請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67707
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 段維新(Wei-Hsing Tuan) | |
dc.contributor.author | Chun-Ting Yeh | en |
dc.contributor.author | 葉俊廷 | zh_TW |
dc.date.accessioned | 2021-06-17T01:45:16Z | - |
dc.date.available | 2027-12-31 | |
dc.date.copyright | 2017-07-28 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-26 | |
dc.identifier.citation | 1. S. Strite, and H. Morkoç, 'GaN, AlN, and InN: A Review', Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 10 [4] 1237-1266 (1992).
2. J. H. Harris, 'Sintered Aluminum Nitride Ceramics for High-Power Electronic Applications', JOM Journal of the Minerals, Metals and Materials Society, 50 [6] 56-60 (1998). 3. A. D. Westwood, and M. R. Notis, 'An Issue in Thermal Management: Metallizing High Thermal Conductivity Ceramic Substrates in Microelectronics', JOM Journal of the Minerals, Metals and Materials Society, 43 [6] 10-15 (1991). 4. J. Jarrige, T. Joyeux, J. Labbe, and J. Lecompte, 'Realisation of Joining between Copper and Aluminium Nitride,' Key Engineering Materials, 675-678 (2004). 5. J. Jarrige, T. Joyeux, J.-P. Lecompte, and J.-C. Labbé, 'Comparison between Two Processes Using Oxygen in the Cu/AlN Bonding', Journal of the European Ceramic Society, 27 [2] 855-860 (2007). 6. J. Jarrige, T. Joyeux, J.-P. Lecompte, and J.-C. Labbé, 'Influence of Oxygen on the Joining between Copper and Aluminium Nitride', Journal of the European Ceramic Society, 27 [1] 337-341 (2007). 7. C.-T. Yeh, and W.-H. Tuan, 'Pre-Oxidation of Aln Substrates for Subsequent Metallization', Journal of Materials Science: Materials in Electronics, 26 [8] 5910-5916 (2015). 8. J. Schulz-Harder, 'Advantages and New Development of Direct Bonded Copper Substrates', Microelectronics Reliability, 43 [3] 359-365 (2003). 9. D. W. Richerson, Modern Ceramic Engineering: Properties, Processing, and Use in Design (CRC press, 2005). 10. C. Y. Lin, and W. H. Tuan, 'Direct Bonding of Aluminum to Alumina for Thermal Dissipation Purposes', International Journal of Applied Ceramic Technology, 13 [1] 170-176 (2016). 11. Y.-D. Yu, A. M. Hundere, R. Høier, R. E. Dunin-Borkowski, and M.-A. Einarsrud, 'Microstructural Characterization and Microstructural Effects on the Thermal Conductivity of AlN(Y2O3) Ceramics', Journal of the European Ceramic Society, 22 [2] 247-252 (2002). 12. W. Olesińska, D. Kaliński, M. Chmielewski, R. Diduszko, and W. Włosiński, 'Influence of Titanium on the Formation of a “Barrier” Layer During Joining an A1N Ceramic with Copper by the CDB Technique', Journal of Materials Science: Materials in Electronics, 17 [10] 781-788 (2006). 13. M. Borom, and G. Slack, 'Thermal Conductivity of Commercial Aluminum Nitride', American Ceramic Society Bulletin, 51 [11] 852-856 (1972). 14. M. Norton, 'Characterisation of Aluminium Nitride Ceramic Substrates', Microelectronics International, 6 [3] 18-22 (1989). 15. W. Werdecker, and F. Aldinger, 'Aluminum Nitride-an Alternative Ceramic Substrate for High Power Applications in Microcircuits', Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, 7 [4] 399-404 (1984). 16. F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi, and T. Takahashi, 'High Thermal Conductivity Aluminum Nitride Ceramic Substrates and Packages', Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, 13 [2] 313-319 (1990). 17. P. Debye, and A. Bueche, 'Scattering by an Inhomogeneous Solid', Journal of Applied Physics, 20 [6] 518-525 (1949). 