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摘要 

  在環境檢測與實驗研究中，由於收集的資料容易受儀器的偵測極限影響而產

生遺失值。過去多數文獻只針對模型中至多兩個變數受偵測極限影響的資料，進

行簡單替代法、插補法或模式建構法等的處理方法；而當模型中含有多個受偵測

極限影響的變數且大多全為連續變數或類別變數時，則使用蒙地卡羅 EM 演算法

搭配抽樣法以便解決高維度的積分問題，進而求得參數的估計。 

本論文著重於羅吉斯模型分析中同時具有多個受偵測極限影響的連續變數和

具有隨機遺失機制的類別變數而更為複雜的資料，並提供一個估計迴歸係數的估

計方法。我們利用蒙地卡羅積分方法解決 EM 演算法中 E 步驟因受偵測極限與隨

機遺失影響所產生的高維度積分。最後並引入已有的另兩種解決受偵測極限影響

的資料之方法，比較不同方法的各自表現。 

    由模擬結果中，顯示本論文的方法在不同的設限比例下，迴歸係數的估計都

較 Schistermanet al.(2006)與完整觀察個體分析來得不偏與精準。 

 

關鍵字：偵測極限、最大概似估計量、隨機遺失、Monte Carlo EM、牛頓法 
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Abstract 

  In many environmental and laboratory studies, instrument detection limits often lead 

to missing values of the data. The existing methods for the regression analysis for the 

data with at most two covariates subject to detection limits include simple substitution, 

imputation, and model-based methods. While either multiple continuous covariates or 

multiple categorical covariates alone are subject to detection limits, the most common 

approaches are the model-based method, Expectation-Maximization (EM) algorithm, 

and a Monte Carlo version of EM algorithm to obtain the maximum likelihood 

estimates via sampling.     

  In this paper, we consider a more complex case of missing covariates that both 

multiple continuous covariates subject to detection limits and categorical covariates 

with missing at random mechanism are presented in the logistic regression analysis. The 

aim of this paper is to provide a method for estimating the parameters of regression 

models for data with covariates subject to detection limit and missing at random 

mechanism. We use the Monte Carlo version for the E-step of the EM algorithm to 

tackle the high dimensional integration and summation due to the missing covariates 

subject to detection limits and random missing. We conduct a simulation study to 

compare the performance of the proposed Monte Carlo EM algorithm approach with the 

complete-case method and the imputation method proposed by Schisterman et al. 

(2006).  

The results of the simulation study showed that the proposed approach resulted in 
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relatively unbiased estimates with smaller standard error than the complete-case method 

and the imputation method by Schisterman et al, (2006). 

 

Keywords : detection limits; maximum likelihood estimation; missing at random; 

Monte Carlo EM; Newton-Raphson methods 



 

 

目錄 

摘要 ................................................................................................................ i 

Abstract ......................................................................................................... ii 

第一章 緒論 ............................................................................................... 1 

第一節 研究背景 ................................................................................ 1 

第二節 研究動機 ................................................................................ 3 

第三節 研究目的 ................................................................................ 4 

第二章 文獻探討 ....................................................................................... 5 

第一節 遺失值機制 ............................................................................ 5 

第二節 遺失值之處理方法 ................................................................ 6 

第三節 受偵測極限影響的資料及其處理 ........................................ 9 

第三章 研究方法 ..................................................................................... 13 

第四章 模擬研究 ..................................................................................... 19 

第一節 資料生成與模擬 .................................................................. 19 

第二節 模擬結果 .............................................................................. 24 

第五章 結果與討論 ................................................................................. 28 

參考文獻 ..................................................................................................... 29 

【附錄】 ..................................................................................................... 31 

 

 



 

 

圖表目錄 

表 1：設限比例為 10%下，MONTE CARLO EM、SCHISTERMAN ET AL.(2006)與

COMPLETE-CASE ANALYSIS 之比較 ........................................................................ 25 

表 2：設限比例為 30%下，MONTE CARLO EM、SCHISTERMAN ET AL.(2006)與

COMPLETE-CASE ANALYSIS 之比較 ........................................................................ 26 

表 3：設限比例為 50%下，MONTE CARLO EM、SCHISTERMAN ET AL.(2006)與

COMPLETE-CASE ANALYSIS 之比較 ........................................................................ 27 



 

1 
 

第一章 緒論 

第一節 研究背景 

  流行病學研究中，常收集環境檢測與實驗研究的資料，藉由相關的統計分析

方法來測定某特定因子與研究事物的相關性，此階段分析的準確度必須仰賴其所

收集的資料之完整性，以便進行較為嚴謹的推論。而在資料收集階段中，部分因

子須在實驗室內透過各類精密儀器的檢測來得到其所能檢測的最小檢出結果，由

於每個儀器有其檢測的偵測範圍，因此對此部分因子所收集的資料即會受儀器所

能偵測的範圍影響。一般定義儀器的偵測範圍為偵測極限(limit of detection；LOD)，

若偵測物質落於儀器的偵測極限外，則此物質的檢測結果通常標示為「未檢出」。

例如：假設實驗室採用偵測極限為 2.5ppm 的三聚氰胺濃度檢測方法，若待測物質

其檢測結果低於 2.5ppm，則檢驗人員無法武斷的斷定此物質「不含三聚氰胺」，亦

不能確定其「含有三聚氰胺的濃度」，因此在檢測資料上只能標示「未檢出」來做

為資料的呈現。若欲觀察的部份樣本資料因受到儀器的偵測極限所控制而被標示

為「未檢出」，這種資料的呈現上可視為設限資料(censored data)，亦為一種不完整

資料型態。當自變數或反應變數受偵測極限影響而有不完整資料時，直接此對資

料做分析，則所估計出來的參數是否有偏差？其分析結論是否準確？為了解決由

偵測極限所衍生出來的問題，過去研究學者提出許多不同的處理方法以進行資料

分析。 

完整觀察個體分析(complete-case analysis)是統計上最簡單且也最直覺的處理

不完整資料的方法，它最早是用來處理數據中具有遺失資料的情況。這個方法是

當觀察個體所收集的變項上若有觀察值落於偵測極限外時，則將觀察個體整筆資

料移除。雖然在完全隨機遺失機制(missing completely at random mechanism；MCAR)

的假設下，完整觀察個體分析可得到不偏的參數估計量，但是相對的，當設限資

料過多時，統計分析上會損失過多的樣本資訊造成資訊的流失且亦會使估計量的
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變異數隨著刪除的樣本數增加而變大。為了不損失過多樣本資訊，在統計上也有

人利用偵測極限(LOD)的函數值來取代設限資料，例如：LOD 或 LOD/2，雖然這

種方法既簡單又好操作，但利用此方法所估計出來的參數容易造成高度偏差。而

Richardson & Ciampi(2003)提出在簡單線性迴歸模型中，當只考慮單一變數受偵測

極限影響且已知變數的母體分佈下，利用變數的條件期望值取代設限資料，即若

假設一簡單迴歸模型y = α + βx + ε，y為疾病狀態變數(y＝1 代表有病，y＝0 代表

沒病)，x 為一非負且連續暴露因子， 為一隨機誤差且服從常態分佈，其平均值為

0，變異數為常數，則在假設偵測下限為 dl的情形下，利用替代值a = E(xi|xi < 𝑑𝑙)對

低於檢測界限 dl 的設限資料進行取代，其中xi為已知變數之母體分佈的理論值。

Schisterman et al. (2006)則是提出利用已觀察到的樣本xi∗之期望值取代設限資料，

即利用替代值為a∗ = ∑ xi∗I(xi∗≥𝑑l)i
∑ I(xi∗≥𝑑𝑙)i

進行取代。此兩種方法都可以得到不偏的參數估計

量。在遺失資料的處理中，亦被廣泛應用的方法則是模式建構法，即利用最大概

似(maximum likelihood method)理論來處理具有遺失值的資料；Nie et al. (2010)即利

用模式建構法處理單一受偵測極限影響的變數，在已知變數分佈下比較最大概似

法和簡易的替代法的參數估計量，其中以最大概似函數法所估計的參數具有較不

偏的性質且其所估計出來的標準誤較簡易的替代法來得小。 

  若資料中有兩個受偵測極限影響的變數時，D'Anael et al.(2008)在 Cox 迴歸模

式中提出 EM 演算法(Expectation - Maximization algorithm)的來解決此種問題。上

述的解決方法皆是在最多兩個受偵測極限影響的變數下做討論，May, Ibrahim, & 

Chu (2011)則是探討在多個變數受偵測極限的影響下，提出可利用蒙地卡羅觀點的

EM 演算法來對含有設限資料的連續變數進行參數估計的迭代。 
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第二節 研究動機 

