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Abstract

In many environmental and laboratory studies, instrument detection limits often lead
to missing values of the data. The existing methods for the regression analysis for the
data with at most two covariates subject to detection limits include simple substitution,
imputation, and model-based methods. While either multiple continuous covariates or
multiple categorical covariates alone are subject to detection limits, the most common
approaches are the model-based method, Expectation-Maximization (EM) algorithm,
and a Monte Carlo version of EM algorithm to obtain the maximum likelihood

estimates via sampling.

In this paper, we consider a more complex case of missing covariates that both

multiple continuous covariates subject to detection limits and categorical covariates

with missing at random mechanism are presented in the logistic regression analysis. The

aim of this paper is to provide a method for estimating the parameters of regression

models for data with covariates subject to detection limit and missing at random

mechanism. We use the Monte Carlo version for the E-step of the EM algorithm to

tackle the high dimensional integration and summation due to the missing covariates

subject to detection limits and random missing. We conduct a simulation study to

compare the performance of the proposed Monte Carlo EM algorithm approach with the

complete-case method and the imputation method proposed by Schisterman et al.

(2006).

The results of the simulation study showed that the proposed approach resulted in



relatively unbiased estimates with smaller standard error than the complete-case method

and the imputation method by Schisterman et al, (2006).

Keywords : detection limits; maximum likelihood estimation; missing at random;

Monte Carlo EM; Newton-Raphson methods
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=
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p & % #ic(covariates) i £ o fipAL o 2 i s p(y;lx;, 0) Tk 5 iF 2 4 @ [y|x;] e
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e §F il ym i 4 4 5 S-#e(dispersion parameter) s p(xila) & [xi] i E A8 5 o

B @A S xR R TR (yp x) I A A G T B - B

P, y1) = p(yilx;, O)p(xila)
& (X, y) B E A o o Pl F#cdpalog PRI S E B S 4o T
log — likelihood 1(x, y|y) = log[TiL; p(xi, yi)
., loglp(yilx;, ©)p(xilo)] = i, log[p(yilx;, 6)] + loglp(x; a)] (2.5)
Hey=(0,a) > 0531 &3 BAEcnLdo
B0 R VR BEIR 0 £ X5 P 7 XeensiZ Xobsi™ i8A 0 Xobsi N E 2
BLZ 3| g ic(fully observed covariates) » Xeensi ™ % — q; X 16738 "L fow £ (vector
of censored covariates) - ¥ % i & subject #% | & % #ic(covariate)m 3 » H & "L EH
(censoring interval) 3 (cpij, cuij) > 2 B S G R LT BF © doehiba) o T A
(€1 < Xcensi < Cu) 5 Xcens, ® R BATHB IR F > T
(¢ < Xensi < Cu) = nxijexcens_i(clij < Xij < Cyij) (2.6)
#d baten EETT K adT MR PR L ke 50 S i
TSR Y BT L) =B
Q(y[y®) = E( % # #ic# chlog ¥ i & e[| 7 LR T cHL 2 B AL T )
=E(IxpyilV)| 5 i BRAZ B2 LR E)
= E{XIL, log[p(yilx;, B)] + log[p(x;le)] | % i % 1B 882 % 1w, y(}

%0 BB R E,yO)

= YL E{log[p(ilx;, B)] + log[p(x;la)]
BRI R e S R B 2 LR By en A B B AR T (Y, Xobs,i)
T (o) < Xeensi < Cu) T o F 0 B EK K U B 7 R g o R
EMiF B2 hEHB Az B Al &7 ud 5 i BREBHYE t2 &
SIE H B S

Qi (Yly(t)) = flog[p(Yilxi' B)] p(Xcens,ilxobs,i: Yis y(t)' C < Xcens,i < Cu)dxcens,i
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+ [ 1oglp(xi1e0] P(Xcens,i|Xobs,i Vi Y, €1 < Xcensi < Cu)dXcens;

= [10g[p(il%i, B)] P(Xcens,i|Xobs,is ¥ir Y) X I(c1 < Xcens,i < €u)dXcens;

