Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67658
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈立言
dc.contributor.authorTing-Xuan Changen
dc.contributor.author張庭瑄zh_TW
dc.date.accessioned2021-06-17T01:42:37Z-
dc.date.available2022-08-01
dc.date.copyright2017-08-01
dc.date.issued2017
dc.date.submitted2017-07-27
dc.identifier.citation張新儀、謝耀德、潘文涵、鄭喬薇。甜飲料攝取的代謝症候群風險:NAHSIT 2005-2008,2005-2008台灣營養健康調查,2011,155-164。
潘文涵、吳幸娟、葉志嶸、莊紹源、張新儀、葉乃華、謝耀德。台灣人飲食與健康之趨勢:1993-1996與2005-2008營養健康調查之比較,2005-2008台灣營養健康調查,2009,17-40。
Alkhouri, N.; Dixon, L. J.; Feldstein, A. E. Lipotoxicity in nonalcoholic fatty liver disease: Not all lipids are created equal. Expert Rev. Gastroenterol. Hepatol. 2009, 3, 445-451.
Amagase, H.; Petesch, B. L.; Matsuura, H.; Kasuga, S.; Itakura, Y. Intake of garlic and its bioactive components1. J. Nutr. 2001, 131, 955s-962s.
Arindkar, S.; Bhattacharjee, J.; Kumar, J. M.; Das, B.; Upadhyay, P.; Asif, S.; Juyal, R.C.; Majumdar, S. S.; Perumal, N. Antigen peptide transporter 1 is involved in the development of fructose-induced hepatic steatosis in mice. J. Gastroenterol. Hepatol. 2013, 28, 1403-1409.
Arora, A.; Seth, K.; Shukla, Y. Reversal of P-glycoprotein-mediated multidrug resistance by diallyl sulfide in K562 leukemic cells and in mouse liver. Carcinogenesis. 2004, 25, 941-949.
Austin, G. L.; Ogden, L. G.; Hill, J. O. Trends in carbohydrate, fat, and protein intakes and association with energy intake in normal-weight, overweight, and obese individuals:1971-2006. Am. J. Clin. Nutr. 2011, 93, 836-843.
Bachmanov, A. A.; Tordoff, M. G.; Beauchamp, G. K. Sweetener preference of C57BL/6ByJ and 129P3/J mice. Chem. Senses. 2001, 26, 905-913.
Banerjee, S. K.; Maulik, S. K. Effect of garlic on cardiovascular disorders: a review. Nutr. J. 2002, 1, 4-14.
Bergheim, I.; Weber, S.; Vos, M.; Kra¨mer, S.; Volynets, V.; Kaserouni, S.; McClain, C. J.; Bischoff, S. C. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: Role of endotoxin. J. Hepatol. 2008, 48, 983-992.
Brownsey, R. W.; Boone, A. N.; Elliott, J. E.; Kulpa, J. E.; Lee, W. M. Regulation of acetyl-CoA carboxylase. Biochem. Soc. Trans. 2006, 34, 223-227.
Denechaud, P. D.; Dentin, R.; Girard, J.; Postic, C. Role of ChREBP in hepatic steatosis and insulin resistance. FEBS Lett. 2008, 582, 68-73.
Donnelly, K. L.; Smith, C. I.; Schwarzenberg, S. J.; Jessurun, J.; Boldt, M. D.; Parks, E. J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 2005, 115, 1343-1351.
Egen-Schwind, C.; Eckard, R.; Kemper, F. H. Metabolism of garlic constituents in the isolated perfused rat liver. Planta. Med. 1992, 58, 301-305.
Foster, D. W. Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J. Clin. Invest. 2012, 122, 1958-1959.
Gao, H.; Guan, T.; Li, C.; Zuo, G.; Yamahara, J.; Wang, J.; Li, Y. Treatment with ginger ameliorates fructose-induced Fatty liver and hypertriglyceridemia in rats: modulation of the hepatic carbohydrate response element-binding protein-mediated pathway. Evid. Based Complement. Alternat. Med. 2012, 2012, 570948.
Giannini, E. G.; Testa, R.; Savarino, V. Liver enzyme alteration: a guide for clinicians. Can. Med. Assoc. J. 2005, 172, 367-379.