  在環境研究與實驗室的研究中，受儀器偵測極限而造成的設限資料是其不可

或缺的資料型態之一，尤其當設限資料的比例過多時，若用較簡易的完整觀察個

體分析，則會損失過多的樣本資訊，此時所估計出來的參數是否可信賴？因此，

探討如何處理設限資料的不完整數據以減少其所帶來的資訊損失並增加估計的精

準度有其重要性。插補法(imputation)中的 EM 法是解決這類問題最熟知的方法之

一，但即使引入此方法，在估計上仍將面臨幾個困難點，其中包括：(1)當 EM 法

中的「E(expectation)步驟」若沒有封閉型式，或有封閉型式但卻極為複雜時，則會

增加「M(maximization)步驟」計算的困難度；(2)一般收集的資料中，有時會同時

會收集到連續資料與類別型資料，當此兩類型的資料皆出現不完整數據且變數與

變數間彼此都有相關時，連續與類別型資料各別進行 EM 法，則會忽略其變數間

的相關性而造成其參數估計上的偏誤。因此處理 EM 法中 E 步驟的積分計算與處

理連續變數與類別變數間的相關性都是需要進一步討論的問題。 

  過去處理不完整資料的方法中，Little & Schluchter(1985)針對遺失值資料提出

利用最大概似估計法透過 EM 演算法來解決變數中同時含有連續變數與類別變數

的問題。在本文中，將延續 May, Ibrahim, & Chu (2011)所提的方法，將偵測極限的

資料中只有連續變數的情形延伸到同時含有受偵測極限影響的連續變數與具有隨

機遺失機制的類別變數之情況下做探討。 
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第三節 研究目的 

  上節將主要的研究動機清楚說明後，本論文主要研究目的為： 

(1)設立一組包含受偵測極限影響的連續變數之設限資料與隨機遺失的類別型資料

之樣本，利用蒙地卡羅 EM 法得到最大概似估計量。 

(2)計算在不同的設限比例下，本論文的方法和 Schisterman et al. (2006)與完整觀察

個體分析在參數估計上的不偏性與有效性。最終希望能在不同的設限比例下，建

議研究者在此類型的資料型態下應採用何者方法進行參數的估計較為適合。 
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第二章 文獻探討 

第一節 遺失值機制 

 學者 Rubin(1976)一文中，已先介紹隨機遺失(missing at random)與隨機觀察

(observed at random)的機制，而後 Little & Rubin (1987)定義出遺失值機制的三種類

型：完全隨機遺失(missing completely at random；MCAR)、隨機遺失(missing at 

random；MAR)與非隨機遺失(not missing at random；NMAR)。假設一完整資料

Y = �yij�n×m
為一矩陣資料，且可被區分成Yobs與Ymis兩部份，其中Yobs代表完整資

料Y中可被觀察到的資料，Ymis代表Y中所遺失的資料。定義遺失數據指標矩陣

(missing data indicator matrix)M = �mij�n×m
，其中當yij為遺失值時，mij =1；當yij可

被觀察到時，mij = 0。根據上述定義，我們可定意義： 

 (i)完全隨機遺失：當遺失值 M 既不依賴觀察值yobs也不依賴遺失值ymis，具有  

      此性質的缺失機制則稱為完全隨機遺失。 

(ii)隨機遺失：當遺失值僅和觀察值yobs有關而與缺失值ymis無關，表示遺失值 

之間彼此是獨立的，且資料的遺失受觀察值的影響，具有此性質的缺失機

制稱為隨機遺失。 

 (iii)非隨機遺失：若遺失值彼此之間是有相關的，即遺失值依賴於ymis時，則 

    稱此缺失機制為非隨機遺失。換句話說，當數據資料的遺失機制非完全隨  

    機遺失且也非隨機遺失時，此資料的遺失機制即稱為非隨機遺失。 

就學者 Rubin 的定義，若遺失資料指標矩陣與遺失資料並無任何關係，在這種情

形下，完全隨機遺失與隨機遺失機制又稱為可忽略的遺失資料機制(ignoring 

missing data mechanism)；而非隨機遺失因其資料所產生的遺失並非在研究者的控

制下，因此不可忽略，故非隨機遺失機制又可稱為不可忽略遺失資料機制

(nonignorable missing data mechanism)。 
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第二節 遺失值之處理方法 

 自 1950年代開始，陸續有學者發表有關於處理遺失資料的文獻，如Hartly(1958)

一文中探討過去文獻為離散分佈的截切(truncated)資料與設限(censored)資料下，透

過對資料的分佈做假設，提出利用最大概似估計法處理遺失值資料。Dempster, 

Laird, & Rubin (1977)提出了著名的 EM 演算法，在遺失機制為隨機遺失時，透過

對資料做合理的分佈假設，利用 E 步驟的期望化階段來補足遺失的訊息，再進行

概似函數最大化的 M 步驟來估計參數，藉由遞迴過程使估計量逐漸達到正確的數

值。Rubin(1978)提出多重插補法(multiple imputation)的概念，是一種對資料進行數

據擴充和統計分析的方法。它使用一系列共 M 個可能的數值來插補每個遺失值，

產生 M 個完整數據資料，再對此 M 個完整數據資料進行一般正規的統計分析，然

後結合這 M 個分析結果進行分析推斷。而後，Little & Rubin (1987)將遺失值的處

理方法大致分成四個類別： 

(1)完整的觀察個體分析(procedures based on completely recorded units) 

(2)加權法(weighting procedures) 

(3)插補法(imputation-based procedures) 

(4)模式建構法(model-based procedures) 

近年來大部分的統計研究廣泛的運用模式建構法，此方法主要利用概似最大

化(maximum likelihood)的統計理論，事先預設某一母體的分佈模型，再以觀測所

得之樣本透過概似最大化以求得參數估計量；即透過 ML 理論或者是 EM 理論，

進行遺失值的處理，如 Dempster, Laird, & Rubin (1977)、Little & Schluchter(1985)

等。本研究即是透過模式建構法，預先對母體作分佈假設，再透過蒙地卡羅 EM 演

算法(Monte Carlo EM method)求得參數估計量。 

當資料中出現連續資料與離散資料且部分資料為遺失狀態時，在統計方法處

理上較一般的單一連續或離散資料還來得較複雜，下面將介紹 Little & Schluchter 

(1985)提出處理當資料同時含有類別和連續變項的情形下其遺失值的處理與參數
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估計，以下將對此篇文章的資料結構做介紹。首先我們先對資料做變數的定義： 

N：樣本數 

Xs：含有 p 個連續變數的向量，即Xs = [x1s, x2s,⋯ , xps]T     s = 1,2⋯ , N 

Ys：含有 q 個類別變數的向量，即Ys = [y1s, y2s,⋯ , yqs]Ts = 1,2⋯ , N 

Ii：第 i 個類別變項內含有Ii個項目 

：q 維的列聯表細格數，即C = ∏ Ii 

Xs,obs：個體 s 所能觀察到的連續變數s = 1,2⋯ , N 

Xs,mis：個體 s 不能觀察到的連續變數s = 1,2⋯ , N 

Em：只在第 m 個為 1，其餘為 0 的一C × 1向量m = 1,2⋯ , C 

Ws：為一C × 1的向量，當個體 s 在 q 維列聯表中只屬於某一細格時， 

則Ws = Em 

  完整資料(Xs, Ws)的分佈可藉由(Xs|Ws)的條件分佈與Ws的邊際分佈來表達。

先從Ws的邊際分佈先看，由於 N 個個體會落於 q 維列聯表中的某一細格內，因此

N 個個體可看成服從多項式分佈，且每一細格機率為πm = pr(Ws = Em)s =

1,⋯ , Nm = 1,2⋯ , C。而Ws = Em代表所有的類別變項皆觀察到的情形下，故在給

定Ws = Em的條件下時，Xs則服從多變量常態分佈，其期望值為µm，共變異數矩

陣為 ，即Xs~Np(µm,∑)。若就列聯表中的細格來看，假設Γ = [µ1, µ2,⋯ , µC]為一

p × C的矩陣，則Xs在給定Ws的條件分佈下又可寫成Np(ΓWs,∑)。 

因為f(Xs|Ws, Γ,∑)~Np(ΓWs,∑)，因此其機率函數可寫成 

f(Xs|Ws, Γ,∑) = f�x1s, x2s,⋯ , xps�Ws, Γ,∑� 

=
1

(2π)
p
2|∑|

1
2

exp �−
1
2

(Xs − µm)T∑−1(Xs − µm)� 

= (2π)−
p
2|∑|−

1
2exp �− 1

2
(Xs − µm)T∑−1(Xs − µm)�                         (2.1) 

則完整資料的 log 概似函數為： 

ℓ(Γ,∑,π) = log{∏ f(Xs|Ws, Γ,∑)f(Ws|π)N
s=1 }  
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= ∑ {log  f(Xs|Ws, Γ,∑) + log f(Ws|π)}N
s=1   

= −1
2

N{plog(2π) + log|∑|} − 1
2

tr(∑−1 ∑ XsN
s=1 XsT) + tr{∑−1Γ(∑ Ws

N
s=1 XsT)}  

+∑ �(∑ Wsm
N
s=1 ) �logπm − 1

2
µmT ∑−1µm��C

m=1                            (2.2) 