18. H. N. Yoshimura, N. E. Narita, A. L. Molisani, and H. Goldenstein, 'High Temperature Flexural Strength and Fracture Toughness of Aln with Y2o3 Ceramic', Journal of materials science, 44 [21] 5773-5780 (2009). 19. P. Kluge-Weiss, and J. Gobrecht, 'Directly Bonded Copper Metallization of AlN Substrates for Power Hybrids,' MRS Proceedings, p.399 (1984). 20. N. Iwase, K. Anzai, K. Shinozaki, O. Hirao, T. D. Thanh, and Y. Sugiura, 'Thick Film and Direct Bond Copper Forming Technologies for Aluminum Nitride Substrate', Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, 8 [2] 253-258 (1985). 21. W. Chiang, V. Greenhut, D. Shanefield, L. Salvati, and R. Moore, 'Effect of Substrate and Pretreatment on Copper to AlN Direct Bonds,' Proceedings of the 15th Annual Conference on Composites and Advanced Ceramic Materials, Part 2 of 2: Ceramic Engineering and Science Proceedings, Volume 12, Issue 9/10, 2105-2114 (2009). 22. A. Bellosi, E. Landi, and A. Tampieri, 'Oxidation Behavior of Aluminum Nitride', Journal of materials research, 8 [03] 565-572 (1993). 23. A. Brown, and M. Norton, 'Oxidation Kinetics of AlN Powder', Journal of materials science letters, 17 [18] 1519-1522 (1998). 24. A. Katnani, and K. Papathomas, 'Kinetics and Initial Stages of Oxidation of Aluminum Nitride: Thermogravimetric Analysis and X‐Ray Photoelectron Spectroscopy Study', Journal of Vacuum Science & Technology A, 5 [4] 1335-1340 (1987). 25. V. Lavrenko, and A. Alexeev, 'Oxidation of Sintered Aluminium Nitride', Ceramics international, 9 [3] 80-82 (1983). 26. E. Osborne, and M. Norton, 'Oxidation of Aluminium Nitride', Journal of materials science, 33 [15] 3859-3865 (1999). 27. D. Robinson, and R. Dieckmann, 'Oxidation of Aluminium Nitride Substrates', Journal of materials science, 29 [7] 1949-1957 (1994). 28. T. Sato, K. Haryu, T. Endo, and M. Shimada, 'High Temperature Oxidation of Hot-Pressed Aluminium Nitride by Water Vapour', Journal of materials science, 22 [6] 2277-2280 (1987). 29. D. Suryanarayana, 'Oxidation Kinetics of Aluminum Nitride', Journal of the American Ceramic Society, 73 [4] 1108-1110 (1990). 30. W. J. Tseng, C.-J. Tsai, and S.-L. Fu, 'Oxidation, Microstructure and Metallization of Aluminum Nitride Substrates', Journal of Materials Science: Materials in Electronics, 11 [2] 131-138 (2000). 31. X.-R. Xu, W.-L. Yan, H.-R. Zhuang, W.-L. Li, and S.-Y. Xu, 'Oxidation Behavior of Aluminium Nitride', Journal of Inorganic Materials, 18 [2] 337-342 (2003). 32. H. Zhou, L. Qiao, and R. Fu, 'Effect of the Fluoride Additives on the Oxidation of AlN', Materials research bulletin, 37 [15] 2427-2435 (2002). 33. C.-T. Yeh, and W.-H. Tuan, 'Oxidation Mechanism of Aluminum Nitride Revisited', Journal of Advanced Ceramics, 6 [1] 27 (2017). 34. J. Burgess, C. Neugebauer, and G. Flanagan, 'The Direct Bonding of Metals to Ceramics by the Gas‐Metal Eutectic Method', Journal of the Electrochemical Society, 122 [5] 688-690 (1975). 35. J. Burgess, C. Neugebauer, G. Flanagan, and R. Moore, 'The Direct Bonding of Metals to Ceramics and Application in Electronics', Active and Passive Electronic Components, 2 [4] 233-240 (1976). 36. Y. Sun, and J. C. Driscoll, 'A New Hybrid Power Technique Utilizing a Direct Copper to Ceramic Bond', Electron Devices, IEEE Transactions on, 23 [8] 961-967 (1976). 37. K. P. Trumble, 'Prediction of a Critical Temperature for Aluminate Formation in Alumina/Copper–Oxygen Eutectic Bonding', Journal of the American Ceramic Society, 82 [10] 2919-2920 (1999). 