+ [ log[p(xila)] p(Xcens;i|Xobsi Yir Y¥) X (€1 < Xcensi < Cu)dXcens,i

= QP BI) + o7 (alr©) @)
3 2 Qi (YY) T F T F Xeens i T 7 AR CVREIE 0 AL B HP AN
(closed-form) sz 17 ¢ 214 47 fe » Flpt gt Benff 2 3 F R * 58+ B EM
FH G RfEAS S F AP S T P A H 4 REM R 2 EH IS (t+ D=
2 (277 R FAEA - B KA EE RS LG [Xeensi|Xobs, Vi YO 1(cr <
Xeensi < Cu)EFHE & o 2t 48 2 7 135 1B ARMS 30 72 $ 04 15 2 8 2 4o R o
HEIBERBH 2 F- P E BT L FIBEREH A UFEB g
Bodm o WfEkizgs -7 7qER AR E B EFF T REMFELEZ CE

H DR (C+ 1)F 25
Q(YY®) = - Ziy £(z0 Xobssn VoY) = QU (BY©) + 47 (oly®)  (28)
2 Q(yy®) =2, Q (Y[y®) » Fst EM it 5 i e M #h 38 & $1(2.8)5% wi- FiAes &
L5 R gz
QUIY®) = T, (YY) = Ziky - B - (i Xobsio Vi Y) =0 (29)

%A ETens R0 8 |BED — BO|| < echig 2 pE > BT 8 3] S BBiif 3 T L
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TRAREE a5 -y T x| 5 - px 1 § £ fdcw £ (X, Xz, Xip)
xR T BRERMOY | PR RBEREE j=1,p 2] S qx Lo %
e B (zin,2ig 0 2ig) 0 2 4 %0 B | B Rz 7 LB P (levels)
BB REE S - qar 53 C= [ B witfenr|ma > 5 - BRMETE
WipCRiotidic? - BRRA 2 F BHOE S AR I " K k- B
Bent 25 i ?ﬂ’Cov(xi]-,xik) = (R Cov(zi]-,zik) 0> 2 Fi#1pF >
Cov(xi]-,xlk) =0- Cov(zi]-,zlk) =0-

R & 03] (Generalized linear models)shigk o 24 ¥ i yi PR 45
¥ 7% & i (Exponential family) » & ® ¥ i% i 4é % & fie(link function)z® = 4v 44 3p B
7]+ (linear predictor)g? 4 i #p 3 B2 M th o F1F B%¥Hy; 5 = ~ 7K 4 & logit

g d S v i 2 (31) 5N afisl

dﬂﬁD=kﬁﬁmmmJ0=B@ﬁ?+&@ﬁ (3.1)

29 By = (B Bp) » By = (Bp+1, . Bpeg) ¥ # ¥ £ «
PiE 2 (v, X, Z) 08 & 4 w0 BV By hE BT x E zeniE 2 [y ]x,2i]exg
i i A x|z i A 6 []5 1 o £ ygeis A i [y, 2] %

B SR A S S p(yilxuzB) 0 B - (pH ) x Lamddw £ 5 x ik i 4 0
[xij|zi] B 7 & 48 5 % & Sl s p(Xlzg, W) 0 ps x ik 8 G Tt e dodic o Tt E

Rz BT BB S Ep R A 2B Tz E SRR Sk

13



p(zim) > mE zy e E A B AT RSl RIp L TR (Y X, Z) R EL TV

p(yi X1, 2i) = p(yilx;, zi, B)p(X;|zi, 0)p(z;|m) 3.2)
2o EEF R e o 2 50 Bik(log likelihood) ® B = -
(B, o, ly;, X3, 25,1 = 1,++-,N) = log [T p(y3, X, Z;)
= YiL {loglp(yilxi, zi, )] + log[p(x;|z;, )] + log[p(z;Im)]} (3.3)

Fla 1 & SRS gL fF B Tt H 8 ScazR] 5 i) 0 nuisance 4k o

51 % Little & Schluchter(1985) ¥+ 4 % #c 2 57 W F fic2 B efp b gy i > T &

Eni-Cx1e® B8 mBiEsl 2450 m=12-,C;Z5-CX1lsm

ek

R F IR RMAqEIEAY DR - wRE o RZ = Ey o 15 it

FFHaguFHodillsa™ BTk d TH 3 BEEL T

i e e AT £ B =i g O AR

(1) 4 > N BERZBMEE N qanmid oy - mtp N BRZBHT ARG

JRIE= 3G 2 & = e iy, =pr(Z;=E,) i=12-,Nm=

1,2.-,C; FEXRFHEN,Z 75 mBottp 2Bk o m=1,.--,C> ¥
¢ _.ny, =N Bl(ng,ny, -, nc)~Mutinomial(N, 1t;, my, -+, )

