請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66841
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 沈聖峰(Sheng-Feng Shen) | |
dc.contributor.author | Yu-Heng Lin | en |
dc.contributor.author | 林宇恆 | zh_TW |
dc.date.accessioned | 2021-06-17T01:09:20Z | - |
dc.date.available | 2020-01-21 | |
dc.date.copyright | 2020-01-21 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-01-20 | |
dc.identifier.citation | Alexander, R. D. (1974). 'The evolution of social behavior.' Annual review of ecology and systematics 5(1): 325-383.
Allee, W. C. (1938). 'The social life of animals.' Anderson, D. and K. Burnham (2004). 'Model selection and multi-model inference.' Second. NY: Springer-Verlag 63. Arnold, K. E. and I. P. Owens (1999). 'Cooperative breeding in birds: the role of ecology.' Behavioral Ecology 10(5): 465-471. Austad, S. N. and K. N. Rabenold (1985). 'Reproductive enhancement by helpers and an experimental inquiry into its mechanism in the bicolored wren.' Behavioral Ecology and Sociobiology 17(1): 19-27. Avilés, L., et al. (2007). 'Altitudinal patterns of spider sociality and the biology of a new midelevation social Anelosimus species in Ecuador.' The American Naturalist 170(5): 783-792. BirdLife International and Handbook of the Birds of the World (2016). 'Bird species distribution maps of the world. .' Version 6.0. http:// datazone.birdlife.org/ species/requestdis. Accessed December 23, 2016. Blomberg, S. P., et al. (2003). 'Testing for phylogenetic signal in comparative data: behavioral traits are more labile.' Evolution 57(4): 717-745. Bolnick, D. I., et al. (2010). 'Ecological release from interspecific competition leads to decoupled changes in population and individual niche width.' Proceedings of the Royal Society B: Biological Sciences 277(1689): 1789-1797. Botero, C. A., et al. (2014). 'Environmental harshness is positively correlated with intraspecific divergence in mammals and birds.' Molecular ecology 23(2): 259-268. Brooks, K. C., et al. (2017). 'Ecological generalism facilitates the evolution of sociality in snapping shrimps.' Ecology letters 20(12): 1516-1525. Brown, J. L. (1974). 'Alternate routes to sociality in jays—with a theory for the evolution of altruism and communal breeding.' American Zoologist 14(1): 63-80. Cardon, M., et al. (2011). 'Host characteristics and environmental factors differentially drive the burden and pathogenicity of an ectoparasite: a multilevel causal analysis.' Journal of Animal Ecology 80(3): 657-667. Chan, W.-P., et al. (2016). 'Seasonal and daily climate variation have opposite effects on species elevational range size.' Science 351(6280): 1437-1439. Clutton‐Brock, T., et al. (1999). 'Predation, group size and mortality in a cooperative mongoose, Suricata suricatta.' Journal of Animal Ecology 68(4): 672-683. Cockburn, A. (2006). 'Prevalence of different modes of parental care in birds.' Proceedings of the Royal Society B: Biological Sciences 273(1592): 1375-1383. Cornwallis, C., et al. (2009). 'Routes to indirect fitness in cooperatively breeding vertebrates: kin discrimination and limited dispersal.' Journal of evolutionary biology 22(12): 2445-2457. Cornwallis, C. K., et al. (2017). 'Cooperation facilitates the colonization of harsh environments.' Nature ecology & evolution 1(3): 0057. Courchamp, F., et al. (2002). 'Small pack size imposes a trade-off between hunting and pup-guarding in the painted hunting dog Lycaon pictus.' Behavioral Ecology 13(1): 20-27. Covas, R., et al. (2004). 'Experimental evidence of a link between breeding conditions and the decision to breed or to help in a colonial cooperative bird.' Proceedings of the Royal Society of London. Series B: Biological Sciences 271(1541): 827-832. Covas, R., et al. (2008). 