從(2.2)式可知完整資料的結構模式屬於正規的指數家族分佈(exponential family)，

且其充分統計量(sufficient statistics)為∑ XsN
s=1 XsT、∑ Ws

N
s=1 XsT及∑ Wsm

N
s=1 。EM 演

算法的 E 步驟即在給定可觀察到的數值和目前所估計的參數值下對(2.2)式取條件

期望值，則在第(t + 1)次的迭代中，其 E 步驟以數學符號表達為：

E�ℓ(Γ,∑,π)�Xs,obs, Ss,π(t), Γ(t),∑(t)�。由於完整資料屬於正規的指數家族分佈，則

第(t + 1)次的迭代的 E 步驟可改成對充分統計量取條件期望值，即 

T1s = E�XsXsT�Xs,obs, Ss,π(t), Γ(t),∑(t)�                (2.3-a) 

T2s = E�WsXsT�Xs,obs, Ss,π(t), Γ(t),∑(t)�               (2.3-b) 

T3s = E�Ws�Xs,obs, Ss,π(t), Γ(t),∑(t)�                 (2.3-c) 

對(2.2)式分別對參數Γ,∑,π做微分可得參數Γ,∑,π各自的最大概似估計量： 

π�＝N−1 ∑Ws                                 (2.4-a) 

Γ� = (∑Xs Ws
T)(∑Ws Ws

T)−1(2.4-b) 

∑� = N−1 ∑�Xs − Γ�Ws��Xs − Γ�Ws�
T
               (2.4-c) 

則 EM 演算法的 M 步驟即是對(2.4-a)式到(2.4-c)式中的充分統計量∑ XsXsT、∑WsXsT

與∑Ws分別以(2.3-a)式到(2.3-c)式的條件期望值T1s、T2s與T3s取代，因此第(t + 1)次

迭代中 EM 演算法其最大概似估計量為 

π� = N−1 ∑T3s  

Γ� = (∑T2s)T(D)−1  

∑� = N−1{∑T1s − (∑T2s)TD−1(∑T2s)}  

其中 D 為一對角線矩陣，其除了主對角線為∑T3s內的元素外，其餘皆為 0。 
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第三節 受偵測極限影響的資料及其處理 

 在實驗室或者是環境檢測中，化學分析是一門重要的學門，為了能了解某物

質的特性，通常需藉由儀器的使用以便達到分析化學的目的。根據 MacDougall 

& Daniel(1980)的定義，我們又可透過分析化學的分析目的主要分成兩類：定性分

析(qualitative analysis)與定量分析(quantitative analysis)。定性分析是指測定某待測

物的物質性質，即分析某待測物中所含的成分種類以便確定此物質的特性或者結

構鑑定(identification)；定量分析則是進一步確定成分的含量，分析某一欲測成分

在試樣中所佔的比例或濃度。而在此兩種分析方法上，其儀器的使用上皆有其偵

測極限(detection limit)的範圍，分別為方法偵測極限(method detection limit)與儀器

偵測極限(instrument detection limit)。方法偵測極限是指一待測物在某一種基質中

所能檢測得之最小濃度，又稱為定性極限；而儀器偵測極限是指待測物之最小或

最低量的濃度(訊號)，使儀器能夠在偵測時，產生一可與空白訊號區別的訊號者，

又可稱為定量極限。我們一般在實驗室中或環境檢測記錄中，通常所欲測定的是

待測物的最小濃度，因此收集的資料容易受儀器的偵測極限所影響而產生一左設

限(left-censored)或右設限(right -censored)的資料。 

 處理上述因偵測極限影響而產生的右設限或左設限資料結構，Lynn (2001)一

文中探討血漿中 HIV RNA 測量的左設限資料使否與其病毒載量的量化有關，由於

資料的遺失會與未能觀察到的數值有相關，由此可知此資料的遺失機制為非隨機

遺失，故在統計方法上較不適用多重插補法或其他的替代(substitution)方法，而是

利用模式建構法，以概似最大化(maximum likelihood)來估計參數，並比較在不同

設限資料比例下，替代法、多重插補法與其文中所使用的模式建構法在參數估計

上精準度，其中以模式建構法所估計出的參數較為不偏與精準。當資料中的某一

待檢測變數(暴露因子)有測量誤差時，Richardson & Ciampi (2003)一文中提出在已

假設資料的分佈且其暴露因子服從對數常態分佈或 Gamma 分佈的情況下，在條件

於已觀察到的資料，利用此變數的條件期望值做為遺失資料的替代數值，並將暴
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露因子有測量誤差與無測量誤差的參數估計值之偏差做比較，發現在有假定有測

量誤差時，其參數估計值的偏差較小。Lubin et al. (2004)則是利用分佈抽樣的概念，

在對資料做適合的分佈假設時，比較簡單的替代法(如偵測極限的二分之一倍)和對

適合的分佈做隨機抽樣並填入(fill-in)遺失資料的方法；由結論可知在設限資料比

例不超過 30%下，相較於簡單的替代法，填入法可得到不偏的參數估計值，但當

設限資料比例超過 30%後，填入法的參數變異數估計將會產生較大的偏差。

Schisterman et al.(2006)一文改進 Richardson & Ciampi (2003)文章中須對資料分佈

的設立，提出無須對共變數做分佈的假設之處理方法，若此共變數有一低的檢測

門檻(lower threshold)，則利用可觀察到的資料之平均值做為遺失資料的替代值，即

計算所有大於檢測門檻的數值之平均數做為替代值；此方法所得到的參數估計仍

為不偏的，且其參數變異數估計較替代法來的小。而處理 Cox 迴歸模型(Cox 

regression model)具有設限資料的變數，D'Anaelo et al. (2008)提出改進 Rigobon & 

Stoker (2004)的指標方法(index method)建立 Cox 迴歸模型並最多處理兩個設限變

數(censored covariates)的情形，透過比較完整觀察個體分析、替代方法與指標方法，

可知指標方法在參數估計上的不偏性與精準度較其他方法來得好。 

上述的方法都在只有單一受偵測極限影響的變數時或最多兩個設限變數的情

形下做討論。在多變數資料為遺失的情形下，Stubbendick & Ibrahim (2006)提出利

用模式建構法處理在長期追蹤的離散資料下，非隨機遺失之變數的參數估計，並

透過蒙地卡羅 EM(Monte Carlo EM)演算法解決高維度積分。而 May 等人(2011)則

是提出處理多個受偵測極限影響的變數，並用蒙地卡羅 EM 演算法透過

ARMS(adaptive rejection metropolis sampling)抽樣法以解決高維度積分，並獲得最

大概似估計量。下面將介紹 May, Ibrahim, & Chu (2011)於論文中所提出的方法： 

設有{(xi,𝑦i); i = 1,⋯ , n}，共 n 個獨立的樣本觀察值，y代表反應變數，x代表

含有 p 個變數(covariates)的向量。在這裡，我們把p(yi|xi, θ)定義為條件分佈[yi|xi]的

條件機率，θ為一k × 1的參數向量；在 GLM 中，通常θ = (β, γ)，β代表迴歸模式
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中的迴歸係數，γ而代表分散參數(dispersion parameter)；p(xi|α)為[xi]的邊際機率，

其中α為邊際分佈函數[xi]所對應的參數。因此，(yi, xi)的聯合分佈函數可寫成一序

列的一維條件分佈函數： 

p(xi, yi) = p(yi|xi, θ)p(xi|α) 

結合上述的(xi, yi)的聯合分佈公式，則完整數據的 log 概似函數可寫成如下： 

log − likelihood l(x, y|γ) = log∏ p(xi, yi)n
i=1   

= ∑ log[p(yi|xi, θ)p(xi|α)] = ∑ log[p(yi|xi, θ)]n
i=1

n
i=1 + log[p(xi|α)]            (2.5) 

其中γ = (θ,α)，θ為我們主要有興趣的參數。 

    為了能探討設限變數的情況，令xi為包含xcens,i與xobs,i兩部分，xobs,i代表完整

觀察到的變數(fully observed covariates)，xcens,i代表一qi × 1的設限變數向量(vector 

of censored covariates)。對第 i 個 subject 的第 j 個變數(covariate)而言，其設限區間

(censoring interval)為�clij, cuij�，且只考慮所有設限區間皆已知的情形。定義

�cl < xcens,i < cu�為xcens,i中的變數所對應的設限區間，即 

�cl < xcens,i < cu� ≡ ⋂ �clij < xij < cuij�xij∈xcens,i            (2.6) 