38. M. Kulmala, and A. Laaksonen, 'Binary Nucleation of Water–Sulfuric Acid System: Comparison of Classical Theories with Different H2SO4 Saturation Vapor Pressures', The Journal of Chemical Physics, 93 [1] 696-701 (1990). 39. A. L. Buck, 'New Equations for Computing Vapor Pressure and Enhancement Factor', Journal of applied meteorology, 20 [12] 1527-1532 (1981). 40. W. Parker, R. Jenkins, C. Butler, and G. Abbott, 'Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity', Journal of applied physics, 32 [9] 1679-1684 (1961). 41. R. D. Cowan, 'Pulse Method of Measuring Thermal Diffusivity at High Temperatures', Journal of Applied Physics, 34 [4] 926-927 (1963). 42. R. Taylor, 'Thermal Conductivity Determinations of Thermal Barrier Coatings', Materials Science and Engineering: A, 245 [2] 160-167 (1998). 43. A. Börger, P. Supancic, and R. Danzer, 'The Ball on Three Balls Test for Strength Testing of Brittle Discs: Stress Distribution in the Disc', Journal of the European Ceramic Society, 22 [9] 1425-1436 (2002). 44. A. Börger, P. Supancic, and R. Danzer, 'The Ball on Three Balls Test for Strength Testing of Brittle Discs: Part II: Analysis of Possible Errors in the Strength Determination', Journal of the European Ceramic Society, 24 [10] 2917-2928 (2004). 45. H. E. Kim, and A. J Moorhead, 'Oxidation Behavior and Flexural Strength of Aluminum Nitride Exposed to Air at Elevated Temperatures', Journal of the American Ceramic Society, 77 [4] 1037-1041 (1994). 46. H. Miley, 'Copper Oxide Films', Journal of the American Chemical Society, 59 [12] 2626-2629 (1937). 47. T. Rhodin Jr, 'Low Temperature Oxidation of Copper. I. Physical Mechanism', Journal of the American Chemical Society, 72 [11] 5102-5106 (1950). 48. T. Rhodin Jr, 'Low Temperature Oxidation of Copper. II. Reaction Rate Anisotropy', Journal of the American Chemical Society, 73 [7] 3143-3146 (1951). 49. T. Grimley, and B. Trapnell, 'The Gas/Oxide Interface and the Oxidation of Metals,' Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 405-418 (1956). 50. K. R. Lawless, and A. T. Gwathmey, 'The Structure of Oxide Films on Different Faces of a Single Crystal of Copper', Acta metallurgica, 4 [2] 153-163 (1956). 51. W. Harris, F. Ball, and A. Gwathmey, 'The Structure of Oxide Films Formed on Smooth Faces of a Single Crystal of Copper', Acta metallurgica, 5 [10] 574-581 (1957). 52. H. Wieder, and A. Czanderna, 'The Oxidation of Copper Films to CuO0.67', The Journal of Physical Chemistry, 66 [5] 816-821 (1962). 53. E. Yoda, and B. M. Siegel, 'Investigation of the Oxidation of Copper by Electron Diffraction', Journal of Applied Physics, 34 [5] 1512-1515 (1963). 54. P. Krishnamoorthy, and S. Sircar, 'Formation of Very Thin Oxide Films on Copper: Kinetics and Mechanism', Oxidation of Metals, 2 [4] 349-360 (1970). 55. S. Roy, and S. Sircar, 'A Critical Appraisal of the Logarithmic Rate Law in Thin-Film Formation During Oxidation of Copper and Its Alloys', Oxidation of Metals, 15 [1-2] 9-20 (1981). 56. Z. Feng, C. Marks, and A. Barkatt, 'Oxidation-Rate Excursions During the Oxidation of Copper in Gaseous Environments at Moderate Temperatures', Oxidation of metals, 60 [5-6] 393-408 (2003). 57. A. Lupu, 'Thermogravimetry of Copper and Copper Oxides (Cu2O-CuO)', Journal of Thermal Analysis and Calorimetry, 2 [4] 445-458 (1970). 58. R. L. Pastorek, and R. A. Rapp, 'Solubility and Diffusivity of Oxygen in Solid Copper from Electrochemical Measurements', Transactions of the Metallurgical Society of AIME, 245 [8] 1711-& (1969). 59. D. R. Stull, and H. Prophet, 'Janaf Thermochemical Tables,' 1971). 