Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67434
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝宗霖
dc.contributor.authorYun-Ta Tsaien
dc.contributor.author蔡昀達zh_TW
dc.date.accessioned2021-06-17T01:32:04Z-
dc.date.available2022-08-08
dc.date.copyright2017-08-08
dc.date.issued2017
dc.date.submitted2017-08-03
dc.identifier.citation[1]Huybrechts, B., K. Ishizaki, and M. Takata. 'The positive temperature coefficient of resistivity in barium titanate.' Journal of materials science 30.10 (1995): 2463-2474.
[2]Saburi, Osamu. 'Properties of semiconductive barium titanates.' Journal of the Physical Society of Japan 14.9 (1959): 1159-1174.
[3]Meidong, Liu, et al. 'Improved PTCR Materials Based on Ba1-xPbxTiO3 Systems.' Japanese Journal of Applied Physics 24.S2 (1985): 308.
[4]W. Heywang, 'Resistivity Anomaly in Doped Barium Titanate.' J. Am. Ceram. Soc., 47, 10 (1964): 484-90.
[5]G. H. Jonker, 'Some Aspect of Semiconducting Barium Titanate.' Solid Stare Electron., 7, 12, (1964): 895-903.
[6]Moulson A. J. and Herbert J.M., 'Electroceramics, 2nd Ed.' John Wiley and Sons, Inc., New York, (2003).
[7]Galasso F.S., 'Structure, Properties and Preparation of Perovskite Type Compounds.' Pergamum Press, (1969).
[8]Kirby and Barry A. W., 'Phase Relations in the BaTiO3 System.' J. Am. Ceram. Soc., 74(8), (1991): 1841-1847.
[9]Jaffe R., Cook W. R. and Jaffe J., 'Piezoelectric Ceramics.' Arrangement with Academic Press Limited (1971).
[10]Merz W. J., 'The Electric and Optical Behavior of BaTiO3 Single Crystals.' Phys. Rev., 76, (1949): 1221-25.
[11]Xing, X., Deng, J., Zhu, Z., & Liu, G. (2003). 'Solid solution Ba1− xPbxTiO3 and its thermal expansion. Journal of alloys and compounds.' 353(1), 1-4.
[12]F. A. Kroger and H. J. Vink; p. 307 in Solid State Physics, Vol. 3. Edited by
F. Seitz and D. Turnbull. Academic Press. New York, (1956).
[13]Chan, N‐H., and D. M. Smyth. 'Defect chemistry of BaTiO3.' Journal of The Electrochemical Society 123.10 (1976): 1584-1585.
[14]Nowotny, Janusz, and Mieczysław Rekas. 'Defect chemistry of BaTiO3.' Solid State Ionics 49 (1991): 135-154.
[15]Shirasaki S. and Haneda H., 'Electrical Property and Defect Structure of Lanthanum-Doped Polycrystalline Barium Titanate.' J. Mater. Sci., 22, (1987): 4439.
[16]Kahn, Manfred. 'Preparation of Small‐Grained and Large‐Grained Ceramics from Nb‐Doped BaTiO3.' Journal of the American Ceramic Society 54.9 (1971): 452-454.
[17]Morrison, F. D., Coats, A. M., Sinclair, D. C., & West, A. R., 'Charge compensation mechanisms in La-doped BaTiO3.' Journal of Electroceramics, 6(3), (2001): 219-232.
[18]Jonker, G. H. 'Some aspects of semiconducting barium titanate.' Solid-State Electronics 7.12 (1964): 895-903.
[19]Kingery, W. D., H. K. Bowen, and D. R. Uhlmann. 'Introduction to ceramics, 1976.' Jhon Willey & Sons, New York.
[20]Macdonald, J. Ross, and E. Barsoukov. 'Impedance spectroscopy: theory, experiment, and applications.' History 1 (2005): 8
[21]Mulder, W.H., et al., 'Tafel current at fractal electrodes: connection with admittance spectra.' Journal of Electroanalytical Chemistry and Interfacial Electrochemical 285, no. 1 (1990): 103-115.