    藉由上述的定義，即可來處理有關受偵測極限影響的變數。為了能方便闡述，

這邊的分散參數指考慮 為 1 的情形，即θ = β。 

 Q�γ�γ(t)� = E�完整數據的 log 概似函數�可觀察到的觀察個體資料�   

        = E�l(xi, yi|γ)�第 i 個觀察個體之觀察值�  

        = E�∑ log[p(yi|xi,β)] + log[p(xi|α)]n
i=1 �第 i 個觀察個體之觀察值, γ(t)�  

        = ∑ E�log[p(yi|xi,β)] + log[p(xi|α)]�第 i 個觀察個體之觀察值, γ(t)�n
i=1  

  值得注意的是，這邊的觀察個體之觀察值指的是能直接被觀察到的�yi, xobs,i�

資料和�cl < xcens,i < cu�的資訊。因此，若假設設限變數是連續行變數時，則在

EM 演算法的 E 步驟在計算上為積分的型態，故可以把第 i 個觀察個體第 t 次迭代

的 E 步驟寫成 

Qi�γ�γ(t)� = ∫ log[p(yi|xi,β)] p�xcens,i�xobs,i, yi, γ(t), cl < xcens,i < cu�dxcens,i  



 

12 
 

         +∫ log[p(xi|α)] p�xcens,i�xobs,i, yi, γ(t), cl < xcens,i < cu�dxcens,i  

         = ∫ log[p(yi|xi,β)] p�xcens,i�xobs,i, yi, γ(t)� × I�cl < xcens,i < cu�dxcens,i  

         +∫ log[p(xi|α)] p�xcens,i�xobs,i, yi, γ(t)� × I�cl < xcens,i < cu�dxcens,i  

= Qi
(1)�β�γ(t)� + Qi

(2)�α�γ(t)�                                  (2.7) 

由上式的Qi�γ�γ(t)�可看出即使當xcens,i所含的設限變數很少，在積分上其封閉型式

(closed-form)的解仍會非常複雜，因此在此步驟的積分計算則採用蒙地卡羅的 EM

演算法來解決此方面的問題。為了計算在蒙地卡羅 EM 演算法 E 步驟的第(t + 1)次

迭代之(2.7)式，必須先產生一組來自條件截切分佈�xcens,i�xobs,i, yi, γ(t) ��I�cl <

xcens,i < cu)的樣本，此抽樣方法可以透過 ARMS 抽樣法對此條件截切分佈抽樣。

對第 i個觀察個體而言，每一次的抽樣個數即為第 i個觀察個體的設限變數個數qi，

換句話說，抽樣樣本zi為一包含qi個樣本點的向量。透過蒙地卡羅 EM 演算法，E

步驟的第(t + 1)次迭代為： 

Qi�γ�γ(t)� = 1
mi
∑ ℓ�zik, xobs,i, yi, γ�
mi
k=1 = Qi

(1)�β�γ(t)� + Qi
(2)�α�γ(t)�  (2.8) 

且Q�γ�γ(t)� = ∑ Qn
i=1 i

�γ�γ(t)�，因此 EM 演算法的 M 步驟為對(2.8)式做一階微分並

令為零求解，即 

Q(γ|γ(t))̇ = ∑ Q̇i�γ�γ(t)�n
i=1 = ∑ 1

mi

n
i=1 ∑ ∂

∂γ
ℓ�zik, xobs,i, yi, γ�

mi
k=1 = 0     (2.9) 

透過不斷的迭代，當滿足�β(t+1) − β(t)� < 𝜀的條件時，則可得到參數β的估計即為

β(t+1)。 
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第三章 研究方法 

  在實驗室測量試驗中，往往資料會受測量儀器的偵測極限影響，而使資料有

遺失值的產生，當資料中的連續變數受偵測極限所影響且類別變數具有隨機遺失

機制時，資料的分析更顯得複雜。在處理此類型的不完整資料時，我們考慮使用

EM 演算法在模型中找尋參數的最大概似估計量。因此，我們先建立一組完整的資

料��yi, 𝐱iT, 𝐳i�; i = 1,2,⋯ , N�，在資料符號定義中，令yi為第 i 個觀察個體的二元反

應變項觀察值，而每一yi所對應的𝐱iT為一p × 1的連續共變數向量�xi1, xi2,⋯ , xip�，

xij代表第 i 個觀察個體的第 j 個連續變數觀察值，j = 1,⋯ , p；𝐳iT為q × 1的類別變

數向量�zi1, zi2,⋯ , ziq�，且令第 i 個體的第 j 個類別變數zij中含有Ij個項目(levels)。

這q個類別變數會構成一q維且含有C = ∏ Ij
q
j 個細格數的列聯表，每一個個體會落

於這C個細格數中。假設來自不同個體的共變數樣本彼此互相獨立，且來自同一個

體的共變數樣本具有相關性，即Cov�xij, xik� ≠ 0、Cov�zij, zik� ≠ 0，且當i ≠ l時，

Cov�xij, xlk� = 0、Cov�zij, zlk� = 0。 

在廣義線性模型(Generalized linear models)的假設下，我們可知道yi服從一指

數家族分佈(Exponential family)，並且可透過鏈結函數(link function)建立線性預測

因子(linear predictor)與分佈期望值之關係。因反應變項yi為二元資料，故考慮 logit

的鏈結函數可建立(3.1)式的模式： 

g�E(Yi)� = logit P(yi|xi, zi) = β(p)𝐱iT + β(q)𝐳iT         (3.1) 

其中β(p) = �β1,⋯ ,βp�，β(q) = �βp+1,⋯ , βp+q�皆為參數向量。 

欲建立(yi, 𝐱i, 𝐳i)的聯合分佈，則可透過yi條件於xi與zi的條件分佈[yi|xi, �𝐳i]和𝐱i

條件於𝐳i的條件分佈[𝐱i|𝐳i]與𝐳i的邊際分佈[𝐳i]而得。令yi的條件分佈[yi|𝐱i, 𝐳i�]其條

件機率密度函數為p(yi|𝐱i, 𝐳i,β�)，β為一(p + q) × 1維的參數向量；𝐱i的條件分佈

[𝐱i|𝐳i]其條件機率密度函數為p(𝐱i|𝐳i,µ�)，µ為xi的條件分佈所對應的參數，因此可

知道𝐱i與𝐳i的關係可透過參數µ來決定；𝐳i的邊際分佈[𝐳i]其條件機率密度函數為
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p(𝐳i|π�)，π為𝐳i的邊際分佈所對應的參數。根據上述定義，(yi, 𝐱i, 𝐳i)的聯合分佈可

寫成： 

p(yi, 𝐱i, 𝐳i) = p(yi|𝐱i, 𝐳i,β�)p(𝐱i|𝐳i,α�)p(𝐳i|π�)                 (3.2) 

且完整資料的對數概似函數(log likelihood)可寫成： 

ℓ(β,α,π|yi, 𝐱i, 𝐳i, i = 1,⋯ , N) = log∏ p(yi, 𝐱i, 𝐳i)N
i=1   

= ∑ {log[p(yi|𝐱i, 𝐳i,β�)] + log[p(𝐱i|𝐳i,α�)] + log[p(𝐳i|π�)]}N
i=1                   (3.3) 

因為主要有興趣的參數為迴歸係數β，因此其他參數α與π則為所謂的 nuisance 參數。 

引用 Little & Schluchter(1985)對連續變數與類別變數之間的相關性描述，定義

Em為一C × 1向量，其第 m 個值為 1，其餘為 0，m = 1,2⋯ , C；Zi為一C × 1的向

量，當第 i 個個體在 q 維列聯表中只屬於某一細格時，則Zi = Em。根據上述對連

續資料與類別資料的符號定義下，其完整資料的概似函數可由下列 3 個邊際分佈

與條件分佈的模式假設來表達： 

(1) 由於 N 個觀察個體會落於 q 維列聯表的某一細格內，故 N 個觀察個體可視為

服從一多項式分佈，且每一細格的機率為πm = pr(Zi = Em)   i = 1,2⋯ , Nm =

1,2⋯ , C；即若設變數nm為落於第 m 個細格內的觀察個數，m = 1,⋯ , C，且

∑ nmC
m=1 = N，則(n1, n2,⋯ , nC)~Mutinomial(N,π1,π2,⋯ ,πC) 

(2) 條件於第 個觀察個體落於q維列聯表中的第m個細格 (即Zi = Em)的情形下，

共變數𝐱i服從多變量常態Np(µm,Σ)，其中期望值µm為透過第 m 個細格數所決

定；即�𝐱i|Zi = Em~Np(µm, Σ)。 

(3) 在條件於𝐱i與𝐳i下，反應變數�yi|𝐱i, 𝐳i~Ber(pi)，其中成功機率pi的定義為

 pi = p(yi = 1|𝐱i, 𝐳i) =
exp�β(p)𝐱i

T+β(q)𝐳i
T�

1+exp�β(p)𝐱i
T+β(q)𝐳i

T�
。 

根據上述對資料的模式假設，其完整資料的概似函數為： 

 L(β,α,π|yi, 𝐱i, 𝐳i) = ∏ p(yi,𝐱i, 𝐳i)N
i=1 = ∏ p(yi|𝐱i, 𝐳i,β�)p(xi|𝐳i, µm�)p(𝐳i|πm�)N

i=1  

= ∏ ��
exp�β(p)𝐱i

T+β(q)𝐳i
T�

1+exp�β(p)𝐱i
T+β(q)𝐳i

T�
�
I{yi=1}

�N
i=1 � 1

1+exp�β(p)𝐱i
T+β(q)𝐳i

T�
�
I{yi=0}

×  
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                � � 1
√2π