'Helpers in colonial cooperatively breeding sociable weavers Philetairus socius contribute to buffer the effects of adverse breeding conditions.' Behavioral Ecology and Sociobiology 63(1): 103-112. Du Plessis, M. A., et al. (1995). 'Ecological and life-history correlates of cooperative breeding in South African birds.' Oecologia 102(2): 180-188. Dunning Jr, J. B. (2007). CRC handbook of avian body masses, CRC press. Emlen, S. (1990). 'White-fronted bee-eaters: helping in a colonially nesting species.' Cooperative breeding in birds: long-term studies of ecology and behavior: 489-526. Emlen, S. T. (1982). 'The evolution of helping. I. An ecological constraints model.' The American Naturalist 119(1): 29-39. Emlen, S. T. (1991). 'Evolution of cooperative breeding in birds and mammals.' Behavioural ecology. Emlen, S. T. and S. L. Vehrencamp (1983). 'Cooperative breeding strategies among birds.' Perspectives in ornithology: 93-120. Emlen, S. T. and P. H. Wrege (1991). 'Breeding biology of white-fronted bee-eaters at Nakuru: the influence of helpers on breeder fitness.' The Journal of Animal Ecology: 309-326. Emlen, S. T., et al. (1991). 'Flexible growth rates in nestling white-fronted bee-eaters: a possible adaptation to short-term food shortage.' The Condor 93(3): 591-597. Ficetola, G. F., et al. (2017). 'Global determinants of zoogeographical boundaries.' Nature ecology & evolution 1(4): 0089. Ford, H. A., et al. (1988). 'The relationship between ecology and the incidence of cooperative breeding in Australian birds.' Behavioral Ecology and Sociobiology 22(4): 239-249. Gaston, K. J. (2003). The structure and dynamics of geographic ranges, Oxford University Press on Demand. Gonzalez, J.-C. T., et al. (2013). 'Environmental stability and the evolution of cooperative breeding in hornbills.' Proceedings of the Royal Society B: Biological Sciences 280(1768): 20131297. Griesser, M., et al. (2017). 'Family living sets the stage for cooperative breeding and ecological resilience in birds.' PLoS biology 15(6): e2000483. Gusset, M. and D. W. Macdonald (2010). 'Group size effects in cooperatively breeding African wild dogs.' Animal behaviour 79(2): 425-428. Hardenberg, A. v. and A. Gonzalez‐Voyer (2013). 'Disentangling evolutionary cause‐effect relationships with phylogenetic confirmatory path analysis.' Evolution: International Journal of Organic Evolution 67(2): 378-387. Harris, I., et al. (2014). 'Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset.' International journal of climatology 34(3): 623-642. Hatchwell, B. (1999). 'Investment strategies of breeders in avian cooperative breeding systems.' The American Naturalist 154(2): 205-219. Ho, L. S. T., et al. (2018). 'Package ‘phylolm’.' Hurvich, C. M. and C.-L. Tsai (1989). 'Regression and time series model selection in small samples.' Biometrika 76(2): 297-307. Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor Laboratory Press. Ives, A. R. (2018). 'R s for Correlated Data: Phylogenetic Models, LMMs, and GLMMs.' Systematic biology 68(2): 234-251. Ives, A. R. and D. Li (2018). 'rr2: An R package to calculate R2s for regression models.' J. Open Source Software 3(30): 1028. Jetz, W. and D. R. Rubenstein (2011). 'Environmental uncertainty and the global biogeography of cooperative breeding in birds.' Current Biology 21(1): 72-78. Jetz, W., et al. (2012). 'The global diversity of birds in space and time.' Nature 491(7424): 444. Kaspari, M. and E. L. Vargo (1995). 'Colony size as a buffer against seasonality: Bergmann's rule in social insects.' The American Naturalist 145(4): 610-632. Koenig, W. D., et al. (1992). 