60. M. Sternitzke, 'Growth of Oxide Layers on Thin Aluminum Nitride Samples Measured by Electron Energy‐Loss Spectroscopy', Journal of the American Ceramic Society, 76 [9] 2289-2294 (1993). 61. E. Wang, J. Chen, X. Hu, K. C. Chou, and X. Hou, 'New Perspectives on the Gas–Solid Reaction of α‐Si3N4 Powder in Wet Air at High Temperature', Journal of the American Ceramic Society, 99 [8] 2699-2705 (2016). 62. X. Hou, E. Wang, Y. Liu, and K.-C. Chou, 'The Effect of Water Vapor and Temperature on the Reaction Behavior of AlN Powder at 1273 K to 1423 K (1000°C to 1150°C)', Metallurgical and Materials Transactions A, 46 [4] 1621-1627 (2015). 63. R. Cannon, W. H. Rhodes, and A. Heuer, 'Plastic Deformation of Fine‐Grained Alumina (Al2O3): I, Interface‐Controlled Diffusional Creep', Journal of the American Ceramic Society, 63 [1‐2] 46-53 (1980). 64. T. Nakagawa, H. Nishimura, I. Sakaguchi, N. Shibata, K. Matsunaga, T. Yamamoto, and Y. Ikuhara, 'Grain Boundary Character Dependence of Oxygen Grain Boundary Diffusion in α-Al2O3 Bicrystals', Scripta Materialia, 65 [6] 544-547 (2011). 65. E. W. Lemmon, and R. Jacobsen, 'Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air', International Journal of Thermophysics, 25 [1] 21-69 (2004). 66. J. F. Shackelford, and W. Alexander, CRC Materials Science and Engineering Handbook (CRC press, 2000). 67. W. Yim, and R. Paff, 'Thermal Expansion of AlN, Sapphire, and Silicon', Journal of Applied Physics, 45 [3] 1456-1457 (1974). 68. R. W. Rice, 'Microstructure Dependence of Mechanical Behavior of Ceramics', Properties and Microstructure. New York, Academic Press, Inc.(Treatise on Materials Science and Technology, 11 199-381 (1977). 69. U. R. Evans, The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications.-Repr. Hauptbd. (Arnold, 1961). 70. M. O'Keeffe, and W. J. Moore, 'Electrical Conductivity of Monocrystalline Cuprous Oxide', The Journal of Chemical Physics, 35 [4] 1324-1328 (1961). 71. J. Holman, 'Heat Transfer, Eighth SI Metric Edition,' 2001). 72. W.-H. Tuan, and S.-K. Lee, 'Eutectic Bonding of Copper to Ceramics for Thermal Dissipation Applications–a Review', Journal of the European Ceramic Society, 34 [16] 4117-4130 (2014). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67707 | - |
dc.description.abstract | 氮化鋁的氧化行為已經過廣泛的研究,一般認為氮化鋁的氧化機制在低溫是反應控制,在高溫是擴散控制。在本研究中,氮化鋁氧化後的重量變化和氧化層的厚度皆用於活化能計算。氧化層的微結構分析指出有很多小孔洞充斥在氧化層中,孔洞的形成產生額外的表面導致進一步的反應。因此,氮化鋁氧化在低溫下由反應控制,並在高溫時繼續控制一段短時間。在氧化的過程中,擴散也同時發生,直到氧化層夠厚使得孔洞的通道無法連通時,才由擴散控制氧化。
在氮化鋁基板表面產生一層氧化層有助於後續的金屬化製程。預氧化後的氮化鋁基板和銅片接合。氮化鋁基板的氧化層是多孔的,當氧化層厚度大於6 μm時會降低熱擴散係數和抗彎強度。有一層薄氧化層的氮化鋁基板在1070°C可以和銅片接合。經過接合後薄氧化層保持穩定,但會阻礙熱傳導。銅與氮化鋁的雙層結構在25°C之熱傳導係數可達120 W/mK。 | zh_TW |
dc.description.abstract | The oxidation behavior of aluminum nitride has been investigated intensively for many years. The oxidation mechanisms that have been proposed are reaction at lower temperatures and diffusion at higher temperatures. In the present study, both the weight gain and the thickness of the oxide layer formed during oxidation were monitored. Detailed microstructure analysis of the oxide surface was also conducted. The analysis indicates that the oxide layer was full of small pores. The formation of pores generates additional surface area to induce further reaction. The reaction mechanism thus controls oxidation at lower temperatures for a long time and at higher temperatures for a short time. The diffusion process takes place simultaneously and becomes dominant when the oxide layer is so thick that the pore channels are fully blocked.