�
p
2 |Σ|−

1
2 exp �− 1

2
(𝐱i − µm)TΣ−1(𝐱i − µm)� × ∏ πmZimC

m=1 �  

 ∝ ∏ ��
exp�β(p)𝐱i

T+β(q)𝐳i
T�

1+exp�β(p)𝐱i
T+β(q)𝐳i

T�
�
I{yi=1}

�N
i=1 � 1

1+exp�β(p)𝐱i
T+β(q)𝐳i

T�
�
I{yi=0}

 

�× |Σ|−
1
2 exp �− 1

2
(𝐱i − µm)TΣ−1(𝐱i − µm)� × ∏ πmZimC

m=1 �     (3.4) 

當資料的連續變項含有受偵測極限(detection limit)影響的變數時，我們令共變數𝐱i

包含兩𝐱det,i與𝐱obs,i兩部分，其中𝐱det,i為一ri × 1的變數向量，代表第 i 個觀察個體

含有ri個受偵測極限影響而有遺失資料的變數，即𝐱det,i = �xi1∗ , xi2∗ ,⋯ , xiri
∗ �；𝐱obs,i為

(p − ri) × 1向量，代表變數中的觀測值可被觀察到。假設對第 i 個 subject 的第 j

個變數(covariate)而言，其偵測極限的上限(upper bound)與下限(lower bound)分別為

clij與cuij，即設限區間(censoring interval)為�clij, cuij�。定義�cl < xdet,i < cu�為xdet,i中

的變數所對應的設限區間，即 

�cl < xdet,i < cu� ≡ � �clij < xij < cuij�
xij∈xdet,i

 

而令含有遺失資料的類別變數𝐳i亦包含𝐳obs,i與𝐳mis,i兩部分，其中𝐳mis,i為第 i

個觀察個體有遺失資料的si × 1之變數向量且具有隨機遺失機制(missing at random 

mechanism)，而𝐳obs,i為代表可完全觀察到數值的(q − si) × 1之變數向量。 

當資料為完整數據資料（即沒有任何缺失值）時，我們可以直接對概似函數(3.4)

式取對數，對其做一階微分並令為零以求有興趣參數的最大概似估計量(MLE)；但

由於資料具有部分缺失資料，因此我們可以透過 EM 法(Dempster, Laird, & Rubin, 

(1977)的 E 步驟來加以補足遺失的資料，其 E 步驟為在給定所能觀察的資料下，對

完整資料的對數概似函數取期望值，即(3.4)式的 EM 之 E 步驟可寫成： 

 Q�γ�γ(t)� = E�∑ log[p(yi, 𝐱i, 𝐳i)]N
i=1 �observedi, γ(t)�  

= E�∑ log[p(yi|𝐱i, 𝐳i,β�)] + log�p�𝐱i�𝐳i,µm
��� + log[p(𝐳i|πm �)]N

i=1 �observedi, γ(t)�  

= E �∑ I{yi = 1}log � exp{ηi}
1+exp{ηi}

�N
i=1 + ∑ I{yi = 0}log � 1

1+exp{ηi}
�N

i=1
�  

�   −1
2

log|Σ| + 1
2

(𝐱i − µm)TΣ−1(𝐱i − µm) + ∑ �∑ ZimN
i=1 �πmC

m=1 �observedi, γ(t) �� (3.5) 
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其中，observedi代表第 i 個個體中可被觀察到的變數之資料，γ(t)代表在 EM 法中

的第 t 次迭代之參數γ(t) = �β(t), µm
(t),πm

(t)�，ηi = β(p)𝐱iT + β(q)𝐳iT。不同於一般遺失

資料的情況，對於遺失資料來說，我們並不能得到額外的遺失資訊，因此在第 i

個體的 E 步驟中所能觀察到的資訊僅僅為�yi, 𝐱obs,i, zobs,i�，而在實驗室中所得的偵

測極限資料，能知道其資料的遺失是由於其儀器的偵測極限範圍所導致，因此所

能觀察到的資訊為�yi, xobs,i, zobs,i�與�cl < 𝑥det,i < cu�。因此(3.5)式可寫成： 

Q�γ�γ(t)� = E�∑ log[p(yi, 𝐱i, 𝐳i)]N
i=1 �𝐱obs,i, yi, 𝐳obs,i, γ(t), cl < 𝐱det,i < cu�  

故Qi�γ�γ(t)� 

  = ∑ ∫ log[p(yi|𝐱i, 𝐳i,β�)] p�𝐱det,i, 𝐳mis,i�𝐱obs,i, yi, 𝐳obs,i, γ(t)�𝐳mis,i   

× I�cl < 𝐱det,i < cu�d𝐱det,i  

  +∑ ∫{log[p(𝐱i|𝐳i,α�)] + log[p(𝐳i|τ�)]}𝐳mis,i p�𝐱det,i, 𝐳mis,i�𝐱obs,i, yi, 𝐳obs,i, γ(t)� 

× I�cl < 𝐱det,i < cu�d𝐱det,i 

= Qi
(1)�β�γ(t)� + Qi

(2)�µm,πm�γ(t)�                                    (3.6) 

其中p�𝐱det,i, 𝐳mis,i�𝐱obs,i, yi, 𝐳obs,i, γ(t)�為 

p�𝐱det,i, 𝐳mis,i�𝐱obs,i, yi, 𝐳obs,i, γ(t)� 

= p�yi,𝐱obs,i,𝐱det,i,𝐳obs,i,𝐳mis,i,γ(t)�
∑ ∫p�yi,𝐱obs,i,𝐱det,i,𝐳obs,i,𝐳mis,i,γ(t)�d𝐱det,i𝐳mis,i

                                 (3.7) 

在(3.6)式中，隨著受偵測極限影響的變數與隨機遺失的類別變數個數增多時，所要

計算的期望值函數為多維的多重積分，並沒有有效的方法可以直接計算此式，而

(3.7)式中的分母為p�yi, 𝐱obs,i,𝐱det,i, 𝐳obs,i, 𝐳mis,i, γ(t)�的邊際聯合密度函數，為針對

遺失資料的變數𝐱det,i與𝐳mis,i做積分，亦為一難以計算的高維度積分，因此我們可

以使用 Wei & Tanner(1990)所提的 MCEM 演算法利用蒙地卡羅積分(Monte Carlo 

Intergration)去近似(3.6)式中 EM 演算法的 E 步驟；即若假設欲求某函數h(x)的期望

值I = Ef(x)[h(x)] = ∫h(x)f(x)dx，則可從分佈f(x)中隨機產生M個樣本(x1,⋯ , xM)，

即(x1,⋯ , xM)~ f(x)，根據弱大數法則I = 1
M
∑ hM
k=1 (xk)

p
→ Ef(x)[h(x)] = I。為了計算
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EM 演算法中的 E 步驟，故我們必須對每一個體 具有遺失資料的變數產生一組 M

個來自截切(truncated)分佈�xdet,i, 𝐳mis,i
���xobs,i, yi, 𝐳obs,i, γ(t)� ×�I�cl < 𝐱det,i < cu�的樣

本點�𝐱det,i, 𝐳mis,i�，此抽樣可透過對下列的滿條件分佈(full conditional distribution)

進行 ARMS 抽樣(adaptive rejection metropolis sampling)來完成： 

�𝐱det,i ���yi,𝐱obs,i, 𝐳mis,i, 𝐳obs,i, γ(t)�I�cl < 𝐱det,i < cu�� 

∝ �yi|𝐱i, �𝐳i, γ(t)� × �𝐱mis,i
���𝐱obs,i, 𝐳i��I�cl < 𝐱det,i < 𝑢𝑏� (3.8) 

�𝐳mis,i
���yi, 𝐱obs,i,𝐱det,i, 𝐳obs,i, γ(t)��I�cl < 𝐱det,i < cu� 

∝ �yi|𝐱i, �𝐳i, γ(t)� × �𝐱mis,i
���𝐱obs,i, 𝐳i�� × �𝐳mis,i

���𝐳obs,i�� I�cl < 𝐱det,i < 𝑢𝑏� (3.9) 

