, 719–767, 1991. [13] I. Rychetský, J. Petzelt, and T. Ostapchuk, “Grain-boundary and crack effects on the dielectric response of high-permittivity films and ceramics,” Applied physics letters, 81, 4224-4226, 2002. [14] S. X. Dai, R. F. Huang, and D. L. Wilcox, “Use of titanates to achieve a temperature‐stable low‐temperature cofired ceramic dielectric for wireless applications, ” Journal of the American Ceramic Society, 85(4), 828-832, 2002. [15] R. Laasner, V. Nagirnyi, S. Vielhauer, M. Kirm, D. Spassky, V. Sirutkaitis, R. Grigonis, and A. N. Vasil’ev, “Cation influence on exciton localization in homologue scheelites, ” Journal of Physics: Condensed Matter, 27, 2005. [16] Richard C. Ropp, Encyclopedia of the alkaline earth compounds, Newnes, 2012. [17] C. S. Lim, “Cyclic microwave synthesis and photoluminescence of barium tungstate particles assisted by a solid-state metathetic reaction,” Asian Journal of Chemistry, 25, 63-66, 2013. [18] M. C. Oliveira, L. Gracia, I. C. Nogueria et al., “Synthesis and morphological transformation of BaWO4 crystals: Experimental and theoretical insights,” Ceramics International, 42, 10913-10921, 2016. [19] C. Zhang, E. Shen, E. Wang, Z. Kang, L. Gao, C. Hu, L. Xu, “One-step solvothermal synthesis of high ordered BaWO4 and BaMoO4 nanostructures,” Materials chemistry and physics, 96, 240-243, 2006. [20] Anil Kumar, Chikkala, and Dobbidi Pamu, “Microwave dielectric properties of low temperature fired Ba5Nb4O15‐BaWO4 ceramics supplemented with their own nanoparticles for LTCC applications,” International Journal of Applied Ceramic Technology, 14, 191-199, 2017. [21] Sun Bai et al., “Hydrothermal preparation and white-light-controlled resistive switching behavior of BaWO4 nanospheres,” Nano-Micro Letters, 80-85, 2015. [22] P. Parhi, T.N. Karthik and V. Manivannan, “Synthesis and characterization of metal tungstates by novel solid-state metathetic approach,” Journal of Alloys and Compounds, 465, 380-386, 2008. [23] T. Fujita, S. Yamaoka, and O. Fukunaga, “Pressure induced phase transformation in BaWO4,” Materials Research Bulletin, 9, 141–146, 1974. [24] Cheng Lin et al., “Microwave dielectric properties of AWO4 (A= Ca, Ba, Sr) ceramics synthesized via high energy ball milling method,” Journal of Alloys and Compounds, 581: 553-557, 2013. [25] Shannon, R. D., “Dielectric polarizabilities of ions in oxides and fluorides,” Journal of Applied Physics, 73, 348–366, 1993. [26] Zhong-Qing Tian et al., “Effect of BaWO4 on microstructure microwave dielectric properties of Ba(Mg1/3Nb2/3)O3,” Materials Chemistry and Physics, 86.1, 228-232, 2004. [27] Jiang, Shouzhen, Zhanxian Yue, and Feng Shi, “Effects of BaWO4 additive on Raman phonon modes and structure–property relationship of Ba(Mg1/3Ta2/3)O3 microwave dielectric ceramics,” Journal of Alloys and Compounds, 646: 49-55, 2015. [28] Tian, Cailan, Zhenxing Yue, and Yuanyuan Zhou, “Microstructures and microwave dielectric properties of Ba4LiNb3O12–BaWO4 composite ceramics,” Materials Science and Engineering: B, 178.2: 178-182, 2013. [29] Sebastian, Mailadil T., Dielectric materials for wireless communication, Elsevier, 2010. [30] P. K. Davies et al., “Crystal chemistry of complex perovskites: New cation-ordered dielectric oxides,” Annual Review of Material Research, 38: 369-401, 2008. [31] C. T. Lee et al., “Structure and microwave dielectric property relations in (Ba1−xSrx)5Nb4O15 system,” Journal of the European Ceramic Society, 27.5: 2273-2280, 2007. [32] C. Vineis, P. K. Davies, T. Negas, S. Bell, “Microwave dielectric properties of hexagonal perovskite, ” Material Research Bulletin, 31, 431–437, 1996. [33] R. Ratheesh, M. T. Sebastian, P. Mohanan, M. E. Tobar, J. Hartnett, R. Woode, and D. G. Blair, “Microwave characterization of BaCe2Ti5O15 and Ba5Nb4O15 ceramics dielectric resonators using whispering gallery mode method,” Materials Letters, 45, 279–85, 2000. [34] Dong-Wan Kim et al., “A textured barium niobate with enhanced temperature stability of dielectric constant for high-frequency applications,” Journal of Materials Research, 21.09: 2354-2360, 2006. [35] F. Zhao, H. Zhuang, Z. Yue, J. Pei, Z. Gui, L. Li, “Structure and microwave dielectric properties of hexagonal Ba[Ti(1− x)(Ni1/2W1/2)x]O3 ceramics,” Materials Letters, 61, 3466-3468, 2007. [36] Y. Liou, W. Shiu, C. Shih, “Microwave ceramics Ba5Nb4O15 and Sr5Nb4O15 prepared by a reaction-sintering process,” Material Science and Engineering B 131, 142-146, 2006. [37] R. L. Jia, H. Su, X. L. Tang, and Y. L. Jing, “Effects of BaCu(B2O5) addition on sintering temperature and microwave dielectric properties of Ba5Nb4O15-BaWO4,” Chinese Physics B, 23, 4, 2014. [38] H. Zhuang, Z. Yue, F. Zhao, J. Pei, L. Li, “Microstructure and