Grover, J. K.; Yadav, S.; Vats, V. (2002). Medicinal plants of India with anti-diabetic potential. J. Ethnopharmacol. 2002, 81, 81-100.
Horton, J. D.; Goldstein, J. L.; Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 2002, 109, 1125-1131.
Hsu, C. S.; Kao, J. H. Non-alcoholic fatty liver disease: An emerging liver disease in Taiwan. J. Formos. Med. Assoc. 2012, 111, 527-535.
Ide, N.; Lau, B. H. S. Garlic compounds minimize intracellular oxidative stress and inhibit nuclear factor-kappa b activation. J. Nutr. 2001, 131, 1020s-1026s.
Iizuka, K.; Horikawa, Y. ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome. Endocr. J. 2008, 55, 617-624.
Imajo, K.; Yoneda, M.; Kessoku, T.; Ogawa, Y.; Maeda, S.; Sumida, Y.; Hyogo, H.; Eguchi, Y.; Wada, K.; Nakajima, A. Rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Int. J. Mol. Sci. 2013, 14, 21833-21857.
James, O. F.; Day, C. P. Non-alcoholic steatohepatitis (NASH): a disease of emerging identity and importance. J. Hepatol. 1998, 29, 495-501.
Janevski, M.; Ratnayake, S.; Siljanovski, S.; McGlynn, M. A.; Cameron-Smith, D.; Lewandowski, P. Fructose containing sugars modulate mRNA of lipogenic genes ACC and FAS and protein levels of transcription factors ChREBP and SREBP1c with no effect on body weight or liver fat. Food Funct. 2012, 3, 141-149.
Kanuri, G.; Bergheim, I. In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). Int. J. Mol. Sci. 2013, 14, 11963-11980.
Kucera, O.; Cervinkova, Z. Experimental models of non-alcoholic fatty liver disease in rats. World J. Gastroenterol. 2014, 20, 8364-8376.
la Fleur, S. E.; Luijendijk, M. C.; van Rozen, A. J.; Kalsbeek, A.; Adan, R. A. A free-choice high-fat high-sugar diet induces glucose intolerance and insulin unresponsiveness to a glucose load not explained by obesity. Int. J. Obes. (Lond.) 2011, 35, 595-604.
Lai, Y. S.; Chen, W. C.; Ho, C. T.; Lu, K. H.; Lin, S. H.; Tseng, H. C.; Lin, S. Y.; Sheen, L. Y. Garlic essential oil protects against obesity-triggered nonalcoholic fatty liver disease through modulation of lipid metabolism and oxidative stress. J. Agric. Food Chem. 2014, 62, 5897-5906.
Lawson, L. D. The composition and chemistry of garlic cloves and processed garlic. Williams and Wilkins Press, 1996, 37-107.
Lim, J. S.; Mietus-Snyder, M.; Valente, A.; Schwarz, J. M.; Lustig, R. H. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 251-264.
Liu, C.; Li, Y.; Zuo, G.; Xu, W.; Gao, H.; Yang, Y.; Yamahara, J.; Wang, J.; Li, Y. Oleanolic acid diminishes liquid fructose-induced fatty liver in rats: role of modulation of hepatic sterol regulatory element-binding protein-1c-mediated expression of genes responsible for de novo fatty acid synthesis. Evid. Based Complement. Alternat. Med. 2013, 2013, 534084.
Loomba, R.; Sanyal, A. J. The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 686-690.
Lozano, I.; Van der Werf, R.; Bietiger, W.; Seyfritz, E.; Peronet, C.; Pinget, M.; Jeandidier, N.; Maillard, E.; Marchioni, E.; Sigrist, S.; Dal, S. High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutr. Metab. 2016, 13, 15.
Lustig, R. H.; Schmidt, L. A.; Brindis, C. D. Public health: The toxic truth about sugar. Nature. 2012, 482, 27-29.
McGarry, J. D.; Brown, N. F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 1997, 244, 1-14.
Montgomery, M. K.; Fiveash, C. E.; Braude, J. P.; Osborne, B.; Brown, S. H. J.; Mitchell, T. W.; Turner, N. Disparate metabolic response to fructose feeding between different mouse strains. Sci. Rep. 2015, 5, 18474.