藉由上述的抽樣方法，對每個觀察個體 i，我們可以得到一組樣本數為 M 的𝐯i樣本

向量，𝐯i = �𝐱det,i, 𝐳mis,i�，因此第 i 個觀察個體其 EM 演算法的第(t + 1)次迭代之

E 步驟可寫成： 

Qi�γ�γ(t)� = 1
M
∑ ℓ�𝐯ik,𝐱obs,i, 𝐳obs,i, yi�

M
k=1   

         = 1
M
∑ Qi

(1)�β�γ(t)�M
k=1 + 1

M
∑ Qi

(2)�µm,πm�γ(t)�M
k=1   

其中Q(1)�β�γ(t)�與Q(2)�µm,πm�γ(t)�近似於： 

Q�(1)�β�γ(t)� ≅ 1
M
∑ �∑ log p�yi�𝐱obs,i,𝐯ik, zmis,i,β��N

i=1 �M
k=1   

Q�(2)�µm,πm�γ(t)� ≅ 1
M
∑ �∑ log p�𝐱i, 𝐳i�𝐱obs,i, zobs,i,𝐯ik, µm,πm��N

i=1 �M
k=1   

在 EM 方法中第 t 次遞迴的 M 步驟，即是計算使Q�(1)�β�γ(t)�與Q�(2)�µm,πm�γ(t)�為

最大值的β(t+1)、µm(t+1)與πm(t+1)，由於感興趣的參數為β(t+1)，因此只針對β做參

數估計的收斂；在計算上，我們使用牛頓法(Newton Raphson；N-R)方法來計算β(t+1)，

即是利用： 

β(t+1) = β(t) − �H�β(t)��
−1 1

∂β(t) Q�(1)�β(t)�γ(t)�            (3.10) 

其中 
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1
∂β(t) Q�(1)�β(t)�γ(t)� =

⎝

⎜⎜
⎛

1
M
∑ ∑ yi𝐱i1

(k)N
i=1

M
k=1 − b′(γ1)

1
M
∑ ∑ yi𝐱i2

(k)N
i=1

M
k=1 − b′(γ2)

⋮
1
M
∑ ∑ yi𝐱ip

(k)N
i=1

M
k=1 − b′(γn)⎠

⎟⎟
⎞
。 

且 Hessian matrix H�β(t)� = 1
∂β(t) ∂β(t) Q�(1)�β(t)�γ(t)�。 

若根據先前對反應變項yi的分佈設立，則b′(γi)為此函數
1
M
∑ ∑ log �1 +N

i=1
M
k=1

exp�ηi
(k)��對β做一階微分。透過(3.10)式的迭代，我們定義當第(t)次到第(t + 1)遞

迴所得到的參數估計之差值小於一特定值ε時，則此時的β(t+1)為所求，即

�β(t+1) − β(t)� < 𝜀時則 N-R 法達到收斂；若尚未滿足收斂條件，則重複再對

�𝐱det,i ���, yi, 𝐱obs,i, 𝐳obs,i, γ(t)�� × I�cl < 𝐱det,i < cu�與�𝐳mis,i
���, yi, 𝐱obs,i, 𝐳obs,i, γ(t)�� ×

I�cl < 𝐱det,i < cu�做取另一組抽樣樣本，如此循環後直至滿足收斂條件。 
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第四章 模擬研究 

第一節 資料生成與模擬 

 假設一組資料��yi, 𝐱iT, zi�; i = 1,2,⋯�，yi = 0,1為二元資料，𝐱iT = 

(xi1, xi2, xi3)為連續變數且皆受偵測極限影響；zi為含有兩個項目(levels)的類別變項

且具有缺失值，其遺失機制為隨機遺失機制。設立一線性模型為： 

logit p(yi = 1|𝐱i, zi) = β1xi1 + β2xi2 + β3xi3 + β4zi     (4.1) 

則p(yi = 1|𝐱i, zi) = exp{ηi − log(1 + eηi)}，其中ηi = β1xi1 + β2xi2 + β3xi3 + β4zi，

(β1,β2,β3,β4) = (3,0.26,0.17,−0.5)。其中(xi1, xi2, xi3)之偵測極限(cl, cu)的設立是

根據其資料設限的比例而設，在這裡探討的設限比例為 10%、30%與 50%，因此

偵測極限的上下限為使資料的對稱設限比例分別為 5%、15%與 25%之最大和最小

值。 

由於類別變數zi的數值會影響連續變數𝐱iT的參數設立，因此先產生一組zi值為

(0,1)的資料且其機率為p(zi = m) = πmm = 0,1，並設立(π0,π1) = (0.3,0.7)，則zi值

的產生方式如下： 

(1)隨機生成一筆Ui，Ui~Uniform(0,1)。 

(2)zi = �
0          若 0 ≤ Ui < 0.3
1          若 0.3 ≤ Ui < 1

� 

重複上述(1)~(2)步驟，直至產生一組zi的數值，i = 1,⋯ ,300。則(xi1, xi2, xi3)條件

於zi = m下的條件分佈服從多變量常態分佈N3(µim,Σ3×3)，期望值為µim指的是類

別變項的每一個項目所對應的(xi1, xi2, xi3)多變量常態分布之期望值；其設立為

µimT = �
[0,0,0]，當zi = 0
[1,1,1]，當zi = 1

�。並令其共變異數矩陣(covariance matrix)為 

Σ3×3 = �
σ12 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ32

� = �
1 0.3 0.4

0.3 1 0.7
0.4 0.7 1

�； 
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藉由(4.1)式的模式設立，可生成300筆的yi數值，其中yi為服從一伯努力分佈Ber(pi)，

且參數pi = p(yi = 1|𝐱i) = exp{ηi − log(1 + eηi)}。由於(xi1, xi2, xi3)受偵測極限

(cl, cu)影響，故令落於偵測極限(cl, cu)外的數值為遺失資料。而具有隨機遺失資料

的類別變數zi之設定可透過先計算一遺失機率p. misi = exp {2×yi}
1+exp {2×yi}

，令一遺失指標

變數Mi服從伯努力分佈Ber(p. misi)，則zi的遺失資料設定為zi∗ = �
zi當Mi = 0

NA 當Mi = 1
� 

根據條件機率的定義，第 i 個體的聯合機率p(yi, xi1, xi2, xi3, zi, µm)為：

p(yi, xi1, xi2, xi3, zi, µm) 

= p(yi|xi1, xi2, xi3, zi, µm)p(xi1, xi2, xi3|zi, µm�)pr(zi = m) 

= � exp{ηi}
1+exp{ηi}

�
I{yi=1}

� 1
1+exp{ηi}

�
I{yi=0}

×  

1
(2π)�|Σ|

exp �− 1
2

(𝐱i − µm)Σ−1(𝐱i − µm)T�∏ πm
I{zi=m}2

m=0    (4.2) 

對 (4.2)式取對數，則可得第 i 個體完整數據資料的對數概似函數：

ℓi(β, µm,πm|yi, 𝐱i, zi) = ℓi(γ|yi, 𝐱i, zi) 

= log[p(yi|𝐱i, zi,β�)] + log[p(𝐱i|zi, µm�)] + log[p(zi|πm�)] 

∝ yiηi − log(1 + eηi) − (𝐱i − µm)∑−1(𝐱i − µm)T + ∑ I{zi = m}logπm2
m=0 (4.3) 

令γ = (β,µm,πm)。EM法E步驟即對完整數據資料的對數概似函數取條件期望值，

則 EM 法之第 i 個體的第(t + 1)次遞迴 E 步驟為 

Qi�γ�γ(t)� = E�ℓi(β, µm,πm|yi, 𝐱i, zi)�yi, 𝐱obs,i, cl < 𝐱det,i < cu, zobs,i, γ(t) �� 

= E[log[p(yi|𝐱i, zi,β�)] + log[p(𝐱i|zi, µm�)]

+ log[p(zi|πm�)]���yi, 𝐱obs,i, cl < 𝐱det,i < cu, zobs,i, γ(t) �� 

= ∑ ∫ log[p(yi|𝐱i, zi,β�)] × p�xdet,i, zmis,i�yi, 𝐱obs,i, zobs,i, γ(t)�zmis,i   

× I�cl < 𝐱det,i < cu�dxdet,i 

+∑ ∫{log[p(𝐱i|zi, µm�)] + log[p(zi|πm�)]}zmis,i   

× p�xdet,i, zmis,i�yi, 𝐱obs,i, zobs,i, γ(t)�I�cl < 𝐱det,i < cu�dxdet,i    (4.4) 
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其中參數γ(t) = �β(t), µm
(t),πm

(t)�。在(4.4)式中，隨著xdet,i所包含的變數個數增多時，

其積分計算將隨之變難，即若假設第 i 個體受偵測極限影響而有遺失值的

xdet,i = (xi1, xi2, xi3)，則(4.4)的積分式為三維積分。因此我們使用蒙地卡羅積分來

解決取代多重積分的問題，即 E 步驟的多重積分我們需透過對

�𝐱det,i, 𝐳mis,i
���, yi, 𝐱obs,i, 𝐳obs,i, γ(t)�� × I�cl < 𝐱det,i < cu�分佈抽取遺失資料

�𝐱det,i, 𝐳mis,i�，而此抽樣的步驟我們可利用 Gibbs 抽樣方法對滿條件分佈

�𝐱det,i ���, yi, 𝐱obs,i, 𝐳obs,i, γ(t)�� × I�cl < 𝐱det,i < cu�與�𝐳mis,i
���, yi, 𝐱obs,i, 𝐳obs,i, γ(t)�� ×