'The evolution of delayed dispersal in cooperative breeders.' The Quarterly review of biology 67(2): 111-150. Koenig, W. D., et al. (2011). 'Variable helper effects, ecological conditions, and the evolution of cooperative breeding in the acorn woodpecker.' The American Naturalist 178(2): 145-158. Komdeur, J. (1992). 'Importance of habitat saturation and territory quality for evolution of cooperative breeding in the Seychelles warbler.' Nature 358(6386): 493. Lin, Y.-H., et al. (2019). 'Resolving the paradox of environmental quality and sociality: the ecological causes and consequences of cooperative breeding in two lineages of birds.' The American Naturalist 194(2): 000-000. Lukas, D. and T. Clutton-Brock (2017). 'Climate and the distribution of cooperative breeding in mammals.' Royal Society open science 4(1): 160897. Mazerolle, M. J. (2013). 'AICcmodavg: Model selection and multimodel inference based on (Q) AIC (c).' R package version 1: 35. McNamara, J. M. and S. R. Dall (2011). 'The evolution of unconditional strategies via the ‘multiplier effect’.' Ecology letters 14(3): 237-243. Pinheiro, J., et al. (2012). 'nlme: Linear and nonlinear mixed effects models.' R package version 3(0). Pruett-Jones, S. and M. Lewis (1990). 'Sex ratio and habitat limitation promote delayed dispersal in superb fairy-wrens.' Nature 348(6301): 541-542. Rabenold, K. N. (1984). 'Cooperative enhancement of reproductive success in tropical wren societies.' Ecology 65(3): 871-885. Rubenstein, D. R. (2006). The evolution of the social and mating systems of the plural cooperatively breeding superb starling, Lamprotornis superbus, Cornell University, Aug. Rubenstein, D. R. (2007). 'Stress hormones and sociality: integrating social and environmental stressors.' Proceedings of the Royal Society B: Biological Sciences 274(1612): 967-975. Rubenstein, D. R. (2007). 'Temporal but not spatial environmental variation drives adaptive offspring sex allocation in a plural cooperative breeder.' The American Naturalist 170(1): 155-165. Rubenstein, D. R. and I. J. Lovette (2007). 'Temporal environmental variability drives the evolution of cooperative breeding in birds.' Current Biology 17(16): 1414-1419. Sheehan, M. J., et al. (2015). 'Different axes of environmental variation explain the presence vs. extent of cooperative nest founding associations in Polistes paper wasps.' Ecology letters 18(10): 1057-1067. Shen, S. F., et al. (2017). 'The ecology of cooperative breeding behaviour.' Ecology letters 20(6): 708-720. Shipley, B. (2013). 'The AIC model selection method applied to path analytic models compared using ad‐separation test.' Ecology 94(3): 560-564. Short Jr, L. L. (1966). Speciation in Wrens of the Genus Campylorhynchus, JSTOR. Slatyer, R. A., et al. (2013). 'Niche breadth predicts geographical range size: a general ecological pattern.' Ecology letters 16(8): 1104-1114. Soucy, S. L. and B. N. Danforth (2002). 'Phylogeography of the socially polymorphic sweat bee Halictus rubicundus (Hymenoptera: Halictidae).' Evolution 56(2): 330-341. Sun, S.-J., et al. (2014). 'Climate-mediated cooperation promotes niche expansion in burying beetles.' Elife 3: e02440. van der Bijl, W. (2018). 'phylopath: Easy phylogenetic path analysis in R.' PeerJ 6: e4718. Van Valen, L. (1965). 'Morphological variation and width of ecological niche.' The American Naturalist 99(908): 377-390. Wilson, E. O. and O. Kinne (1990). Success and dominance in ecosystems: the case of the social insects, Ecology Institute Oldendorf/Luhe. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66841 | - |
dc.description.abstract | 具有合作生殖特徵的動物遍佈世界各地。先前的研究指出合作行為起源於良性且可預測的環境,但亦可能起源於惡劣且變動的環境中。雙重群體利益理論提到當鳥類的合作行為是源自於在良好及穩定環境時,其合作行為主要為了對抗個體數飽和的環境及種內競爭;然而,在嚴苛且變動的環境下,合作生殖的物種其合作行為將可以增加在惡劣環境中收集資源的效率以及增加育雛成功率。也就是說,不同生態原因以及合作利益將會導致不同合作類型,且個體從合作中所獲得的利益將影響生態後果(物種之地理分布範圍大小)。本篇研究將利用全球尺度的鳥類類群以及物種的分布範圍來檢驗雙重利益理論,我預測當合作行為在良好及穩定環境中演化出來時,因為個體數飽和的環境而使得個體傾向留在母群體當中,所以具合作生殖行為特徵的物種與不具合作生殖行為的物種之地理分布範圍不會有顯著差異。另一方面,在嚴苛且變動的環境下演化出的合作行為的物種將可以藉由合作來提高其在惡劣環境時的環境適存度,所以合作的物種將比非合作物種具有更大的地理分布範圍。本篇研究利用系統發育迴歸分析以及系統發育路徑分析來建構物種的生活史特徵(體重與社會系統)、氣候因子以及地理分布範圍之間的因果關係,並且表明合作生殖是一個包含雙重群體利益的概括性名詞,而物種的分布範圍則是區分兩種合作利益的關鍵因子。最後強調了如何區分形成合作團體的原因是釐清合作生殖行為演化的重要概念,為接下來的研究提供了有利的證據以及經驗範例。 | zh_TW |
dc.description.abstract | Cooperative breeding animals are widely distributed over the world. Previous studies showed that cooperatively breeding behavior was derived from both benign and predictable, harsh and unpredictable environments. This fact can be illustrated by the dual-benefits framework. It mentions that there will be no significant differences in the geographical distribution between the cooperative and non-cooperative species when cooperative behavior derived from benign and stable environments, because individuals tend to stay in the natal group in saturated environments. On the other hand, cooperative breeding behavior derived from harsh and unpredictable environments will lead to a larger species range size because cooperative behavior will increase the fitness of cooperative species. In other words, different types of cooperation are formed by different ecological reasons and cooperative benefits, which will affect the ecological consequences (the geographical distribution of species). This study uses phylogenetic analyses and phylogenetic confirmatory path analysis to construct causal relationships between life-history traits (body mass and social system), climate factors, and geographical distribution by analyzing avian species range size in global scale. The results show that cooperative breeding behavior is an umbrella term, which including all social groups formed by different cooperative benefits. Furthermore, we provide robust evidence that species range size is the key concept to distinguish two cooperative benefits and provide empirical evidence for future studies in different taxa. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:09:20Z (GMT). No. of bitstreams: 1 ntu-109-R07B44004-1.pdf: 1325686 bytes, checksum: 08b74b9cb5f6afec2d674db2d46371cf (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 誌謝………………………………………………………………………………………I
摘要……………………………………………………………………………………...II Abstract…………………………………………………………………………………III 目錄…………………………………………………………………………………….IV 表目錄…………………………………………………………………………………..V 圖目錄………………………………………………………………………………….VI Chapter 1 前言……………………………………………………………………...…..1 Chapter 2 研究方法…………………………………………………………...………..4 Chapter 3 結果……………………………………………………………...…………..7 Chapter 4 討論…………………………………………………………...……………..9 參考文獻……………………………………………………………………………….11 | |
dc.language.iso | zh-TW | |
dc.title | 鳥類的社會征服:全球鳥類社會性與分布範圍之探討 | zh_TW |
dc.title | The Social Conquest of Birds: The Ecological Consequences of Sociality in Cooperatively Breeding Birds | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李壽先(Shou-Hsien Li),王慧瑜(Hui-Yu Wang),端木茂甯(Mao-Ning Tuanmu),謝志豪(Chih-Hao Hsieh) | |
dc.subject.keyword | 合作生殖,雙重利益理論,生態後果,社會性, | zh_TW |
dc.subject.keyword | Cooperative breeding,Dual benefits,Ecological consequences,Sociality, | en |
dc.relation.page | 28 | |
dc.identifier.doi | 10.6342/NTU202000121 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-01-20 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
顯示於系所單位: | 生態學與演化生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 1.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。