(2 FEEFIBERZBME ALY DEm Bt (FZ;=EL)FAT o

BRI PR S REF ANy, D) 0 B P B F By, 2B m B Tk

5 Wxi|Z; = E~Np(pm, Z) °
(3) fiF izt

X2z, 0 F % Hylxg, z~ Ber(pl) Hoe ok pi?? NEE &

_ _ __exp{Bpxi +B(@zi )
pl - p(y1 - 1|X1) Zl) - 1+eXp{B(p)x;r+B(q)z;r}

b TR R R

BN S E AR TE i

L(B, o, mly;, x3,25) = [TL, p(yi, x3,25) = [T, p(yilxi, zi, B)P(Xi|Zi, hn) P (Zi]TTm)

Hy;=1 _
= TN ( exp{B(p)x'ir+B(q)z;f} ) =1} < 1 )I{YI 0} o
=1 (\trexp(Bpxi +Bgzi) 1+exp{Bp)x{ +Bq)2] }

14



L g - 1 Ty—-1 C VA
(ﬁ) |Z| 2 exp {_E(Xi — |.lm) X~ (Xi — pm)} X Hm:l“m lm}

H{y;=1} I{y;=0}
exp{BpX; +B()Zi } 1 i
<IN, {( @5+ }) ( _ )

1+exp{[3(p)xrir+[3(q)z;r 1+exp{8(p)xi +B(q)zi }

X 5172 exp =2 (% = ) T2 — p) | X TGy ) (34)
¥ EA T 5 4 % R 2 (detection limit) B SF s dieps o AP 4 2 Bk,
€ 7% Xget i Xobsi™ T84 0 H P Xgerja - N X 1N He B 0 R AR I BREZBH
FEnEE GREIEEA § R FRARE T = (X1, X2 X)) Xobsi 5
(p—r)x1e & » & ¥H? TP ETAABET - BEXHEF 1 B subject ch% j
® % #c(covariate)m % - H 1 P& L0t "L (upper bound) £ T L (lower bound) 4 %] %
O & Cyij > 3K FL T B (censoring interval) & (o, €uij)° g (0 < Xgeri < Cu) 5 Xdet, ?
PR HTH AU R 0 T

(Cl < Xdet,i < Cu) = ﬂ (Clij < Xij < Cuij)

Xjj€Xdet,i

M4 7  RA FTHRPRFERIZ T 7 T Zopsi D Zmisi™ T84 0 B Y Zpigia F
BPEZRMF EL FTHas; x12 $#ce £ 7 25 %3 4 #4](missing at random
mechanism) » @ Zgpg;» ~ % F 2 2L ZI|BE(q —s;) X 12 e £ o

$ TR RS T R TIRG E R A R AT 5 R 5 8(3.4)
NBH o W - A T L L R A Sk 4 P 3B (MLE) s

i EM ;2 (Dempster, Laird, & Rubin,

(1977) 17 E 4 3 % 4o 124t £if & ¢

*‘“l&
o
=
St
m
o3

F i BB RBPTHT Y
REFT OB BB B 7(34):7NHEM 2 EH e B+
Q(v[y®) = E{ZN., log[p(y;, x;, 2] |observed;, y®}

= E{XN, log[p(y;|x:, 2, B)] + log[p(xi|zi, 1, )] + log[p(zil )] [observed;, y}

=E{YN. Ify, = Pl ) L ¢N e = _ 1
- E{ i=1 I{YI - l}log (1+exp{ﬂi}) + Zi:l I{YI - O}IOg (1+eXp{T]i})

1 1 —
~LlogI=] + 2 (% — W) "= (s = ttm) + St (TN Zim) i [observed,, y©} (35)
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He s observed; & ¥ i BB FAABRBI OHEL TR YOR L L EM E Y
RIS =AY 7 ?‘ﬁ (t) = (t) (t) (t) ’ . = T T o A 4"\—— g i
ZEE RN Hcy B™, iy, T Ni B(p)xl + B(q)zl e 81}