I�cl < 𝐱det,i < 𝑢𝑏�做抽樣，抽取 1000 個隨機樣本向量𝐯i，𝐯i為第 i 個個體中具有遺

失資料的變數，並捨棄(burn-in)前 750 個樣本，根據蒙地卡羅積分的定義，EM 法

的 E 步驟會近似為： 

E�log[p(yi|𝐱i, zi,β�)]�yi, 𝐱obs,i, cl < 𝐱det,i < cu, zobs,i, γ(t) �� 

≅ 1
250

∑ �log�p�yi�𝐱obs,i,𝐯ik, zmis,i,β���� = Qi
(1)�β�γ(t)�250

k=1                      (4.5) 

E�log[p(𝐱i|zi, µm�)] + log[p(zi|πm�)]�yi, 𝐱obs,i, cl < 𝐱det,i < cu, zobs,i, γ(t) �� 

≅ 1
250

∑ log�p�𝐱i, zi�𝐱obs,i, zobs,i,𝐯ik, µm,πm��� = Qi
(2)�µm,πm�γ(t)�250

k=1            (4.6) 

為了能從滿條件分佈抽樣，我們可知道： 

�𝐱det,i���, yi, 𝐱obs,i, 𝐳mis,i, 𝐳obs,i,γ(t)�I�cl < 𝐱det,i < cu�� ∝ �yi|𝐱i, �𝐳i, γ(t)� × 

�𝐱mis,i
���𝐱obs,i, 𝐳i��I�cl < 𝐱det,i < cu�           (4.7) 

�𝐳mis,i
���, yi, 𝐱obs,i,𝐱det,i, 𝐳obs,i,γ(t)��I�cl < 𝐱det,i < cu� ∝ �yi|𝐱i, �𝐳i, γ(t)� × 

�𝐱mis,i
���𝐱obs,i, 𝐳i��× �𝐳mis,i� I�cl < 𝐱det,i < cu�    (4.8) 

其中， 

�yi|𝐱i, �𝐳i, γ(t)�的機率密度函數為� exp{ηi}
1+exp{ηi}

�
I{yi=1}

� 1
1+exp{ηi}

�
I{yi=0}

 

�𝐱mis,i
���𝐱obs,i, 𝐳i��的機率密度函數可依據𝐱mis,i的變數個數不同而不同。在此模擬中，

令𝐱mis,i與𝐱obs,i所對應的期望值分別為µmis,i和µobs,i，共變異數矩陣又可劃分成
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∑ = �
∑mis,mis ∑mis,obs
∑obs,mis ∑obs,obs

�，則�𝐱mis,i
���𝐱obs,i, 𝐳i��~N�µmis,i + ∑mis,obs∑obs,obs

−1�𝐱obs,i −

µobs,i), ��∑mis,mis − ∑mis,obs∑obs,obs
−1∑obs,mis� 

�𝐳mis,i�的機率密度函數為π0I{zi=0}π1I{zi=1} 

由於滿條件分佈又可寫成(4.7)式與(4.8)式的右側型式，因此我們可使用 ARMS 抽

樣方法(Gilks, Best, & Ta,1995)來抽取滿條件分佈。抽樣後，由(4.5)與(4.6)式的可知

Q(1)�β�γ(t)�與Q(2)�µm,πm�γ(t)�函數可表示成 

Q�(1)�β�γ(t)� ≅ ∑ Qi
(1)�γ�γ(t)�300

i=1 = 1
250

∑ �∑ yiηi
(k) − ∑ log �1 + eηi

(k)
�200

i=1
300
i=1 �250

k=1  (4.9) 

Q�(2)�µm,πm�γ(t)� ≅ ∑ Qi
(2)�γ�γ(t)�300

i=1   

≅ 1
250

∑ {∑ (𝐱i − µm)∑−1(𝐱i − µm)T + ∑ (∑ Wim
300
i=1 )πm1

m=0
300
i=1 }250

k=1             (4.10) 

其中ηi
(k) = β1xi1

(k) + β2xi2
(k) + β3xi3

(k) + β4zi
(k)

。 

而 EM 演算法的 M 步驟為求使得ℓ(yi, 𝐱i, zi|β, µm,πm)有最大值的參數

γ� = (β,µm,πm)，亦即求γ�(t) = �β(t+1), µm
(t+1),πm

(t+1)� = arg max Q�γ�γ(t)�。 

我們利用 Newton-Raphson 方法估計β(t+1)： 

β(t+1) = β(t) − �H�β(t)��
−1 1
∂β(t) Q�(1)�β(t)�γ(t)� 

1
∂β(t) Q�(1)�β(t)�γ(t)� =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1
250

∑ �∑ yixi1
(k)300

i=1 �250
k=1 − 1

250
∑ ∑ �xi1

(k)eηi
(k)

1+eηi
(k) �300

i=1
250
k=1

1
250

∑ �∑ yixi2
(k)300

i=1 �250
k=1 − 1

250
∑ ∑ �xi2

(k)eηi
(k)

1+eηi
(k) �300

i=1
250
k=1

1
250

∑ �∑ yixi3
(k)300

i=1 �250
k=1 − 1

250
∑ ∑ �xi3

(k)eηi
(k)

1+eηi
(k) �300

i=1
250
k=1

1
250

∑ �∑ yizi
(k)300

i=1 �250
k=1 − 1

250
∑ ∑ �zi

(k)eηi
(k)

1+eηi
(k) �300

i=1
250
k=1

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

(4.11) 

Hessian matrix H�β(t)� = 1
∂β(t) ∂β(t) Q�(1)�β(t)�γ(t)� (4.12) 

對於Q�(2)�µm,πm�γ(t)�中參數µm的估計為： 
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µ�m = � 1
250

∑ �∑ xi1
(k)300

i=1 �250
k=1 , 1

250
∑ �∑ xi2

(k)300
i=1 � , 1

250
∑ �∑ xi3

(k)300
i=1 �250

k=1
250
k=1 �       (4.13) 

π�m = 1
250

∑ �∑ zi
(k)300

i=1 �250
k=1                                              (4.14) 

m = 0,1。在 10%、30%與 50%的設限比例下，當第(t)次到第(t + 1)遞迴所得到的

參數估計之差值分別小於0.01、0.1 與 1 時，則此時的β(t+1)為所求，即

�β(t+1) − β(t)� < 𝜀時則 N-R 法達到收斂，其中ε = 0.01、0.1 與 1；若尚未滿足收

斂條件，則重複再對�𝐱det,i ���, yi, 𝐱obs,i, 𝐳obs,i, γ(t)�� × I�cl < 𝐱det,i < cu�與

�𝐳mis,i
���, yi, 𝐱obs,i, 𝐳obs,i, γ(t)�� × I�cl < 𝐱det,i < cu�做取另一組抽樣樣本，並計算(4.5)

式至(4.14)式，如此循環後直至滿足收斂條件。 
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第二節 模擬結果 

我們以 Schisterman et al.(2006)參數估計之做法和完整觀察個體分析

(Complete-Case Analysis)與本研究所提的方法作參數估計的比較，進行模擬 250 組

資料的參數估計。表 1、表 2 與表 3 為此三種方法分別在資料設限比例為 10%、30%

與 50%的情形下，設立真實迴歸參數值(β1,β2,β3,β4) = (3,0.26,0.17,−0.5)作 250

組模擬資料之參數估計結果與標準差的比較。 

  從表 1 可知道，在設限比例為 10%下，以 Schisterman et al.(2006)與本文所提

之方法在參數估計上較完整觀察個體分析來得不偏，就精準度與不偏性來說，又

以本文的方法較為精準與不偏；在比較中，三種方法在估計類別變數的參數上都

有較明顯的偏差，且其偏差範圍皆大於 0.1。 

就設限比例為 30%的情況下，從表 2 可得知三種估計方法與真實參數值有些

許明顯的差異，由於在分析上，完整觀察個體分析刪除多筆資料，因此在估計上

其所估計之參數較偏離真實直，因此在三種方法的比較中，尤以完整觀察個體分

析的參數估計與真實參數值偏差為最大；而本文的方法在設限比例變大下，在估

計參數上也較明顯有偏差，但仍為三種比較方法中為最佳的估計方法。 

表 3 中，當連續變數的設限比例增加到 50%時，三種估計方法在參數估計上

有明顯的偏差，且以完整觀察個體分析之參數估計上的偏差為最大，而本文之方

法與真實參數值之差異也隨設限比例之增加而隨之變大；由於本文之方法因探討

到變數間彼此的相關性，因此在三者比較中，本文之方法較 Schisterman et al. (2006)