Nagata, R.; Nishio, Y.; Sekine, O.; Nagai, Y.; Maeno, Y.; Ugi, S.; Maegawa, H.; Kashiwagi, A. Single nucleotide polymorphism (-468 Gly to A) at the promoter region of SREBP-1c associates with genetic defect of fructose-induced hepatic lipogenesis. J. Biol. Chem. 2004, 279, 29031-29042.
Neuschwander‐Tetri, B. A.; Caldwell, S. H. Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology. 2003, 37, 1202-1219.
Noeman, S. A.; Hamooda, H. E.; Baalash, A. A. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol. Metab. Syndr. 2011, 3, 17.
Panyod, S.; Wu, W. K.; Ho, C. T.; Lu, K. H.; Liu, C. T.; Chu, Y. L.; Lai, Y. S.; Chen, W. C.; Lin, Y. E.; Lin, S. H.; Sheen, L. Y. Diet supplementation with allicin protects against alcoholic fatty liver disease in mice by improving anti-inflammation and antioxidative functions. J. Agric. Food Chem. 2016, 64, 7104-7113.
Parks, E. J.; Skokan, L. E.; Timlin, M. T.; Dingfelder, C. S. Dietary sugars stimulate fatty acid synthesis in adults. J. Nutr. 2008, 138, 1039-1046.
Pitman, J. L.; Bonnet, D. J.; Curtiss, L. K.; Gekakis, N. Reduced cholesterol and triglycerides in mice with a mutation in Mia2, a liver protein that localizes to ER exit sites. J. Lipid. Res. 2011, 52, 1775-1786.
Postic, C.; Girard, J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J. Clin. Invest. 2008, 118, 829-838.
Sanches, S. C. L.; Ramalho, L. N. Z.; Augusto, M. J.; Silva, D. M.; Ramalho, F. S. Nonalcoholic steatohepatitis: A search for factual animal models. Biomed Res. Int. 2015, 2015, 574832.
Santhosha, S. G.; Jamuna, P.; Prabhavathi, S. N. Bioactive components of garlic and their physiological role in health maintenance: A review. Food Bioscience. 2013, 3, 59-74.
Schultz, A.; Barbosa-da-Silva, S.; Aguila, M. B.; Mandarim-de- Lacerda, C. A. Differences and similarities in hepatic lipogenesis, gluconeogenesis and oxidative imbalance in mice fed diets rich in fructose or sucrose. Food Funct. 2015, 6, 1684-1691.
Schultz, A.; Neil, D.; Aguila, M. B.; Mandarim-de-Lacerda, C.A. Hepatic adverse effects of fructose consumption independent of overweight/obesity. Int. J. Mol. Sci. 2013, 14, 21873-21886.
Schweizer, E.; Hofmann, J. Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol. Mol. Biol. Rev. 2004, 68, 501-517.
Sellmann, C.; Priebs, J.; Landmann, M.; Degen, C.; Engstler, A. J.; Jin, C. J.; Gärttner, S.; Spruss, A.; Huber, O.; Bergheim, I. Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time. J. Nutr. Biochem. 2015, 26, 1183-1192.
Senapti, S. K.; Dey, S.; Dwivedi, S. K. Effect of garlic (Allium sativum L.) extract on tissue lead level in rats. J. Ethnopharmacol. 2001, 76, 229-232.
Shackelford, C.; Long, G.; Wolf, J.; Okerberg, C.; Herbert, R. Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies. Toxicol. Pathol. 2002, 30, 93-96.
Shao, W.; Espenshade, P. J. Expanding roles for SREBP in metabolism. Cell Metab. 2012, 16, 414-419.
Singh, V. K.; Singh, D. K. Pharmacological effects of garlic (Allium sativum L.). Annu. Rev. Biomed. Sci. 2008, 10, 6-26.
Sodhi, K.; Puri, N.; Favero, G.; Stevens, S.; Meadows, C.; Abraham, N. G.; Rezzani, R.; Ansinelli, H.; Lebovics, E.; Shapiro, J. I. Fructose mediated non-alcoholic fatty liver is attenuated by HO-1-SIRT1 module in murine hepatocytes and mice fed a high fructose diet. PLoS. ONE. 2015, 10, e0128648.
Softic, S.; Cohen, D. E.; Kahn, C. R. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig. Dis. Sci. 2016, 5, 1282-1293.