PR ST A TR AR A PSR @EE A T e A
BRI E HF Y TR BB I NT U (V) Xobs iy Zobsi) * P AF B F ¢ 7 il
BHEILFOR o e gt 4 24 0 R B RHE U BT R o Bt At
W BB I EAT 30 5 (Vi Xobs)is Zobs,i ) 2 (€1 < Xeti <€) ° FIH(BE) T B &
Q(v[y®) = E{ZiL, log[p(yi, X1, 20)] [Xobs i» Vis Zobsi Y, &1 < Xgeti < Cu}
#“Qi(yy®)
= Yzmies J 1080 i 1X:, 23, B)] P(Xdetis Zmisi|Xobs,i Yis Zobs,i y®)
X 1(¢] < Xgeti < Cu)dXget
+ Yamis: J oglp(xilzi, )] + logp(z; )]} P(Xdeti» Zmis.i|Xobs,i» Vi Zobs,is YO)
X 1(c] < Xgeti < Cu)dXgeti
= Q™ (BIY®) + Q (pum, Ty ®) (3.6)
H # p(Xdeti Zmis i Xobs,i» Yir Zobs,i V) &

t
p(xdet,il Znis,i |xobs,i' Yi» Zops,is Y( ))

— p(Yi'xobs,i'Xdet,i'zobs,i'zmis,i'y(t)) (3 7)
Zzmis; J P(YiXobs,iXdetiZobs,iZmisi V) dXdet '

((3.6)5 ¢ o KEF L RHE U PR e % v R O P TR

PFEAOPFESEKL FRADIERA 0 TG IO EVNERETELAN A
(38.7)3% # 18 * 5 p(Vi, Xobs i Xdeti» Zobs i» Zmisi YO ) S BT & % B o e > 5 44
B A T P BX ot i 8 i, WA A TR - FE R g WA A F AP
rig * Wei & Tanner(1990) #74% <7 MCEM % & i 1 * % # + B4 4~ (Monte Carlo
Intergration) 2 11 12(3.6)3% ¥ EM i & 2 e E 4 38 W 5 B3k i K F S dich(x) e 7

Bl = Ern[h(x)] = [h()f(x)dx> P 7 j& G f(x) ¢ "4 A 2 M B & (xq, -+, Xy)
c s p .
WXy, 0, Xm)~ F(X) > 199538 ~ Bz Rl = %ZkM=1h (xK) = Efx) [h(x)] =15 13+%
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EMiF%i2? chEHF > AP iHs - BRI 34 THOGELAL - 2 M
B % p #*7 (truncated) 4 i [Xdet‘i, zmis,i|xobs,i, Vis zobs,i,y(t)] xl(cl < Xgetj < cu) ek
* B (Xdet i Zmis,) * 4 $R 7 35 B ¥ T 5% i 2 4 & (full conditional distribution)
i {7 ARMS 34 $ (adaptive rejection metropolis sampling) % % = :
[Xdeti|Vis Xobs,i» Zmis,i» Zobsi» YO ]1(€] < Xgeti < cu)
o [yi1%3,2i, YO X [Ximis,i [Xobs,i 2 [1(c1 < Xgeri < ub) (3.8)

[ Zimis,i|Yir Xobs,i» Xdet,i» Zobsin YO ]1(€] < Xgeti < cu)

o [yi1%3,2i, YO X [Ximis,i [Xobsi 2] X [Zmis,i|Zobsi] 1(¢1 < Xgeri < ub) (3.9)

B e AR 2 HE BRABW I AP @I - ik Al M vk R

ek

w8 0 Vi = (Xgetir Zmisi) * T 5 i BREBIE EM F 2 0% (t+ )5 f 2
E # %? o
Qi(vYIY®) = 5 24 2(Vito Xobs s Zobs,Y,)
= 22 QP (BY®) #+ 5 241 Q) (i, [y ©)
294 QU(BY©®) £ Q" (i, Tt [y ®) 5 1238

Q(l)(ﬁh’(t)) = %&1:4:1{2%\]:1 log p(Yi|Xobs,i; Vik) Zmis, is B)}

QP (i, T [y®) = $21¥=1{Z%\1=1 10g (X, Zi[Xobs,i» Zobs,i» Viks Hm» Tm) }

GEM ¢ 5 tZeki M A3 T 2305 @ QO(BlyD) 2 QD (jy, T [y©)
B B s (D e (D g e e R L BYD S T 8 S B RS
Bl ez aes 3t B s A e i+ 2 852 (Newton Raphson; N-R) = i % 3+ & gD
I

Be+D = B0~ [H(BV)] ™ 555 QO (V] 7 ©) (3.10)

St
Ao
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k '
Zk 121 1¥YiX 1(1) b’ (y1)