與完整觀察個體分析來的較佳，以完整觀察個體分析為較差。 
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表 1：設限比例為 10%下，Monte Carlo EM、Schisterman et al.(2006)與 Complete-Case Analysis 之比較 
  Monte Carlo EM Schisterman et al.(2006) Complete-Case Analysis 
 True Value Estimate SE Estimate SE Estimate SE 
β1 3 2.99752 0.01044 3.07564 0.03337 3.16603 0.17750 
β2 0.26 0.25987 0.01275 0.24142 0.01815 0.44582 0.16052 
β3 0.17 0.17063 0.01727 0.31409 0.01935 0.46533 0.29617 
β4 -0.5 -0.50014 0.00364 -0.82545 0.02279 -0.43484 0.27418 
µ01 0 0.08661 0.00772 0.09375 0.00488 0.31450 0.02676 
µ02 0 0.00298 0.00193 0.67756 0.00574 0.74547 0.03146 
µ03 0 0.00175 0.01889 0.93887 0.00473 0.10316 0.08089 
µ11 1 0.99172 0.00394 0.93750 0.00488 0.31423 0.03392 
µ12 1 1.00693 0.01090 0.67356 0.00574 0.69451 0.03857 
µ13 1 1.02047 0.01002 0.91888 0.00473 1.02034 0.03764 
π1 0.3 0.40105 0.00745 0.53420 0.02741 0.48451 0.02179 

*註：(µ01,µ02, µ03)代表類別變數之數 值為 0 時，連續變數(x1, x2, x3)分佈所對應的期望值；(µ11, µ12,µ13)代表類別變數之數 值為 1 時，

連續變數(x1, x2, x3)分佈所對應的期望值；π1為類別變數 之數值為 0 的機率。 
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表 2：設限比例為 30%下，Monte Carlo EM、Schisterman et al.(2006)與 Complete-Case Analysis 之比較 
  Monte Carlo EM Schisterman et al.(2006) Complete-Case Analysis 
 True Value Estimate SE Estimate SE Estimate SE 
β1 3 2.79837 0.01128 2.29682 0.03036 3.30735 0.03775 
β2 0.26 0.18385 0.01899 0.11072 0.01982 0.35425 0.02136 
β3 0.17 0.30872 0.01171 0.31739 0.02053 0.44315 0.02161 
β4 -0.5 -0.78020 0.00199 -1.14014 0.02493 -0.18828 0.02294 
µ01 0 0.18468 0.00960 0.31932 0.04632 0.33742 0.00515 
µ02 0 0.32539 0.00821 0.62226 0.00545 0.59464 0.00559 
µ03 0 0.51390 0.01261 0.75200 0.00504 0.82250 0.00531 
µ11 1 0.77893 0.00146 0.31932 0.04632 0.34116 0.00374 
µ12 1 0.82206 0.00180 0.62226 0.00545 0.60567 0.00407 
µ13 1 1.21822 0.04373 0.85200 0.00504 0.84019 0.00390 
π1 0.3 0.35886 0.00152 0.50432 0.02648 0.48382 0.02153 

*註：(µ01,µ02, µ03)代表類別變數之數 值為 0 時，連續變數(x1, x2, x3)分佈所對應的期望值；(µ11, µ12,µ13)代表類別變數之數 值為 1 時，

連續變數(x1, x2, x3)分佈所對應的期望值；π1為類別變數 之數值為 0 的機率。 
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表 3：設限比例為 50%下，Monte Carlo EM、Schisterman et al.(2006)與 Complete-Case Analysis 之比較 
  Monte Carlo EM Schisterman et al.(2006) Complete-Case Analysis 
 True Value Estimate SE Estimate SE Estimate SE 
β1 3 2.59837 0.01520 1.39703 0.02824 6.25357 1.53243 
β2 0.26 0.14385 0.09179 -0.15641 0.02538 -0.25712 1.04256 
β3 0.17 0.36872 0.02103 0.03511 0.02523 2.37343 1.71283 
β4 -0.5 -0.98525 0.02031 -1.67454 0.02069 -1.13779 0.54129 
µ01 0 0.37832 0.00991 0.46202 0.00392 0.43160 0.01580 
µ02 0 0.43376 0.08370 0.59096 0.00418 0.58071 0.06358 
µ03 0 0.60102 0.01329 0.64377 0.00401 0.72735 0.03601 
µ11 1 0.61353 0.01815 0.46202 0.00392 0.44594 0.03948 
µ12 1 0.66830 0.01813 0.59096 0.00418 0.58500 0.00453 
µ13 1 1.54920 0.04641 0.74377 0.00401 0.62828 0.01416 
π1 0.3 0.49373 0.01699 0.50954 0.02605 0.52336 0.02114 

*註：(µ01,µ02, µ03)代表類別變數之數 值為 0 時，連續變數(x1, x2, x3)分佈所對應的期望值；(µ11,µ12,µ13)代表類別

變數之數 值為 1 時，連續變數(x1, x2, x3)分佈所對應的期望值；π1為類別變數 之數值為 0 的機率。 
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第五章 結果與討論 

不同於 May, Ibrahim, & Chu (2011)研究方法僅能適用在變數為類別變數下以

Monte Carlo EM 法進行迴歸參數的估計，並與完整觀察個體分析和簡單替代法比

較，本篇論文在模式中額外加入類別變數，並探討當類別變數為隨機遺失機制且

連續變數為受偵測極限影響的非隨機遺失值機制時，藉由 Monte Carlo EM 演算法

計算其參數估計值，並與 Schisterman et al.(2006)方法和完整觀察個體分析在不同

設限比例下作參數估計值的比較。 

經由比較在不同設限比例下三種方法的參數估計值可知，由於因為本篇論文

考慮到變數間彼此的相關性，故所提出的方法在不同的設限比例下其參數估計值

較 Schisterman et al.(2006)方法和完整觀察個體分析來得不偏。然而隨著設限比例

的增加，本研究方法的參數估計值與真實係數值也隨之有明顯的差距，但仍較其

他另兩種方法來得接近真實值。因此，本文提供一個相較於個別插補和完全觀察

個體分析其參數估計較為不偏的方法。 

由於本文所指的設限比例只針對遺失的連續變數資料占總資料的比例而言，

並未考慮到類別變數的遺失比例，而導致類別變數的遺失比例過多，進而影響到

本論文方法的估計精準度。因此，在未來研究時，可進一步將類別的遺失比例也

一併考慮；另外，也可探討當隨機遺失機制的類別變數為非隨機遺失機制時，此

時的參數估計是否仍為三種比較方法中的最佳估計量，且與隨機遺失機制的參數

估計量是否有差異。這些議題皆可放於日後作為探討的目標。 
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【附錄】 

(3.8)式與(3.9)的推導過程如下： 

(3.8)式：p�𝐱det,i�yi, 𝐱obs,i, 𝐳mis,i, 𝐳obs,i, γ(t)�I�cl < 𝐱det,i < cu� 

=
p�yi, 𝐱obs,i,𝐱det,i, 𝐳mis,i, 𝐳obs,i, γ(t)�I�cl < 𝐱det,i < cu�

∫ p�yi, 𝐱obs,i,𝐱det,i, 𝐳mis,i, 𝐳obs,i, γ(t)�d𝐱det,i
 

∝ p�yi,𝐱i, 𝐳i, γ(t)�I�cl < 𝐱det,i < 𝑢𝑏� 

= p�yi�𝐱i, 𝐳i, γ(t)� × p�𝐱i, 𝐳i, γ(t)� I�cl < 𝐱det,i < cu� 

= p�yi�𝐱i, 𝐳i, γ(t)� ×
p�𝐱i, 𝐳i, γ(t)�

∬ p(𝐱i, 𝐳i, γ(t))d𝐱obs,id𝐱det,i
× �p�𝐱i, 𝐳i, γ(t)�d𝐱obs,id𝐱det,i 

× I�cl < 𝐱det,i < cu� 

= p�yi�𝐱i, 𝐳i, γ(t)� × p�𝐱i�𝐳i, γ(t)� × �p�𝐱i, 𝐳i, γ(t)�d𝐱obs,id𝐱det,i 

× I�cl < 𝐱det,i < cu� 

∝  p�yi�𝐱i, 𝐳i, γ(t)� × p�𝐱i�𝐳i, γ(t)� 

(3.9)式：p�𝐳mis,i�yi, 𝐱obs,i,𝐱det,i, 𝐳obs,i, γ(t)�I�cl < 𝐱det,i < cu� 

=
p�yi, 𝐱obs,i,𝐱det,i, 𝐳mis,i, 𝐳obs,i, γ(t)�I�cl < 𝐱det,i < cu�

∑ p�yi, 𝐱obs,i, 𝐱det,i, 𝐳mis,i, 𝐳obs,i, γ(t)�𝐳mis,i

 

∝ p�yi,𝐱i, 𝐳i, γ(t)�I�cl < 𝐱det,i < cu� 

= p�yi�𝐱i, 𝐳i, γ(t)� × p�𝐱i, 𝐳i, γ(t)� I�cl < 𝐱det,i < cu� 

= p�yi�𝐱i, 𝐳i, γ(t)� ×
p�𝐱i, 𝐳i, γ(t)�

∬ p(𝐱i, 𝐳i, γ(t))d𝐱obs,id𝐱det,i
× �p�𝐱i, 𝐳i, γ(t)�d𝐱obs,id𝐱det,i 

× I�cl < 𝐱det,i < cu� 

= p�yi�𝐱i, 𝐳i, γ(t)� × p�𝐱i�𝐳i, γ(t)� × p�𝐳i�γ(t)� × I�cl < 𝐱det,i < cu� 
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