microwave dielectric properties of Ba5Nb4O15-BaWO4 composite ceramics,” Journal of Alloys and Compounds, 472, 411-415, 2009. [39] D. W. Kim et al., “Microwave dielectric properties of low-fired Ba5Nb4O15,” Journal of the American Ceramic Society, 85.11: 2759-2762, 2002. [40] J. C. Wurst, J. A. Nelson, “Linear intercept technique for measuring grain size in 2-phase polycrystalline ceramics,” Journal of the American Ceramic Society, 55, 109, 1972. [41] Erik Lassner, Wolf-Dieter Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Plenum Publishers, New York, 1999. [42] Benmakhlouf, Abdennour, and Abdelouahab Bentabet, “First principles study of structural and elastic properties of BaWO4 scheelite phase structure under pressure,” Synthesis, 2154, 2015. [43] Richard C. Ropp, Encyclopedia of the Alkaline Earth Compounds, 2013. [44] K. R. Poeppelmeier, A. J. Jacobson, J. M. Longo, “The structure of Ba3W2O9: an example of face-shared octahedral with tungsten (VI)”, Material Research Bulletin, 15, 339-345, 1980. [45] S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, K. Schrapel, “Effect of porosity and grain size on the microwave dielectric properties of sintered alumina”, Journal of the American Ceramic Society, 80, 1885–1888, 1997. [46] S. L. Hwang, P. F. Becher, H. T. Lin, “Desintering process in the gas-pressure sintering of silicon nitride”, Journal of the American Ceramic Society, 80, 329–335, 1997. [47] R. J. Brook, “Controlled grain growth treatise”, Materials Science and Technology, 9, 1976. [48] Chung-Ya Tsao, Wei-Hsing Tuan, and Kuei-Chih Feng, “De-sintering of Ba5Nb4O15 ceramic and its influence on microwave characteristics,” Journal of the European Ceramic Society, 2016. [49] V. Brizé et al., “Grain size effects on the dielectric constant of CaCu3Ti4O12 ceramics,” Materials Science and Engineering: B, 129, 135-138, 2006. [50] Hume-Rothery, William, Raymond Edward Smallman, and Colin William Haworth, The structure of metals and alloys, 1969. [51] A. L. Allred, and Eugene G. Rochow, “A scale of electronegativity based on electrostatic force,” Journal of Inorganic and Nuclear Chemistry, 5.4: 264-268, 1958. [52] Chikkala Anil Kumar and Dobbidi Pamu, “Impedance spectroscopy, broadband, and microwave dielectric properties of mechanically alloyed Ba5Nb4O15 ceramics,” International Journal of Applied Ceramic Technology, 2015. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67833 | - |
dc.description.abstract | 本研究以20, 40, 60, 80 wt% 鈮酸鋇加入鎢酸鋇粉末中,以乾壓成型生胚,並在1200 度至1400 度燒結製備成複合陶瓷,觀察其燒結行為、微結構、結晶相與微波介電性質。實驗結果顯示不同成分含量的試片會顯著影響其微結構與微波介電性質,其中介電常數隨著鈮酸鋇添加量而上升。本研究亦發現添加80 wt%鈮酸鋇的微結構中,由於鈮酸鋇添加量夠多足以包覆鎢酸鋇晶粒,而使鎢酸鋇晶粒內部的微裂縫消失,因此進一步使該成分的試片有最高的品質因子(37000 GHz)。由於鎢酸鋇與鈮酸鋇的共振頻率溫度係數(tf)分別為-60 ppm/°C 與78 ppm/°C,在此複合陶瓷系統中兩相的tf 會互相抵銷趨近於零,例如其中含40 wt%鈮酸鋇的複合材料擁有最接近零之tf(4.3 ppm/°C)。 | zh_TW |
dc.description.abstract | In the present study, the BaWO4 and Ba5Nb4O15 are sintered together to form composite. By adding 20, 40, 60, 80 wt% Ba5Nb4O15 into BaWO4, extra attention has been paid to the sintering behavior, microstructure, phase identification and microwave dielectric properties of composites.
The preparation of pure BaWO4 and Ba5Nb4O15 has been done by sintering at 1100 °C and 1250 °C, respectively. As the sintering temperature was higher than 1100 °C, the cracks are spontaneously formed at the grain boundaries between BaWO4 grains; it is may due to the anisotropic thermal shrinkage and the vaporization of WO3. The relative density of Ba5Nb4O15 is also decreased after sintering above 1300 °C; it is likely due to the abnormal grain growth at elevated temperature. The composites with 20, 40 and 60 wt% Ba5Nb4O15 can be densified after sintering at 1350 °C. The relative density can reach above 92%~95%. The relative density of the composites with 80 wt% Ba5Nb4O15 reaches 90% after sintering at 1250 °C. The permittivity for the composites of 20, 40, 60 and 80 wt% Ba5Nb4O15 increases from 14 to 30 along with weight percent of Ba5Nb4O15. The permittivity of the composites follows the logarithm mixture law. The addition of 80 wt% Ba5Nb4O15 into BaWO4 exhibits the highest quality factor of 37000 GHz. To compare with other compositions, the microstructure without microcracks is a key factor to affect the quality factors. The BaWO4 and Ba5Nb4O15 show opposite tf values offsetting each other in the system. The tf value thus increases with the content of Ba5Nb4O15 as well. The tf value for the composites containing 40 wt% Ba5Nb4O15 is only 4.3 ppm/°C. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:52:39Z (GMT). No. of bitstreams: 1 ntu-106-R04527051-1.pdf: 6307728 bytes, checksum: 0b7d1da07d14a3e7ee7f11deba3929e7 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書 ...........................................................................................................#