£
1 5 — b’
mQ(l)(g(t>| 7 ©®) = Zk 2R 1YiX; (Yz)
Zk 121 1YIX1(IIJ() b’ (Yn)/
. . 1 ~

* Hessian matrix H(B®) = WQ(l)(B(t)| 7 ®) -
ERBATRE BRIy A HR 2 0 B (y) 5 &.ﬁ:ﬁszzlzyzllog(l +
exp{n®]) #B FEiA o B BEL0) et 1 0 A A B (DT L+ Dk
ot E Pl e Rl P2 £ ) - BRem o Pl pE e 5 s
IBED — BO|| < ept Rl N-R % & Si4edt 3 %4 A Kfcaeif & PIEA 2 #

[xdet,il' Yi:xobs,i'zobs,i' Y( ] X I(Cl < Xdetl & Cu) [zmlsll Y1'Xobs ir zobsvy ] X

I(c) < Xgeti < Cu) B~ T — e dh 3% & > 4ot TR E 2 08 KfcaciE i o

18



Bk - 2 TR{(yx{ 7)1 = 1,2,---} 'y =015 AFR X =

(Xi1, Xiz, Xjz) 5 B F LB ¥ X BRI 25 77 @ B P (levels)sugw] 8
DR HAE HR A S ERR AP o K2 - MERCE R

logit p(y; = 1|xj,2;) = B1Xix + BaXiz + BaXis + Pazi (4.1)
RIp(yi = 11x4,2;) = exp{n; — log(1 + e")}> & & m; = Byxj1 + BoXiz + PsXiz + Pazi
(B1, B2, B3, Bs) = (3,0.26,0.17,—0.5) » H ¢ (X1, Xjp, Xj3) % ¥ BIHE*L(c), ¢) 738 = A
U H R LA bl A R 0 BB SR UL 6] 5 10% ~ 30%2 50% » F]
P& et TG R ?7}—'— P RERK L B A | 5 5% ~ 15%%F 25%2_ F ~ frd /]

L
B ©

§ ) e S P R B Rk 2 R LA - gk

ODHFRE A3 Splz =m) = mym = 0,1 K = (1, ;) = (0.3,0.7) Rlz; &

(1442 = - £U; > U;~Uniform(0,1) -

0 #0<U;<0.3
(2)z; = e
1 # 03<U;<1

T HEQ)~QH > L1 AL - gk 0 1=1,,300 ¢ B(Xjy, Xi, Xi3) ¥
Wz =mT g A GRS REF A T N3 (Wim, Zaxz) * B EE S pypdp HASE

BRI hE - B TR, X2, Xi3) P REFE AT ITE S HK A

T [0;0)0] ’ Fé%; Zi = 0 L, , . . o
Him = [ o I 4 H 2 % R fiip L (covariance matrix) &

0; 012 O3 1 03 04
3wz =| 012 0'% 033 =<0.3 1 O.7>§
04 07 1

2
013 023 O3
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o (40)5 i st 20w 2 4300 £ sy e B ¥y R IR 9% 4 A i Ber(py)
2 Zdkp; = p(y; = 11x;) = exp{n; —log(1 + €M)} - & **(Xjq, Xj2, Xi3) X W /1= T

(chL C)R > b 7 MRE (0, 0) el iE 5 B4 T A - @ B WS4 TR

g s op o1 g i koL B B s % . exp {2xyi} o g
RN oz 2 KT BEAT Y - § A B Fpomis; = 1+exp{2><1y-} S R Y
1

, . . zig Mj =0
RHEM PR TOY 4 4~ wBer(p.mis;) » Rlzieif 2 THK T iz = { }
i p 1 1 F] = 1 NA g M] — 1

P(Vi, Xi1, Xi2, Xi3 Zis Hm)

= p(¥ilXi1, Xi2s Xi3» Zis Hm) P(Xi1, Xiz, Xi31Zi, Hm)Pr(z; = m)