Tappy, L.; Lê, K. A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 2010, 90, 23-46.
Walker, R. W.; Dumke, K. A.; Goran, M.I. Fructose content in popular beverages made with and without high-fructose corn syrup. Nutrition. 2014, 30, 928-935.
Yeh, Y. Y.; Liu, L. Cholesterol lowering effect of garlic extract and organosulfur compounds, Human and Animal studies. J. Nutr. 2001, 131, 989s-993s.
Younossi, Z. M.; Koenig, A. B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016, 64, 73-84.
Zeng, T.; Guo, F. F.; Zhang, C. L.; Zhao, S.; Dou, D. D.; Gao, X. C.; Xie, K. Q. The anti-fatty liver effects of garlic oil on acute ethanol-exposed mice. Chem. Biol. Interact. 2008, 176, 234-242.
Zeng, T.; Zhang, C. L.; Song, F. Y.; Zhao, X. L.; Xie, K. Q. Garlic oil alleviated ethanol-induced fat accumulation via modulation of SREBP-1, PPAR-α, and CYP2E1. Food Chem. Toxicol. 2012, 50, 485-491.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67658-
dc.description.abstract非酒精性脂肪肝疾病(non-alcoholic fatty liver disease, NAFLD)其定義為,非因長期酗酒而造成肝臟中脂質堆積,且脂質重量占肝臟重大於5%之病症,針對不同族群的調查發現,台灣的NAFLD盛行率為11.4-41%,顯示國人肝臟疾病之預防及控制是需要重視的議題。據文獻指出近年來隨著飲食習慣的改變,國人含糖食物攝取量增加,導致果糖攝取過多,其可能為導致NAFLD的原因之一。大蒜(Allium sativum L.)俗稱蒜頭,是大眾普遍食用之食材,研究發現其具有護肝的功效,且可抑制高脂飲食造成之NAFLD的疾病進展。然而,目前尚未有文獻探討大蒜精油(garlic essential oil, GEO)是否可抑制因高果糖誘發NAFLD的疾病進展,因此本研究欲藉由高果糖糖水誘發NAFLD之動物模式下,探討以水蒸氣蒸餾法萃取之大蒜精油及精油中活性成分二丙烯基二硫化物(diallyl disulfide, DADS)的介入,是否可降低肝臟中脂質堆積,並了解其影響之代謝途徑。本研究使用十週齡雄性小鼠C57BL/6J分為六組:(1)控制組、(2)高果糖糖水誘發組(30% fructose solution)、(3) 30%果糖糖水+大蒜精油低劑量組(25 mg/kg bw)、(4) 30%果糖糖水+大蒜精油高劑量組(50 mg/kg bw)、(5) 30%果糖糖水+DADS低劑量組(10 mg/kg bw)及(6) 30%果糖糖水+DADS高劑量組(20 mg/kg bw),實驗為期八週。動物犧牲後檢測其肝功能指標天門冬胺酸轉胺酶(aspartate aminotransferase, AST)、丙胺酸轉胺酶(alanine transaminase, ALT)、血液生化數值、肝臟中三酸甘油酯(triglyceride, TG)及總膽固醇。實驗結果顯示:介入GEO及DADS與高果糖糖水誘發組相比,皆可顯著降低血清中約44-56%之AST及肝臟中約36-46%的TG堆積(p < 0.05),進而達到護肝的效果;另外低劑量的DADS可顯著降低血清中約20%的總膽固醇及肝臟中約8%的總膽固醇堆積(p < 0.05);且高劑量的DADS具顯著降低血清中約57%的ALT、30%的TG及31%的游離脂肪酸(p < 0.05)之能力。另外從組織切片結果發現,在高果糖誘發動物NAFLD模式下,會造成動物肝臟中肝糖嚴重堆積,介入了高劑量的DADS可顯著改善此現象(p < 0.05)。由於DADS對肝臟脂質堆積抑制的效果比GEO的介入佳,因此更進一步以西方墨點法探討DADS影響之機轉,發現DADS可透過降低脂質新生(de novo lipogenesis)相關因子acetyl-CoA carboxylase (ACC)、carbohydrate-responsive element-binding protein (ChREBP)及sterol regulatory element-binding protein-1c (SREBP-1c) 之蛋白表現量,以降低脂質在肝臟中合成量,並提高carnitine palmitoyl transferase-1 (CPT-1)表現以增加脂肪酸氧化(β-oxidation)途徑,減少脂肪酸合成TG而堆積於肝臟中。綜上所述,大蒜精油及其活性成分DADS在果糖誘發小鼠非酒精性脂肪肝之模式下,不僅具有顯著的肝臟保護效果,且DADS可透過抑制脂質新生及促進脂肪酸氧化的途徑,達到抑制非酒精性脂肪肝之疾病進展,未來可望開發成為具保健功效的機能性食品。zh_TW