[22]Brug, G.J., et al., 'The Analysis of Electrode Impedances Complicated by the Presence of a Constant Phase Element. Journal of Electroanalytical Chemistry.' 176(1-2), (1984): 275-295.
[23]Stoynov, Z., 'Impedance Modeling and Data-Processing - Structural and Parametrical Estimation. Electrochimica Acta.' 35(10), (1990): 1493-1499.
[24]Pajkossy, T., 'Electrochemistry at Fractal Surfaces.' Journal of Electroanalytical Chemistry, 300(1-2), (1991): 1-11.
[25]Paasch, G., K. Micka, and P. Gersdorf, 'Theory of the Electrochemical Impedance of Macrohomogeneous Porous-Electrodes.' Electrochimica Acta, 38(18), (1993): 2653-2662.
[26]Pajkossy, T., 'Impedance of Rough Capacitive Electrodes.' Journal of Electroanalytical Chemistry, 364(1-2), (1994): 111-125.
[27]Pajkossy, T., T. Wandlowski, and D.M. Kolb, 'Impedance aspects of anion adsorption on gold single crystal electrodes.' Journal of Electroanalytical Chemistry, 414(2), (1996): 209-220.
[28]Macdonald, J.R., 'Impedance Spectroscopy: Theory, Experiment, and Applications, ed. E. Barsoukov, 2005.' John Wiley and Sons.
[29]Flaschen, S. S., and L. G. Van Uitert. 'New low contact resistance electrode.' Journal of Applied Physics 27.2 (1956): 190-190.
[30]D. R. Turner and H. A. Sauer, 'Ohmic contacts to semiconducting ceramics.' J. Electrochem. Soc. 107, 250 (1960).
[31]Sauer, H. A., S. S. Flaschen, and D. C. Hoesterey. 'Piezoresistance and piezocapacitance effects in barium strontium titanate ceramics.' Journal of the American Ceramic Society 42.8 (1959): 363-366.
[32]Cann, D. P., and C. A. Randall. 'Electrode effects in positive temperature coefficient and negative temperature coefficient devices measured by complex‐plane impedance analysis.' Journal of applied physics 80.3 (1996): 1628-1632.
[33]Franklin, A. D. 'Electrode effects in the measurement of ionic conductivity.' Journal of the American Ceramic Society 58.11‐12 (1975): 465-473.
[34]Heinen, B., and R. Waser. 'Influence of the thickness and area of NiCr/Ag electrodes on the characteristics of BaTiO3-ceramic based positive-temperature-coefficient thermistors.' Journal of materials science 33.18 (1998): 4603-4608.
[35]Chaimongkon, Ukrit, Atthakorn Thongtha, and Theerachai Bongkarn. 'The effects of firing temperatures and barium content on phase formation, microstructure and dielectric properties of lead barium titanate ceramics prepared via the combustion technique.' Current Applied Physics 11.3 (2011): S70-S76.
[36]Hashim, Mohd, et al. 'Influence of Ni2+ substitution on the structural, dielectric and magnetic properties of Cu–Cd ferrite nanoparticles.' Journal of Alloys and Compounds 573 (2013): 198-204.
[37]Shirsath, Sagar E., et al. 'Remarkable influence of Ce4+ ions on the electronic conduction of Ni1−2xCexFe2O4.' Scripta Materialia 64.8 (2011): 773-776.
[38]Liu, G., & Roseman, R. D., 'Effect of BaO and SiO2 addition on PTCR BaTiO3 ceramics.' Journal of Materials science, 34(18), (1999): 4439-4445.