A\ Hyi=1} {yi=0}
- (%E]{ﬁi})ly 1 (1+ex1p{'r]i})ly : 2

7 &P (=5 06— w2~ ) T T ™™ (42)
5 (2)5 B H s PIT @50 A % AR T e P b e
(B, by Tmlyi X1, ) = £i(Ylyi, X, Zi)
= log[p(yilxi, zi, B)] + loglp(xilzi, tm)] + log[p(zi|mm)]
o yim; — log(1 + ™) — (x; — k)X (Xi — m) " + Xfh=o 1{z; = m}logm, (4.3)
£y = (B tm, ) cEM % E 9% 38 T4 = B licdy TR en i ot i S0 e i 2 9 o (o
PIEM % 2 % | B % (t+ 1=t E#3 5
Qi(Y[Y®) = E[£i(B, k> Tn |5 X1 ZD) | Y1 Xobs,ir €1 < Xdeti < Cu Zobs,ir YO
= E[log[p(yilxi, zi, B)] + log[p(xizi, tm)]
+ log[p(zilﬂm)HYirxobs,ir € < Xdeti < Cu Zobs,iiy(t)]
= Yzt J 10801 1X4, 23, B)] X P(Xdet,is Zmis,i|Vis Xobs,is Zobs,i y®)
X 1(0) < Xgeti < Cu)dXget
+ Vzmiss J 108D (X125, )] + log[p (2] )]}
X P(Xdeti» Zmis,i|Yir Xobs,i» Zobs,i» YO )I(€1 < Xgeti < Cu)dXget (4.4)
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20 5ay® = (O, 1)) @R EFxger T DR HH 5
B B g2 R TEEXY DB QRpEIEE 2 @
Xdeti = (Xin, Xz, Xiz) * RI(44)eff 2 34 5 = A o FRL A PR * 5+ BfA K
FRABR S E R AR TESFN I EHASA PG BB
[Xdeti Zmis,i| Vi Xobs,i» Zobs,i VP X 1(C] < Xgeri < €q) 4 46 B~ 2 FoR
(Xdeti» Zmisi) > @ 2 4 & 5% BT )% Gibbs 4 > R ER A G
[Xdet,i|'Yi;Xobs,iizobs,iiy(t)] X I(Cl < Xdet,i < Cu)—/';i’ [Zmis,i|JYi'Xobs,i; Zobs,is Y(t)] X
(0 < Xger; < ub)#add $ > 40 P~ 1000 B 2w Evio vz 5 i B BHY 25 8
2 FoR g T3 (burn-in)m 750 B iR A 0 g G+ B L DT A EM 2
HIE H P E TS
E[log[p (i, zi, B)]|¥1 Xobs,ip €1 < Xdeti < Cus Zobsin Y1 |
= — 325 (log[p(yi|Xobs» Vit Zmis» B)]) = Q" (B[y®) (4.5)
E[log[p(xilzi, tm)] + 10g[p(Zi|tm) 1| Vi Xobsi ¢ < Xdeti < Cu» Zobs,i» YO
= L5290 log[p (i, zXobsi Zobsis ik T )] = @ (s T Y9) (@.6)
0 A JURIER A TR NPT e
[Xdet,i|'Yi'Xobs,i'Zmis,i; Zobsi» 7 (t)]l(cl < Xdeti < Cu) x [Yilxi'zi; Y(t)] X
[Xmis,i|Xobs,i» Zi]1(c1 < Xgeti < cu) (4.7)
[Zmis,i|'Yi'Xobs,i'Xdet,i; Zobsi» 7 (t)]l(cl < Xdeti < Cu) x [Yilxi'zi; Y(t)] X

[xmis,ilxobs,i'zi] X [zmis,i] I(Cl < Xdet,i < Cu) (4-8)

He o,

{ i= } { i= }
[yilx;zs, YO et 2 3 & andic i (ﬂ)ly ' (;)‘y 0

1+exp{n;} 1+exp{n;}
[Xmlsllxobsvz]m%};—l TR S BCF B Xy PR ECF R P A e Bt iR

& Xmis,i 5 Xobsierif){%mﬁP B A ] G umis,i‘f‘?uobs,i JE E .3 Sl VP
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Z _ (Zmis,mis Zmis,obs

-1
Z b . Z bs.ob ) ’ E'J [xmis,ilxobs,i'zi]NN(IJ-mis,i + Zmis,oszobs,obs (Xobs,i -
obs,mis obs,obs

Mobs i), Smismis — Lmis,obsLobs,obs  Lobsmis)

[me] s R B Sk L 1TOI{zl =0}q I{zi=1}

dANRIEREAGA T HIANNE@G.8) N cht @A > F A PE * ARMS
% (Gilks, Best, & Ta,1995) k 4o B~j% i% £ & 5 o 3 $k {5 > o (4.5)22(4.6) 7 e ¥ 4