dc.description.abstractDue to the change of eating habits, people tend to consume more sugar-containing food in Taiwan as well as worldwide. Excessive fructose consumption resulted in the development of non-alcoholic fatty liver disease (NAFLD). A recent study found that prevalence of NAFLD in Taiwan is around 11.4-41%. Typically, NAFLD is defined as lipid accumulation in the liver more than 5% by weight. Garlic (Allium sativum L.) is a traditional food ingredient and it has been reported as the liver protective food. A recent study found that the garlic essential oil (GEO) protects the liver from high fat diet-induced NAFLD by reducing the hepatic lipid accumulation and inflammation. However, the effect of GEO in high fructose-induced NAFLD and its mechanism are still unknown. The aims of this study were to investigate the hepatoprotective effect of GEO and its active compound diallyl disulfide (DADS) in the high fructose-induced NAFLD mice model and to explore its mechanism via hepatic lipogenesis pathway. Ten week-old male C57BL/6J mice were divided into six groups: (1) control group, (2) 30% fructose-induced NAFLD group, (3) 30% fructose + low dosage of GEO group (25 mg/kg bw), (4) 30% fructose + high dosage of GEO (50 mg/kg bw), (5) 30% fructose + low dosage of DADS group (10 mg/kg bw), and (6) 30% fructose + high dosage of DADS (20 mg/kg bw). The treatment groups were daily gavaged with GEO or DADS for 8 weeks, then the mice were sacrificed. In this study, the results indicated that GEO and DADS significantly exhibited hepatoprotective activity against high fructose-induced NAFLD by reducing approximately 44-56% serum aspartate aminotransferase (AST) and 36-46% hepatic triglyceride (TG) (p < 0.05). In addition, the dose of 10 mg/kg bw DADS significantly reduced 20% serum cholesterol and 8% liver cholesterol levels (p < 0.05), and the dose of 20 mg/kg bw DADS significantly reduced serum 57% alanine transaminase (ALT), 30% TG and 31% free fatty acid (p < 0.05) compared with 30% fructose-induced NAFLD group. Moreover, liver histopathological analysis indicated the accumulation of hepatic glycogen in mice with high fructose diet, but the high dosage of DADS significantly reduced glycogen accumulation in the liver (p < 0.05). Since DADS exhibited higher anti-NAFLD activity than GEO, thus, this study we further investigated the effect of DADS on the hepatic de novo lipogenesis and β-oxidation related protein. DADS supplementation prevented the hepatic lipogenesis by suppressing acetyl-CoA carboxylase (ACC), carbohydrate-responsive element-binding protein (ChREBP) and sterol regulatory element-binding protein-1c (SREBP-1c) in NAFLD mice. Moreover, DADS improved the hepatic β-oxidation by enhancing carnitine palmitoyl transferase-1 (CPT-1). In conclusion, our results suggested that supplementation of GEO or DADS for 8 weeks could prevent the development of the NAFLD and the potential mechanism was through suppressing de novo lipogenesis and enhancing lipid β-oxidation.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:42:37Z (GMT). No. of bitstreams: 1