[39]Eror, N. G., and D. M. Smyth. 'Nonstoichiometric disorder in single-crystalline BaTiO3 at elevated temperatures.' Journal of Solid State Chemistry 24.3 (1978): 235-244.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67434-
dc.description.abstract本研究針對傳統固態反應法製備的(Pb0.3Ba0.7)TiO3陶瓷,摻雜2到14 mol% Na+,及利用不同原物料製備鈉摻雜(Pb0.3Ba0.7)TiO3,搭配不同氣氛之燒結條件,探討摻雜物、原物料、以及燒結氣氛對於電性的影響。實驗上以低電阻率、高介電常數與高介電損失做為目標,以便未來研究發熱及遠紅外線放射之應用。
實驗中以PbTiO3及BaTiO3作為原物料,並且摻雜8 mol% Na+的(Pb0.3Ba0.7)TiO3陶瓷不僅能夠保持化學計量比,同時也有較低的電阻、較大的介電常數和介電損失。材料的阻抗分析在柯爾圖上為一個類似半圓形狀,經由擬合得到表現接近電容之CPE (恆定相元素) 與電阻元件的並聯之等效電路。在霍爾量測結果顯示為p型,證實鈉取代A位置以作為受體摻雜物。
接著(Pb0.3Ba0.7)TiO3 + 8 mol% Na+在三種不同氣氛下進行燒結,分別為N2、O2,及兩階段式N2與O2,電性彼此類似且都比空氣下燒結更佳,等效電路皆為接近電容表現之CPE與電阻元件的並聯。定量分析上兩階段燒結可以保持化學計量比,而N2、O2下燒結則稍微偏離化學計量比。
適當的延長兩階段燒結的O2熱處理時間,可使材料有更低的電阻率、更高的介電常數,及維持高的介電損失。其主要機制是先藉由N2下燒結增加氧空缺數量,接著再以長時間O2熱處理將材料本質的氧空缺和N2下誘發的氧空缺進行填補,得到大量的電洞作為電荷載子。然而在3和4小時的O2熱處理時,載子遷移率有明顯增加的趨勢,推測材料中之氧空缺盡數被填補完畢,使氧離子進入晶格間隙位置,並伴隨著高遷移率的電洞。因為間隙氧離子與被束縛之電洞產生相消,於4個小時O2熱處理時,載子濃度有一明顯的下降,並在9小時的O2熱處理下,間隙氧離子與被束縛之電洞盡數相消使載子遷移率降低。
zh_TW
dc.description.abstract(Pb0.3Ba0.7)TiO3 ceramics doped with 2 to 14 mol% Na+ were prepared using a conventional solid-state-reaction method. The effects of dopants, raw materials and sintering atmosphere on the electrical properties were discussed. In the experiment, the electrical properties of materials with low resistivity, high dielectric constant and high dielectric loss were targeted so as to study the application of heat and far infrared radiation in the future.
In the experiment, the (Pb0.3Ba0.7)TiO3 ceramics with PbTiO3 and BaTiO3 as the raw materials doped with 8 mol% Na+ was not only able to maintain the stoichiometric ratio, but also had lower resistivity, larger dielectric constant and dielectric loss. The impedance analysis of the material was a semicircular shape on Cole-Cole plot. The equivalent circuit of the CPE (constant phase element) similar to capacitance in parallel with the resistance element was obtained by fitting. The results of the Hall measurements were shown as p-type, confirming that sodium substituted the A-site as a acceptor dopants.
Then (Pb0.3Ba0.7)TiO3 + 8 mol% Na+ were sintered in three different atmospheres, which were N2, O2, and two-step N2 and O2 respectively. The electrical properties were similar to each other and were better than those sintered in air. All the equivalent circuits were the CPE (constant phase element) similar to capacitance in parallel with the resistance element. Quantitative analysis of the two-step sintering was able to maintain the stoichiometric ratio, while those of N2, O2 sintering slightly deviated from the stoichiometric ratio.