QW(Bly®) 22 Q® (i, Ty [y®) ™ 4 7 &

QO(BIY®) = 22 QY () = 755 5% {5 yni® ~ 522 10g (1 + ')} (49

Q@ (o i [Y®) = 220 QP (vIY®)

2250 {2300()(1 llm)Z_l(Xi - um)T + 2111120(213:0? Wim)T[m} (4-10)

2o =B, x(k) + Bzx(k) + B3X(k) + B4Zi(k) °

U

 EM B2 M 3RS KR B0 X 7l B by ) B~ B eh5di
7= (Bt M) > 7 49O = (B, pY, nlit ) = argmax Q(y[y®) -

# 4] * Newton-Raphson = i f 31

B0 = B0 = [1(BO)] " 55 QB0 7 ©)

1+e i

&)
X)) n;
1 250 300 (9] 250 300 [ Xi1 el
250 =1 YiXj1 k 1 Li=1 Q)
1+e''i
&)
&) n;
1 250 (2300 ) 250 300 [ Xjp !
i=1 Yi¥{ k=1 D=1 ®
250 n:
_L_QW(B®] ¢ ®) = el @)
opm® 4 GRS '
1 250 300 (k) 250 300 Xz !
i=1 YiXj3 250 i=1 NG
1+e"i
209 n {0
1 250 300 ., (K) 2250 300 el
250 i=1Yi% )~ 250 n{

Hessian matrix H(B®) = —— <t>as(t) QW(BD| ¥ ®) (4.12)

1950 (s o 7 )¢ B 575

22



i = (2058 (B0 o TS (200 oo BAE (B000)) - 419)

~ _ 1 250( 300 (k)) (4.14)

T y/
m = 559 i=1

m=0,1° & 10% ~ 30%% 50%:3% *Lt 6] T > F % (D)= F] % (t+ Dk 718 3] e

W] #20.01~ 0.1 22 1 pF s Bt ErerBtD Losp gy e

ST LAES
|BEHD — BO|| < el N-R iz Fjcac £ e=001-011; %% A% e
aciE o B EAF B HXdei| Vi Xobs,ir Zobsi YO X 1(c) < Xgeti < €u) &

[Zmis,i|» Vi Xobs,i Zobsin YO X 1(01 < Xgeri < €q) W5 ¥ — fgo $ 4% & » 13- ¥ (4.5)

R I (414)50 > hept EIRISE T % RojTaciE i o
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o8 HmEs

2\ {7 12 Schisterman et al.(2006) % #ic 7 3+ 2. # fox R B A 47
(Complete-Case Analysis) &2 77 7 #7131 j# 17 foffcip 3- gt > 12 {7 3% 250 2
TR EGE A2 12284322720 B AT HR V65 10%~30%
2 50%¢ AT 0 k2 B i 29 (By, Bz B3, Ba) = (3,0.26,0.17,—0.5) iF 250

EHRE ML SRS R SRR L At .

‘3\

JEF L7 Frig 0 ARV B 510%™ 5 2 Schisterman et al.(2006) 42 » < #74%

Lk bR R R B A TR G AT R T B

N
S
<
A
W
g
i
S
P
ﬁ
T
>

B Y o S B N R S R
FRPEDRL > P HiBLFRYT 01
fjh;{ PO B 5 30%eiE R T 0 R 2 FAv filst 3 2 B F fdciE g &

FRREDLRE > d WAL > R FRBERMAIE LT F AR

DS ISP

i £
%37 o F BBV BB e P 50%PE > = AR R SR

E
=
Py
=
i
g\\}
“ﬁi"t
¥
Erid
=
=
i3
D7
—
N
™
X
2
a1
=y N
ﬂ
=
P“
‘?“
A=
?\_
d
(w

A

FHEF FEEZ AR RV Bl e SR S d AT 23 TR
TR Bt chdp M Tt 2 0?2 23 32 i Schisterman et al. (2006)

BREERRBHAPT RG> YR ERBRBMA I ARL -
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% 1% )5 10% T - Monte Carlo EM ~ Schisterman et al.(2006) 22 Complete-Case Analysis 2 +* #iz

Monte Carlo EM Schisterman et al.(2006) Complete-Case Analysis
True Value Estimate SE Estimate SE Estimate SE