To introduce a surface oxide layer onto aluminum nitride substrate helps its subsequent metallization. The pre-oxidized AlN substrate is then bonded to a copper plate. The oxide layer of the substrate is porous, and its presence degrades thermal diffusivity and flexural strength at thicknesses greater than 6 μm. An AlN substrate with a thin oxide layer can bond directly to copper plate at 1070°C. The thin oxide layer remains stable after bonding with copper plate; however, it acts as a barrier to thermal conduction. After joining with copper plates, Cu/AlN bilayers exhibit a thermal conductivity around 120 W/mK at 25°C. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:45:16Z (GMT). No. of bitstreams: 1 ntu-106-D00527006-1.pdf: 8480151 bytes, checksum: 0addbd99a2d98ea29dafb14661c35ec0 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 iii Abstract iv Contents v List of Figures vii List of Tables xi Chapter 1 Introduction 1 Chapter 2 Literature survey 3 2.1 Characteristics of AlN 3 2.2 Thermal conductivity 7 2.3 Oxidation of AlN 9 2.4 Direct bond copper 13 Chapter 3 Experimental procedures 16 3.1 Starting materials 16 3.1.1 AlN substrates 16 3.1.2 Cu plates 16 3.2 Oxidation of AlN substrates 18 3.3 Oxidation of Cu plates 19 3.4 Direct bonding 20 3.5 Microstructure observation 22 3.6 Phase analysis 23 3.7 Thermal conductivity 24 3.8 Flexural strength 26 Chapter 4 Results 28 4.1 Oxidation of AlN substrates 28 4.1.1 Microstructure observation 28 4.1.2 Phase identification 34 4.1.3 Weight gain after oxidation 37 4.1.4 Flexural strength 40 4.2 Oxidation of Cu plates 41 4.2.1 Evolution of surface morphology 41 4.2.2 Phase identification 43 4.2.3 Oxygen content 46 4.3 Microstructure characterization 49 4.4 Thermal conductivity 57 4.4.1 Thermal conductivity of AlN 57 4.4.2 Thermal conductivity of Cu/AlN bilayers 62 Chapter 5 Discussion 66 5.1 Oxidation mechanism of AlN 66 5.2 Effects of Water Vapor on Oxidation of AlN 73 5.3 Oxidation of AlN substrates 75 5.4 Oxidation of Cu 77 5.5 Thermal conductivity of AlN 79 5.6 Thermal conductivity of Cu/AlN bilayers 81 Chapter 6 Conclusions 85 Reference 87 | |
dc.language.iso | en | |
dc.title | 氮化鋁的氧化及與銅接合後的熱性質研究 | zh_TW |
dc.title | Joining of Oxidized Aluminum Nitride with Copper and Their Thermal Characteristics | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 楊聰仁(Tsung-Jen Yang),薛人愷(Ren-Kai Shiue),薛承輝(Chun-Hway Hsueh),許秀菁(Hsiu-Ching Hsu) | |
dc.subject.keyword | 氧化,共晶接合法,氮化鋁,銅,熱傳導係數, | zh_TW |
dc.subject.keyword | Oxidation,Eutectic bonding,Aluminum nitride,Copper,Thermal conductivity, | en |
dc.relation.page | 97 | |
dc.identifier.doi | 10.6342/NTU201702092 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-07-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 8.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。