By properly increasing the O2 heat treatment time of two-step sintering, (Pb0.3Ba0.7)TiO3 + 8 mol% Na+ could have lower resistivity, higher dielectric constant, and maintain high dielectric loss. The main mechanism was increasing the number of oxygen vacancies by sintering under N2. Then, the oxygen vacancies in the material itself and those induced by N2 were filled with long time O2 heat treatment to obtain a large number of holes as charge carriers. However, under 3 and 4 hours O2 heat treatment, the carrier mobility increased significantly. It can be inferred that all the oxygen vacancies in the material were filled so that the oxygen ions entered the interstitial site and were accompanied by high mobility holes. Since the oxygen ions on interstitial site and trapped holes were eliminated each other, there was a significant decrease in the carrier concentration under 4 hours O2 heat treatment. And all the oxygen ions on interstitial site were eliminated by trapped holes under 9 hours O2 heat treatment, which decreased the carrier mobility.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:32:04Z (GMT). No. of bitstreams: 1
ntu-106-R04527034-1.pdf: 5959688 bytes, checksum: 34bd4cfeefdd4c5344a8e733e1ad129d (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
第一章 緒論 1
1.1 研究背景與動機 1
1.2 論文架構 2
第二章 文獻回顧 3
2.1 PTC材料 3
2.2 晶體結構 6
2.2.1 鈣鈦礦晶體結構 6
2.2.2 鈦酸鋇結構相轉變 7
2.2.3 鈦酸鉛鋇晶體結構 10
2.3 導電性與導電機制 11
2.3.1 鉛對鈦酸鋇導電性之影響 11
2.3.2 氧分壓對鈦酸鋇導電性之影響 12
2.3.3 摻雜濃度對鈦酸鋇導電性之影響 14
2.4 介電性質與參數 16
2.5 阻抗頻譜 18
2.5.1 阻抗的基本介紹 18
2.5.2 基本電路元件與行為 19
2.6 半導性陶瓷電極 25
第三章 實驗方法 29
3.1 材料製備 29
3.1.1 初始原料 29
3.1.2 粉末製備 29
3.1.3 燒結體製備 30
3.2 密度量測 32
3.3 顯微結構觀察 32
3.4 X-ray繞射分析 33
3.5 成分定性定量分析 33
3.6 阻抗頻譜量測 33
3.7 電性分析 33
3.8 霍爾效應量測 34
第四章 實驗結果 36
4.1 鈉摻雜(Pb0.3Ba0.7)TiO3 36
4.1.1 PBT(PT) + x mol% Na+ 36
4.1.1.1 密度量測 36
4.1.1.2 X-ray繞射分析 37
4.1.1.3 顯微結構觀察 39
4.1.1.4 阻抗頻譜量測與等效電路擬合 40
4.1.1.5 電性分析 42
4.1.2 不同原物料之PBT 46
4.1.2.1 密度量測 46
4.1.2.2 X-ray繞射分析 46
4.1.2.3 顯微結構觀察 47
4.1.2.4 成分定量分析 48
4.1.2.5 阻抗頻譜量測與等效電路擬合 49
4.1.2.6 電性分析 50
4.2 不同燒結氣氛下之鈉摻雜(Pb0.3Ba0.7)TiO3 53
4.2.1 密度量測 53
4.2.2 X-ray繞射分析 54
4.2.3 顯微結構觀察 54
4.2.4 成分定量分析 55
4.2.5 阻抗頻譜量測與等效電路擬合 56
4.2.6 電性分析 58
4.2.7 霍爾效應量測 60
4.3 O2熱處理時間 62
4.3.1 密度量測 62
4.3.2 顯微結構觀察 62
4.3.3 阻抗頻譜量測與等效電路擬合 63
4.3.4 電性分析 64
4.3.5 霍爾效應量測 67
第五章 討論 69
5.1 摻雜濃度與電性關係 69
5.1.1 導電性 69
5.1.2 阻抗分析與等效電路 70
5.2 燒結條件對電性的改善 71
第六章 結論 76
6.1 研究成果 76
6.2 未來研究方向 77
參考文獻 81
dc.language.isozh-TW
dc.title燒結條件對鈉摻雜鈦酸鉛鋇(Pb0.3Ba0.7)TiO3陶瓷之電性影響分析zh_TW
dc.titleEffect of Sintering Conditions on the Electrical Properties of Sodium-Doped Lead Barium Titanate (Pb0.3Ba0.7)TiO3 Ceramicsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee段維新,陳敏璋,郭錦龍
dc.subject.keyword鈦酸鉛鋇,鈉摻雜,受體摻雜,燒結條件,氧氣熱處理,缺陷化學,zh_TW
dc.subject.keywordLead barium titanate,Sodium-doped,Acceptor-doped,Sintering condition,Oxygen heat treatment,Defect chemistry,en
dc.relation.page84
dc.identifier.doi10.6342/NTU201702510
dc.rights.note有償授權
dc.date.accepted2017-08-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
5.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved