請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66924
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊燿州 | |
dc.contributor.author | Yi-Che Tsai | en |
dc.contributor.author | 蔡宜哲 | zh_TW |
dc.date.accessioned | 2021-06-17T01:14:57Z | - |
dc.date.available | 2019-08-25 | |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-14 | |
dc.identifier.citation | [1] S. Mazaheri, and E. Zahedi, 'A comparative review of blood pressure measurement methods using pulse wave velocity,' pp. 1-5.
[2] E. O'Brien, R. Asmar, L. Beilin, Y. Imai, J. M. Mallion, G. Mancia, T. Mengden, M. Myers, P. Padfield, P. Palatini, G. Parati, T. Pickering, J. Redon, J. Staessen, G. Stergiou, P. Verdecchia, and M. European Society of Hypertension Working Group on Blood Pressure, “European Society of Hypertension recommendations for conventional, ambulatory and home blood pressure measurement,” J Hypertens, vol. 21, no. 5, pp. 821-48, May, 2003. [3] M. Ward, and J. A. Langton, “Blood pressure measurement,” Continuing Education in Anaesthesia, Critical Care & Pain, vol. 7, no. 4, pp. 122-126, 2007. [4] A. Kalmar, “Evaluation of arterial tonometry in a clinical setting.” Hydraulics Laboratory, 2002. [5] X. Cheng, X. Xue, Y. Ma, M. Han, W. Zhang, Z. Xu, H. Zhang, and H. Zhang, “Implantable and self-powered blood pressure monitoring based on a piezoelectric thinfilm: Simulated, in vitro and in vivo studies,” Nano Energy, vol. 22, pp. 453-460, 2016. [6] S. Staufert, and C. Hierold, “Novel sensor integration approach for blood pressure sensing in ventricular assist devices,” Procedia Engineering, vol. 168, pp. 71-75, 2016. [7] O. H. Murphy, M. R. Bahmanyar, A. Borghi, C. N. McLeod, M. Navaratnarajah, M. H. Yacoub, and C. Toumazou, “Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor,” Biomed Microdevices, vol. 15, no. 5, pp. 737-49, 2013. [8] X. Chen, D. Brox, B. Assadsangabi, Y. Hsiang, and K. Takahata, “Intelligent telemetric stent for wireless monitoring of intravascular pressure and its in vivo testing,” Biomed Microdevices, vol. 16, no. 5, pp. 745-59, 2014. [9] R. H. Baker, and J. Ende, “Confounders of auscultatory blood pressure measurement,” Journal of General Internal Medicine, vol. 10, no. 4, pp. pp 223–231, 1995. [10] J. E. T. Yury L. Shevchenko, “90th Anniversary of the Development by Nikolai S. Korotkoff of the Auscultatory Method of Measuring Blood Pressure,” Circulation, vol. 94, no. 2, pp. 116-118, 1996. [11] S. C. Mauck GW, Geddes LA, Bourland JD, “The Meaning of the Point of Maximum Oscillations in Cuff Pressure in the Indirect Measurement of Blood Pressure—Part II,” ASME. J Biomech Eng, vol. 102, no. 1, pp. 28-33, 1980. [12] K. Ge, “Errors in clinical measurement of blood pressure in obesity,” clinical science, vol. 32, no. 2, pp. 223-237, 1967. [13] A. K. R. Mark Yelderman, “Indirect measurement of mean blood pressure in the anesthetized patient,” Anesthesiology, vol. 50, no. 3, pp. 253-256, 1979. [14] G. Ogedegbe, and T. Pickering, “Principles and techniques of blood pressure measurement,” Cardiol Clin, vol. 28, no. 4, pp. 571-86, 2010. [15] J. Penaz, “Photoelectric measurement of blood pressure, volume and flow in the finger,” Digest of the 10th international conference on medical and biological engineering, pp. pp. 104-104, 1973. [16] B. P. M. I. Wilbert T. Jellema, J. Van Goudoever*, K. H. WESSELING* and J. J. Van Lieshout, “Finger arterial versus intrabrachial pressure and continuous cardiac output during head-up tilt testing in healthy subjects,” Clinical Science vol. 91, no. 2, pp. 193-200, 1996. [17] L. W. Bogert, and J. J. van Lieshout, “Non-invasive pulsatile arterial pressure and stroke volume changes from the human finger,” Exp Physiol, vol. 90, no. 4, pp. 437-46, 2005. [18] E. D. Lehmann, “Clinical value of aortic pulse-wave velocity measurement,” The Lancet, vol. 354, no. 9178, pp. 528-529, 1999. [19] J. N. Cohn, “Vascular wall function as a risk marker for cardiovascular disease,” J Hypertens Suppl, vol. 17, no. 5, pp. 41-44, 1999. [20] D. E. G. Nicole M. van Popele, Michiel L. Bots, R. Asmar, J. Topouchian, R. S. Reneman, A. P. G. Hoeks, D. A. M. Van Der Kuip, A. Hofman, J. C. M. Witteman, “Association between arterial stiffness and atherosclerosis: the Rotterdam Study,” Stroke, vol. 32, no. 2, pp. 454-460, 2001. [21] A. B. Roland Asmar, J. Topouchian, P. Laurent, B. Pannier, A.-M. Brisac, R. Target, B. I. Levy, “Assessment of arterial distensibility by automatic pulse wave velocity measurement. Validation and clinical application studies,” Hypertension, vol. 26, no. 3, 1995. [22] L. Peter, N. Noury, and M. Cerny, “A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?,” Irbm, vol. 35, no. 5, pp. 271-282, 2014. [23] G. L. P. a. P. M. Newgard, “A Transducer for the Continuous External Measurement of Arterial Blood Pressure,” IEEE Transactions on Bio-medical Electronics, vol. 10, no. 2, pp. 73-81, 1963. [24] H. B. Yao, J. Ge, C. F. Wang, X. Wang, W. Hu, Z. J. Zheng, Y. Ni, and S. H. Yu, “A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design,” Adv Mater, vol. 25, no. 46, pp. 6692-8, 2013. [25] L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, and Z. Bao, “An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film,” Nat Commun, vol. 5, pp. 3002, 2014. [26] F. Y. Taotao Guan, W. Wang, X. Huang, B. Jiang, J. He, L. Zhang, F. Fu, D. Li, R. Li, Q. Zhao, W. Wang, and D. Zhang “A Novel 0-3 KPa piezoresistive pressure sensor based on a Shuriken-structured diaphragm,” IEEE 29th International Conference on Micro Electro Mechanical Systems, 2016. [27] J.-l. Yao, X. Yang, N. Shao, H. Luo, T. Zhang, and W.-g. Jiang, “A flexible and highly sensitive piezoresistive pressure sensor based on micropatterned films coated with carbon nanotubes,” Journal of Nanomaterials, vol. 2016, pp. 1-5, 2016. [28] Y. Guo, S. Schutz, A. Vaghi, Y.-H. Li, Z. Guo, F.-K. Chang, D. Barrettino, and S. X. Wang, “Stand-Alone Stretchable Absolute Pressure Sensing System for Industrial Applications,” IEEE Transactions on Industrial Electronics, pp. 1-1, 2017. [29] A. D. Smith, F. Niklaus, A. Paussa, S. Schroder, A. C. Fischer, M. Sterner, S. Wagner, S. Vaziri, F. Forsberg, D. Esseni, M. Ostling, and M. C. Lemme, “Piezoresistive Properties of Suspended Graphene Membranes under Uniaxial and Biaxial Strain in Nanoelectromechanical Pressure Sensors,” ACS Nano, vol. 10, no. 11, pp. 9879-9886, 2016. [30] S.-J. Woo, J.-H. Kong, D.-G. Kim, and J.-M. Kim, “A thin all-elastomeric capacitive pressure sensor array based on micro-contact printed elastic conductors,” J. Mater. Chem. C, vol. 2, no. 22, pp. 4415-4422, 2014. [31] N. Marsi, B. Y. Majlis, A. A. Hamzah, and F. Mohd-Yasin, “High Reliability of MEMS Packaged Capacitive Pressure Sensor Employing 3C-SiC for High Temperature,” Energy Procedia, vol. 68, pp. 471-479, 2015. [32] S. Wan, H. Bi, Y. Zhou, X. Xie, S. Su, K. Yin, and L. Sun, “Graphene oxide as high-performance dielectric materials for capacitive pressure sensors,” Carbon, vol. 114, pp. 209-216, 2017. [33] L. Y. Chen, B. C. Tee, A. L. Chortos, G. Schwartz, V. Tse, D. J. Lipomi, H. S. Wong, M. V. McConnell, and Z. Bao, “Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care,” Nat Commun, vol. 5, pp. 5028, Oct 06, 2014. [34] Y. M. Chen, S. M. He, C. H. Huang, C. C. Huang, W. P. Shih, C. L. Chu, J. Kong, J. Li, and C. Y. Su, “Ultra-large suspended graphene as a highly elastic membrane for capacitive pressure sensors,” Nanoscale, vol. 8, no. 6, pp. 3555-64, 2016. [35] C. L. Choong, M. B. Shim, B. S. Lee, S. Jeon, D. S. Ko, T. H. Kang, J. Bae, S. H. Lee, K. E. Byun, J. Im, Y. J. Jeong, C. E. Park, J. J. Park, and U. I. Chung, “Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array,” Adv Mater, vol. 26, no. 21, pp. 3451-8, 2014. [36] X. Wang, Y. Gu, Z. Xiong, Z. Cui, and T. Zhang, “Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals,” Adv Mater, vol. 26, no. 9, pp. 1336-42, 2014. [37] H. L. Gao, Y. B. Zhu, L. B. Mao, F. C. Wang, X. S. Luo, Y. Y. Liu, Y. Lu, Z. Pan, J. Ge, W. Shen, Y. R. Zheng, L. Xu, L. J. Wang, W. H. Xu, H. A. Wu, and S. H. Yu, “Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure,” Nat Commun, vol. 7, pp. 12920, 2016. [38] Y. Tai, T. Kanti Bera, Z. Yang, and G. Lubineau, “Leveraging a temperature-tunable, scale-like microstructure to produce multimodal, supersensitive sensors,” Nanoscale, vol. 9, no. 23, pp. 7888-7894, 2017. [39] X. Song, T. Sun, J. Yang, L. Yu, D. Wei, L. Fang, B. Lu, C. Du, and D. Wei, “Direct growth of graphene films on 3D grating structural quartz substrates for high-performance pressure-sensitive sensors,” ACS Appl Mater Interfaces, vol. 8, no. 26, pp. 16869-75, 2016. [40] W. Deng, X. Huang, W. Chu, Y. Chen, L. Mao, Q. Tang, and W. Yang, “Microstructure-based interfacial tuning mechanism of capacitive pressure sensors for electronic skin,” Journal of Sensors, vol. 2016, pp. 1-8, 2016. [41] G. Y. Bae, S. W. Pak, D. Kim, G. Lee, H. Kim do, Y. Chung, and K. Cho, “Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array,” Adv Mater, vol. 28, no. 26, pp. 5300-6, 2016. [42] 劉繼珩. '認識心血管疾病 遠離十大死因排行榜,' http://www.nhi.gov.tw/epaper/ItemDetail.aspx?DataID=3994&IsWebData=0&ItemTypeID=7&PapersID=355. [43] J. M. a. A. N. Gary M. Drzewiecki, “Arterial tonometry: review and analysis,” J Biomech, vol. 16, no. 2, pp. 141-152, 1983. [44] S.-H. L. Jia-Jung Wang, C.-I. Chern, J.-H. Hsieh, “Development of an arterial applanation tonometer for detecting arterial blood pressure and volume,” Biomedical Engineering: Applications, Basis and Communications, vol. 16, no. 6, 2004. [45] T. G. Pickering, J. E. Hall, L. J. Appel, B. E. Falkner, J. Graves, M. N. Hill, D. W. Jones, T. Kurtz, S. G. Sheps, and E. J. Roccella, “Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research,” Circulation, vol. 111, no. 5, pp. 697-716, 2005. [46] D. T. Donna Thomas 'Congestive heart failure: the essence of heart failure,' https://ceufast.com/course/congestive-heart-failure-the-essence-of-heart-failure. [47] Y. Z. Yingfei Su, Yueming Jin, Yang Yao, Ruifeng Zhang, Yongsheng Jiang, Lisheng Xu “The feasibility for dicrotic augmentation index to replace tidal augmentation index*,” Proceeding of the IEEE International Conference on Information and Automation 2014. [48] J. H. D. Korpas, L. Dolezal “Parameters describing the pulse wave,” PHYSIOLOGICAL RESEARCH, vol. 58, pp. 473-479, 2008. [49] K.-t. Lau, C. Gu, and D. Hui, “A critical review on nanotube and nanotube/nanoclay related polymer composite materials,” Composites Part B: Engineering, vol. 37, no. 6, pp. 425-436, 2006. [50] J. M. S Ramakrishna, E Wintermantel, Kam WLeong, “Biomedical applications of polymer-composite materials: a review,” Composites Science and Technology, vol. 61, no. 9, pp. 1189-1224, 2001. [51] S. B. L. Seung Il Cho, “Fast Electrochemistry of Conductive Polymer Nanotubes: Synthesis, Mechanism, and Application,” ACCOUNTS OF CHEMICAL RESEARCH, vol. 41, no. 6, pp. 699-707, 2008. [52] V. V. D. Ye.P. Mamunya, P. Pissis, E.V. Lebedev, “Electrical and thermal conductivity of polymers filled with metal powders,” European Polymer Journal vol. 38, no. 9, pp. 1887-1897, 2002. [53] G. R. Ruschau, S. Yoshikawa, and R. E. Newnham, “Resistivities of conductive composites,” Journal of Applied Physics, vol. 72, no. 3, pp. 953-959, 1992. [54] N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, “Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor,” Acta Materialia, vol. 56, no. 13, pp. 2929-2936, 2008. [55] 祁忠勇, “FFT與訊號處理簡介,” 1994. [56] N. E. Huang, and Z. Wu, “A review on Hilbert-Huang transform: Method and its applications to geophysical studies,” Reviews of Geophysics, vol. 46, no. 2, 2008. [57] N. O. A.-O. Norden E. Huang, 'The Hilbert-Huang Transform in Engineering, ' CRC Press, 2005. [58] S. Deguchi, J. Hotta, S. Yokoyama, and T. S. Matsui, “Viscoelastic and optical properties of four different PDMS polymers,” Journal of Micromechanics and Microengineering, vol. 25, no. 9, pp. 097002, 2015. [59] S. K. V. Erik E Holly, F. Chambon and H. Henning Winter, “Fourier transform mechanical speciroscopy of viscoelastic materials with transient structure,” Journal of Non-Newtonian Fhad Mechamcs,, vol. 27, no. 1, pp. 17-26, 1988. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66924 | - |
dc.description.abstract | 本研究開發了一具拉力控制之脈壓感測裝置,並將其應用在以動脈張力法之理論基礎之非侵入式連續脈波監測上。此脈波量測裝置由壓力與拉力感測器所組成,將壓力感測器放置於手腕橈動脈上方,並對其施加一固定外力,根據動脈張力法,其所量測到之脈波訊號會與血壓成正關係。而拉力感測器能量化量測時之拉力,使壓力感測器之預壓程度能固定,更能使受試者在最佳與舒適之拉力下量測到穩定且清晰之脈搏訊號,更能標準化量測之預壓,並增加感測效率與完整度。
本研究之壓力與拉力感測器之基礎材料皆為多壁奈米碳管及PDMS聚合物所構成之具微結構的導電高分子與電極所組成,其表面之微結構是以尼龍濾膜為模具,並將其表面之孔隙翻模轉印而成。實驗結果顯示出,本研究之元件具有快速之動態反應,且在脈搏量測之預壓範圍內有線性電阻變化,更重要的是其製程簡單且製造成本低。本研究也成功利用此脈壓感測系統,量測出最適當預壓下之脈搏訊號,並利用後端之訊號處理分析以消除低頻訊號之飄移和高頻雜訊,證實其為可靠之脈壓訊號。而在未來研究中,將可利用此脈搏壓力訊號與連續動態血壓資訊做比較與轉換,並且提供給學術與臨床醫學上做使用。 | zh_TW |
dc.description.abstract | In this work, a tension controlled pulse wave sensing device for continuous blood pulse wave monitoring based on the tonometric method was presented. The pulse wave sensing device consists of a pressure sensor and a tension sensor installed on a strap. According to the tonometric method, the pressure sensor is placed on the skin above a radial artery by wrapping a strap around the wrist of a patient. The arterial pressure estimated by the pressure sensor. The tension of the