誌謝 .................................................................................................................................. ii 中文摘要..........................................................................................................................iv ABSTRACT ......................................................................................................................v CONTENTS .....................................................................................................................vi LIST OF FIGURES...........................................................................................................x LIST OF TABLES..........................................................................................................xiv Chapter 1 Introduction..............................................................................................1 Chapter 2 Literature Survey.....................................................................................3 2.1 Microwave dielectric properties .....................................................................3 2.2 BaWO4 ............................................................................................................7 2.2.1 Crystal structure ....................................................................................7 2.2.2 Preparation of BaWO4 powder..............................................................8 2.2.3 Sintering behavior ...............................................................................10 2.2.4 Microwave dielectric properties..........................................................11 2.3 Ba5Nb4O15.....................................................................................................13 2.3.1 Crystal structure ..................................................................................13 2.3.2 Microwave dielectric properties..........................................................15 Chapter 3 Experimental Procedures ......................................................................17 3.1 BaWO4 ..........................................................................................................17 3.1.1 Preparation of powders .......................................................................17 doi:10.6342/NTU201701664 vii 3.1.2 Sintering ..............................................................................................17 3.1.3 Phase identification .............................................................................19 3.1.4 Relative density...................................................................................19 3.1.5 Microstructure and element analysis...................................................20 3.1.6 Dielectric properties ............................................................................20 3.1.7 Microwave dielectric properties..........................................................21 3.2 Ba5Nb4O15.....................................................................................................21 3.2.1 Preparation of powders .......................................................................21 3.2.2 Sintering ..............................................................................................21 3.2.3 Phase identification .............................................................................24 3.2.4 Relative density...................................................................................24 3.2.5 Microstructure and element analysis...................................................24 3.2.6 Dielectric properties ............................................................................25 3.2.7 Microwave dielectric properties..........................................................25 3.3 BaWO4-Ba5Nb4O15 composites ....................................................................26 3.3.1 Preparation of powders .......................................................................26 3.3.2 Sintering ..............................................................................................26 3.3.3 Phase identification .............................................................................28 3.3.4 Relative density...................................................................................28 3.3.5 Microstructure and element analysis...................................................29 3.3.6 XPS analysis........................................................................................29 3.3.7 Dielectric properties ............................................................................30 3.3.8 