請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6693完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張淑惠 | |
| dc.contributor.author | Ting-Yin Liu | en |
| dc.contributor.author | 劉庭吟 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:16:25Z | - |
| dc.date.available | 2017-09-17 | |
| dc.date.available | 2021-05-17T09:16:25Z | - |
| dc.date.copyright | 2012-09-17 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-03 | |
| dc.identifier.citation | 1. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data Via Em Algorithm. Journal of the Royal Statistical Society Series B-Methodological, 39(1), 1-38.
2. D'Anaelo, G., Weissfeld, L., & Investigators, G. (2008). An index approach for the Cox model with left censored covariates. Statistics in Medicine, 27(22), 4502-4514. doi: Doi 10.1002/Sim.3285 3. Ibrahim, J. G. (1990). Incomplete Data in Generalized Linear-Models. Journal of the American Statistical Association, 85(411), 765-769. 4. Lipsitz, S. R., & Ibrahim, J. G. (1996). A conditional model for incomplete covariates in parametric regression models. Biometrika, 83(4), 916-922. 5. Little, R. J. A., & Schluchter, M. D. (1985). Maximum-Likelihood Estimation for Mixed Continuous and Categorical-Data with Missing Values. Biometrika, 72(3), 497-512 6. Little, R. J. A., & Rubin, D. B. (1987). Statistical analysis with missing data. New York: Wiley 7. Lubin, J. H., Colt, J. S., Camann, D., Davis, S., Cerhan, J. R., Severson, R. K., . . . Hartge, P. (2004). Epidemiologic evaluation of measurement data in the presence of detection limits. Environmental Health Perspectives, 112(17), 1691-1696. doi: Doi 10.1289/Ehp.7199 8. Lynn, H. S. (2001). Maximum likelihood inference for left-censored HIV RNA data. Statistics in Medicine, 20(1), 33-45 9. May, R. C., Ibrahim, J. G., & Chu, H. T. (2011). Maximum likelihood estimation in generalized linear models with multiple covariates subject to detection limits. Statistics in Medicine, 30(20), 2551-2561. doi: Doi 10.1002/Sim.4280 10. MacDougall, Daniel, Crummett, Warren B., et al (1980). 'Guidelines for Data Acquisition and Data Quality Evaluation in Environmental Chemistry.' Analytical Chemistry 52(14): 2242-2249 11. Nie, L., Chu, H. T., Liu, C. L., Cole, S. R., Vexler, A., & Schisterman, E. F. (2010). Linear Regression With an Independent Variable Subject to a Detection Limit. Epidemiology, 21, S17-S24. doi: Doi 10.1097/Ede.0b013e3181ce97d8 12. Richardson, D. B., & Ciampi, A. (2003). Effects of exposure measurement error when an exposure variable is constrained by a lower limit. American Journal of Epidemiology, 157(4), 355-363. doi: Doi 10.1093/Aje/Kwf217 13. Rubin, D. B. (1976). Inference and Missing Data. Biometrika, 63(3), 581-590 14. Rigobon, R., & Stoker, T. M. (2009). Bias From Censored Regressors. Journal of Business & Economic Statistics, 27(3), 340-353. doi: DOI 10.1198/jbes.2009.06119 15. Schisterman, E. F., Vexler, A., Whitcomb, B. W., & Liu, A. Y. (2006). The limitations due to exposure detection limits for regression models. American Journal of Epidemiology, 163(4), 374-383. doi: Doi 10.1093/Aje/Kwj039 16. Stubbendick, A. L., & Ibrahim, J. G. (2006). Likelihood-based inference with nonignorable missing responses and covariates in models for discrete longitudinal data. Statistica Sinica, 16(4), 1143-1167. 17. Wei, G. C. G., & Tanner, M. A. (1990). A Monte-Carlo Implementation of the Em Algorithm and the Poor Mans Data Augmentation Algorithms. Journal of the American Statistical Association, 85(411), 699-704 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6693 | - |
| dc.description.abstract | 在環境檢測與實驗研究中,由於收集的資料容易受儀器的偵測極限影響而產生遺失值。過去多數文獻只針對模型中至多兩個變數受偵測極限影響的資料,進行簡單替代法、插補法或模式建構法等的處理方法;而當模型中含有多個受偵測極限影響的變數且大多全為連續變數或類別變數時,則使用蒙地卡羅EM演算法搭配抽樣法以便解決高維度的積分問題,進而求得參數的估計。
本論文著重於羅吉斯模型分析中同時具有多個受偵測極限影響的連續變數和具有隨機遺失機制的類別變數而更為複雜的資料,並提供一個估計迴歸係數的估計方法。我們利用蒙地卡羅積分方法解決EM演算法中E步驟因受偵測極限與隨機遺失影響所產生的高維度積分。最後並引入已有的另兩種解決受偵測極限影響的資料之方法,比較不同方法的各自表現。 由模擬結果中,顯示本論文的方法在不同的設限比例下,迴歸係數的估計都較Schistermanet al.(2006)與完整觀察個體分析來得不偏與精準。 | zh_TW |
| dc.description.abstract | In many environmental and laboratory studies, instrument detection limits often lead to missing values of the data. The existing methods for the regression analysis for the data with at most two covariates subject to detection limits include simple substitution, imputation, and model-based methods. While either multiple continuous covariates or multiple categorical covariates alone are subject to detection limits, the most common approaches are the model-based method, Expectation-Maximization (EM) algorithm, and a Monte Carlo version of EM algorithm to obtain the maximum likelihood estimates via sampling.
In this paper, we consider a more complex case of missing covariates that both multiple continuous covariates subject to detection limits and categorical covariates with missing at random mechanism are presented in the logistic regression analysis. The aim of this paper is to provide a method for estimating the parameters of regression models for data with covariates subject to detection limit and missing at random mechanism. We use the Monte Carlo version for the E-step of the EM algorithm to tackle the high dimensional integration and summation due to the missing covariates subject to detection limits and random missing. We conduct a simulation study to compare the performance of the proposed Monte Carlo EM algorithm approach with the complete-case method and the imputation method proposed by Schisterman et al. (2006). The results of the simulation study showed that the proposed approach resulted in relatively unbiased estimates with smaller standard error than the complete-case method and the imputation method by Schisterman et al, (2006). | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:16:25Z (GMT). No. of bitstreams: 1 ntu-101-R99849011-1.pdf: 2807346 bytes, checksum: f6d733c5ba6b3dac72815086f151bf26 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 3 第三節 研究目的 4 第二章 文獻探討 5 第一節 遺失值機制 5 第二節 遺失值之處理方法 6 第三節 受偵測極限影響的資料及其處理 9 第三章 研究方法 13 第四章 模擬研究 19 第一節 資料生成與模擬 19 第二節 模擬結果 24 第五章 結果與討論 28 參考文獻 29 【附錄】 31 | |
| dc.language.iso | zh-TW | |
| dc.title | 針對遺失變數的統計方法 | zh_TW |
| dc.title | Statistical Method for Missing Covariates | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴政,陳秀熙,鄭明燕 | |
| dc.subject.keyword | 偵測極限,最大概似估計量,隨機遺失,Monte Carlo EM,牛頓法, | zh_TW |
| dc.subject.keyword | detection limits,maximum likelihood estimation,missing at random,Monte Carlo EM,Newton-Raphson methods, | en |
| dc.relation.page | 31 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-08-03 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 2.74 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