strap could be measured by the tension sensor so that the preload of the pressure sensor can be regulated in an appropriate range for measuring a stable and clear pulse wave signals. The sensing element of the proposed pressure and tension sensor consisted of the conductive polymer film made by dispersing multiple carbon nanotubes into polydimethylsiloxane (PDMS) polymer patterned with microdome structures by using the nylon membrane filter as a mold. The proposed device features a rapid dynamic response and the linear resistance changes in the preload range. In addition, the fabricated process of the device was simple and low cost. The drift and high-frequency noise of the pulse wave signals were resolved by Fast Fourier Transform (FFT) and Hilbert Huang Transform (HHT). The measured pulse wave signals can be transformed into continuous dynamic blood pressure signals in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:14:57Z (GMT). No. of bitstreams: 1 ntu-106-R04522705-1.pdf: 5743200 bytes, checksum: ef61f75fbf383fe472733b5ec8bd2233 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 I
摘要 III ABSTRACT IV 目錄 V 圖目錄 IX 表目錄 XV 符號說明 XVI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 侵入式血壓量測 2 1.2.2 非侵入式血壓量測 6 1.2.2.1 聽診法(Auscultatory measurement) 7 1.2.2.2 振盪法(Oscillometric measurement) 8 1.2.2.3 恆定容積法(Volume clamp method) 9 1.2.2.4 脈搏波速測定法(Pulse wave velocity method, PWV) 10 1.2.2.5 脈搏傳遞時間法(Pulse transit time method, PPT) 11 1.2.2.6 動脈張力測定法(Tonometry) 12 1.2.3 壓力感測器 13 1.2.3.1 壓阻式壓力感測器 13 1.2.3.2 電容式壓力感測器 18 1.2.4 具微結構之壓力感測器 22 1.3 研究動機與目的 27 1.4 論文架構 29 第二章 理論基礎 30 2.1 動脈張力測定法 30 2.2 脈波訊號波形分析與概述 33 2.2.1 脈波之產生[45] 34 2.2.2 脈波之特徵點[47] 35 2.3 導電高分子 38 2.3.1 高分子基材 38 2.3.2 導電粒子 39 2.3.3 導電高分子之導電機制 39 2.4 脈搏訊號處理 44 2.4.1 快速傅立葉轉換 44 2.4.2 希爾伯特-黃轉換(Hilbert-Huang Transform, HHT) 46 第三章 元件設計與製程 52 3.1 元件設計 52 3.1.1 壓力感測器設計 53 3.1.2 拉力感測器設計 53 3.2 元件製作流程 55 3.3 導電高分子之製備 56 3.4 模具製作 58 3.4.1 光罩設計 59 3.4.2 微影製程 60 3.5 導電高分子之填充與結構轉印 65 3.6 元件製程結果 66 3.6.1 SU-8光阻框架與導電高分子 66 3.6.2 電子顯微鏡(SEM)圖 67 3.7 元件之組裝與封裝 67 3.7.1 元件實體圖 69 3.8 電路製作 70 第四章 量測結果與討論 71 4.1 靜態量測(導電高分子厚度之決定) 71 4.1.1 不同厚度導電高分子製作 71 4.1.2 量測平台架設 71 4.1.3 量測結果與討論 72 表4.1 靜態量測之表格整理 75 4.2 元件電阻變化量測 75 4.2.1 量測平台架設 75 4.2.2 量測結果與討論 76 4.3 元件頻率響應量測 78 4.3.1 量測平台架設 78 4.3.2 量測結果與討論 79 4.3.2.1 壓電致動器之限制 79 4.3.2.2 訊號之振幅與相位差之判斷 79 4.3.2.3 元件之頻率響應 80 4.4 有限元素法分析血壓與元件受力之關係 82 4.4.1 模型建立 82 4.4.2 邊界條件設定 83 4.4.3 模擬結果與討論 83 4.5 拉力元件之電阻變化量測 86 4.5.1 量測平台架設 86 4.5.2 量測結果與討論 87 4.6 脈波訊號量測 87 4.6.1 脈波訊號量測設備架設(搭配拉力感測器) 87 4.6.2 脈波量測結果與訊號處理 89 4.6.2.1 量測結果 89 4.6.2.2 脈波之訊號處理 97 第五章 結論與未來展望 103 5.1 結論 103 5.2 未來展望 104 參考資料 106 附錄A 114 | |
dc.language.iso | zh-TW | |
dc.title | 具拉力控制之高靈敏度連續脈波量測系統 | zh_TW |
dc.title | Highly Sensitive Continuous Blood Pulse Wave Monitoring System with Tension Control | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳國聲,蘇裕軒 | |
dc.subject.keyword | 壓力感測器,拉力感測器,動脈張力法,連續脈波偵測,導電高分子,奈米碳管,尼龍濾膜,聚二甲基矽氧烷(PDMS), | zh_TW |
dc.subject.keyword | Pressure sensor,tension sensor,tonometric method,continuous blood pulse wave measurement,conductive polymer,carbon nanotube,nylon membrane filter,polydimethylsiloxane(PDMS), | en |
dc.relation.page | 116 | |
dc.identifier.doi | 10.6342/NTU201703254 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 5.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。