B1 3 2.99752 0.01044 3.07564 0.03337 3.16603 0.17750
B, 0.26 0.25987 0.01275 0.24142 0.01815 0.44582 0.16052
B3 0.17 0.17063 0.01727 0.31409 0.01935 0.46533 0.29617
B4 -0.5 -0.50014 0.00364 -0.82545 0.02279 -0.43484 0.27418
o1 0 0.08661 0.00772 0.09375 0.00488 0.31450 0.02676
o2 0 0.00298 0.00193 0.67756 0.00574 0.74547 0.03146
Ho3 0 0.00175 0.01889 0.93887 0.00473 0.10316 0.08089
Wiy 1 0.99172 0.00394 0.93750 0.00488 0.31423 0.03392
1o 1 1.00693 0.01090 0.67356 0.00574 0.69451 0.03857
i3 1 1.02047 0.01002 0.91888 0.00473 1.02034 0.03764
m 0.3 0.40105 0.00745 0.53420 0.02741 0.48451 0.02179

*31 " (Ho1, Moz Mos) 7 % A7 5] S dicz Bz ® 5 0 PF > it A % #c(xy, X, X3) & 1 “THHE P F 85 (Myg, Moy Ma3) P 2 47 B 2 ezl 5 1 pF
W R B(Xy, X, X3) A T AT e B Ty 5 AR R Wz e S 0 s o
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% 2% 5 30%T - Monte Carlo EM ~ Schisterman et al.(2006) 22 Complete-Case Analysis 2 +* #iz

Monte Carlo EM Schisterman et al.(2006) Complete-Case Analysis
True Value Estimate SE Estimate SE Estimate SE

B1 3 2.79837 0.01128 2.29682 0.03036 3.30735 0.03775
B, 0.26 0.18385 0.01899 0.11072 0.01982 0.35425 0.02136
B3 0.17 0.30872 0.01171 0.31739 0.02053 0.44315 0.02161
B4 -0.5 -0.78020 0.00199 -1.14014 0.02493 -0.18828 0.02294
o1 0 0.18468 0.00960 0.31932 0.04632 0.33742 0.00515
o2 0 0.32539 0.00821 0.62226 0.00545 0.59464 0.00559
Ho3 0 0.51390 0.01261 0.75200 0.00504 0.82250 0.00531
Wiy 1 0.77893 0.00146 0.31932 0.04632 0.34116 0.00374
Wiz 1 0.82206 0.00180 0.62226 0.00545 0.60567 0.00407
i3 1 1.21822 0.04373 0.85200 0.00504 0.84019 0.00390
m 0.3 0.35886 0.00152 0.50432 0.02648 0.48382 0.02153

*L 1 (o1, Moz, Mo3) ™ 2 37 %] ez Bezie 5 0 FF » 38 R Xy, Xp, X3) & (7 “THIG I B 5 (Myq, Mg Hy3) 2 37 5] F 2 fezB 5 1% o
B R B(X, X, X3) A FATH P Y B My s SR Wz B S 0P o
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% 31 & B 5 50% T - Monte Carlo EM ~ Schisterman et al.(2006) 22 Complete-Case Analysis 2 +* #iz

Monte Carlo EM Schisterman et al.(2006) Complete-Case Analysis
True Value Estimate SE Estimate SE Estimate SE

B1 3 2.59837 0.01520 1.39703 0.02824 6.25357 1.53243
B, 0.26 0.14385 0.09179 -0.15641 0.02538 -0.25712 1.04256
B3 0.17 0.36872 0.02103 0.03511 0.02523 2.37343 1.71283
B4 -0.5 -0.98525 0.02031 -1.67454 0.02069 -1.13779 0.54129
o1 0 0.37832 0.00991 0.46202 0.00392 0.43160 0.01580
Ho2 0 0.43376 0.08370 0.59096 0.00418 0.58071 0.06358
Ho3 0 0.60102 0.01329 0.64377 0.00401 0.72735 0.03601
Wiy 1 0.61353 0.01815 0.46202 0.00392 0.44594 0.03948
Wiz 1 0.66830 0.01813 0.59096 0.00418 0.58500 0.00453
i3 1 1.54920 0.04641 0.74377 0.00401 0.62828 0.01416
m 0.3 0.49373 0.01699 0.50954 0.02605 0.52336 0.02114

*3L 1 (Mors Moy Ho3) ™ & 27 5] R fic2 fiz® 2 0 FF > i % die(Xq, X0, Xg) & 6 TP F & 5 (g1, Mag, Mas) P 2 575

R BzE L L R R, Xy, X)) A TR E S R Rz BB R Ol S oo
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