Microwave dielectric properties..........................................................30 Chapter 4 Results .....................................................................................................31 doi:10.6342/NTU201701664 viii 4.1 BaWO4 ..........................................................................................................31 4.1.1 Characteristics of powders ..................................................................31 4.1.2 Sintering behavior of BaWO4 .............................................................32 4.1.3 Phase identification .............................................................................33 4.1.4 Microstructure and composition analysis............................................34 4.1.5 Dielectric properties at low frequency ................................................39 4.1.6 Microwave dielectric properties..........................................................41 4.2 Ba5Nb4O15.....................................................................................................43 4.2.1 Characteristics of powders ..................................................................43 4.2.2 Sintering behavior of Ba5Nb4O15 ........................................................44 4.2.3 Phase identification .............................................................................45 4.2.4 Microstructure and composition analysis............................................46 4.2.5 Dielectric properties at low frequency ................................................49 4.2.6 Microwave dielectric properties..........................................................50 4.3 BaWO4-Ba5Nb4O15 composites ....................................................................52 4.3.1 Sintering behavior of BaWO4-Ba5Nb4O15 ..........................................52 4.3.2 Phase identification .............................................................................54 4.3.3 Microstructure and composition analysis............................................55 4.3.4 XPS analysis........................................................................................60 4.3.5 Dielectric properties at low frequency ................................................61 4.3.6 Microwave dielectric properties..........................................................63 Chapter 5 Discussion................................................................................................66 5.1 BaWO4 ..........................................................................................................66 5.1.1 Density and weight loss ......................................................................66 5.1.2 Phase identification .............................................................................69 5.1.3 Microstructure .....................................................................................70 5.1.4 Microwave dielectric properties..........................................................71 5.2 Ba5Nb4O15.....................................................................................................72 5.2.1 Sintering behavior ...............................................................................72 5.2.2 Microwave dielectric properties..........................................................73 5.3 BaWO4-Ba5Nb4O15 .......................................................................................74 5.3.1 Sintering behavior ...............................................................................74 5.3.2 Phase identification .............................................................................76 5.3.3 Microstructure .....................................................................................77 5.3.4 Microwave dielectric properties..........................................................78 Chapter 6 Conclusions.............................................................................................82 REFERENCE ..................................................................................................................84 | |
dc.language.iso | en | |
dc.title | 鎢酸鋇-鈮酸鋇複合陶瓷之燒結行為與微波介電性質 | zh_TW |
dc.title | Sintering Behavior and Microwave Dielectric Properties
of BaWO4-Ba5Nb4O15 Composite Ceramics | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝宗霖,施劭儒,馮奎智 | |
dc.subject.keyword | 鎢酸鋇,鈮酸鋇,燒結行為,微波介電性質, | zh_TW |
dc.subject.keyword | BaWO4,Ba5Nb4O15,sintering behavior,microwave dielectric properties, | en |
dc.relation.page | 89 | |
dc.identifier.doi | 10.6342/NTU201701664 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-07-24 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 6.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。