ntu-106-R04641034-1.pdf: 3771373 bytes, checksum: 8a16fe4fb11b23e75f2a68caaddb04b2 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents縮寫表 I
中文摘要 II
Abstract IV
目錄 VI
表目次 IX
圖目次 X
第一章 前言 1
第二章 文獻回顧 2
第一節 非酒精性脂肪肝疾病 2
一、 全球盛行率與台灣盛行率 2
二、 非酒精性脂肪肝病程進展 3
第二節 飲食習慣改變 3
一、 碳水化合物攝取量增加 3
二、 國人含糖食物攝取量增加 4
三、 飲品中果糖含量較其他醣類高 5
第三節 果糖造成脂質堆積於肝臟 6
一、 過量攝取果糖之影響 6
二、 過量攝取果糖影響肝臟脂質相關代謝途徑 7
三、 比較高脂與高果糖飲食模式誘發非酒精性脂肪肝之途徑 12
四、 果糖誘發非酒精性脂肪肝之動物模式 13
第四節 大蒜及大蒜精油 13
一、 大蒜簡介及其成分 13
二、 大蒜改善代謝性疾病之研究 15
三、 大蒜精油簡介及護肝方面之研究 15
第三章 研究假說與目的 17
第一節 研究假說 17
第二節 研究目的 17
第四章 研究架構 18
第五章 實驗設計 19
第六章 實驗材料與方法 21
第一節 實驗材料 21
一、 實驗樣品 21
二、 動物飼料及果糖粉 21
三、 實驗藥品 21
四、 儀器設備 22
第二節 實驗方法 23
一、 大蒜精油之製備與分析 23
二、 大蒜精油及DADS的劑量設定 23
三、 動物品系選擇 24
四、 大蒜精油及其活性成分對高果糖誘發非酒精性脂肪肝之動物實驗 24
五、 血液生化值檢測 24
六、 製備肝臟均質上清液 25
七、 肝臟三酸甘油酯(triglyceride, TG)及總膽固醇含量測定 25
八、 肝臟組織病理學觀察 25
九、 西方墨點法 26
十、 統計方法 28
第七章 結果與討論 29
第一節 大蒜精油及其活性成分對高果糖誘發非酒精性脂肪肝之動物實驗 29
一、 體重、攝食量、飲水量及熱量攝取 29
二、 脂肪組織重量 29
三、 血液生化數值 30
四、 肝臟三酸甘油酯、總膽固醇及肝臟重量 30
五、 肝臟組織病理切片分析結果 31
六、 肝臟脂質代謝相關之蛋白質調控 31
第二節 討論 32
一、 大蒜精油及其活性成分對動物體重、攝食、飲水及熱量攝取之影響 32
二、 大蒜精油及其活性成分對脂肪組織之影響 33
三、 大蒜精油及其活性成分對血清生化數值AST及ALT之影響 33
四、 大蒜精油及其活性成分對肝臟中三酸甘油酯、總膽固醇及肝重之影響 34
五、 大蒜精油及其活性成分對肝臟組織切片之影響 35
六、 以西方墨點法探討DADS對肝臟脂質代謝相關之蛋白質調控 35
第八章 結論 37
第九章 圖表 38
第十章 參考文獻 48
第十一章 附錄 55
一、 肝臟組織病理切片分析 55
二、 腎臟相對重量及組織病理切片分析 55
三、 脾臟相對重量及組織病理切片分析 56
四、 參考文獻 56
五、 期刊論文版 (Manuscript) 66
dc.language.isozh-TW
dc.subject非酒精性脂肪肝zh_TW
dc.subject果糖zh_TW
dc.subject大蒜精油zh_TW
dc.subject二丙烯基二硫化物zh_TW
dc.subject脂質新生zh_TW
dc.subject脂肪酸氧化zh_TW
dc.subjectgarlic essential oilen
dc.subjectβ-oxidationen
dc.subjectnon-alcoholic fatty liver disease (NAFLD)en
dc.subjectfructoseen
dc.subjectdiallyl disulfideen
dc.subjectde novo lipogenesisen
dc.title大蒜精油及其活性成分二丙烯基二硫化物對果糖誘發小鼠非酒精性脂肪肝具肝臟保護效果zh_TW
dc.titleHepatoprotective activity of garlic essential oil and its active compound diallyl disulfide in high fructose-induced nonalcoholic fatty liver disease miceen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李宗貴,鍾景光,施純光
dc.subject.keyword非酒精性脂肪肝,果糖,大蒜精油,二丙烯基二硫化物,脂質新生,脂肪酸氧化,zh_TW
dc.subject.keywordfructose,non-alcoholic fatty liver disease (NAFLD),garlic essential oil,diallyl disulfide,de novo lipogenesis,β-oxidation,en
dc.relation.page79
dc.identifier.doi10.6342/NTU201702020
dc.rights.note有償授權
dc.date.accepted2017-07-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved