請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66820完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈立言(Lee-Yan Sheen) | |
| dc.contributor.author | Shihyu Chuang | en |
| dc.contributor.author | 莊世鈺 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:08:52Z | - |
| dc.date.available | 2020-02-10 | |
| dc.date.copyright | 2020-02-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-01-21 | |
| dc.identifier.citation | Abe, F. (2007). Exploration of the Effects of High Hydrostatic Pressure on Microbial Growth, Physiology and Survival: Perspectives from Piezophysiology. Bioscience, Biotechnology, and Biochemistry, 71, 2347–2357. doi: 10.1271/bbb.70015
Aertsen, A., De Spiegeleer, P., Vanoirbeek, K., Lavilla, M., & Michiels, C. W. (2005). Induction of oxidative stress by high hydrostatic pressure in Escherichia coli. Applied and Environmental Microbiology, 71, 2226–2231. doi: 10.1128/AEM.71.5.2226-2231.2005 Archer, A. W. (1988). Determination of cinnamaldehyde, coumarin and cinnamyl alcohol in cinnamon and cassia by high-performance liquid chromatography. Journal of Chromatography A, 447, 272–276. doi: 10.1016/0021-9673(88)90035-0 Argyri, A. A., Papadopoulou, O. S., Nisiotou, A., Tassou, C. C., & Chorianopoulos, N. (2018). Effect of high pressure processing on the survival of Salmonella Enteritidis and shelf-life of chicken fillets. Food Microbiology, 70, 55–64. doi: 10.1016/j.fm.2017.08.019 Aziz, M., & Karboune, S. (2018). Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 58, 486–511. doi: 10.1080/10408398.2016.1194256 Balasubramaniam, V. M., Farkas, D., & Turek, E. J. (2008). Preserving foods through high-pressure processing. Food Technology, 62, 32–38. Balny C. & Masson P. (1993). Effects of high pressure on proteins. Food Reviews International, 9, 611–628. doi: 10.1080/87559129309540980 Bang, H. B., Lee, Y. H., Kim, S. C., Sung, C. K., & Jeong, K. J. (2016). Metabolic engineering of Escherichia coli for the production of cinnamaldehyde. Microbial Cell Factories, 15, 16. doi: 10.1186/s12934-016-0415-9 Bang, K. H., Lee, D. W., Park, H. M., & Rhee, Y. H. (2000). Inhibition of fungal cell wall synthesizing enzymes by trans-cinnamaldehyde. Bioscience, Biotechnology, and Biochemistry, 64, 1061–1063. doi: 10.1271/bbb.64.1061 Baratta, M. T., Dorman, H. J. D., Deans, S. G., Figueiredo, A. C., Barroso, J. G., & Ruberto, G. (1998). Antimicrobial and antioxidant properties of some commercial essential oils. Flavour and Fragrance Journal, 13, 235–244. doi: 10.1002/(SICI)1099-1026(1998070)13:4<235::AID-FFJ733>3.0.CO;2-T Barbosa-Cánovas, G. V., Pothakamury, U. R., & Swanson, B. G. (1995). State of the art technologies for the stabilization of foods by non-thermal processes: physical methods. In Barbosa-Cánovas, G. V. & Welti-Chanes, J. (Eds.), Food Preservation by Moisture Control: Fundamentals and Applications (pp. 493–532). Lancaster, PA: Technomic Publishing Co. Behravesh, C. B., Jones, T. F., Vugia, D. J., Long, C., Marcus, R., Smith, K., … Scallan, E. (2011). Deaths associated with bacterial pathogens transmitted commonly through food: Foodborne Diseases Active Surveillance Network (FoodNet), 1996-2005. Journal of Infectious Diseases, 204, 263–267. doi: 10.1093/infdis/jir263 Bozoglu, F., Alpas, H., & Kaletunç, G. (2004). Injury recovery of foodborne pathogens in high hydrostatic pressure treated milk during storage. FEMS Immunology and Medical Microbiology, 40, 243–247. doi: 10.1016/S0928-8244(04)00002-1 Brown, K. (1920). The manufacture of phenol in a continuous high-pressure autoclave. Journal of Industrial and Engineering Chemistry, 12, 279–280. Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods–A review. International Journal of Food Microbiology, 94, 223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022 Chien, S. Y., Sheen, S., Sommers, C., & Sheen, L. Y. (2017). Modeling the inactivation of Escherichia coli O157:H7 and Uropathogenic E. coli in ground beef by high pressure processing and citral. Food Control, 73, 672–680. doi: 10.1016/j.foodcont.2016.09.017 Clemente, I., Aznar, M., Silva, F., & Nerín, C. (2016). Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria. Innovative Food Science and Emerging Technologies, 36, 26–33. doi: 10.1016/j.ifset.2016.05.013 Di Pasqua, R., Betts, G., Hoskins, N., Edwards, M., Ercolini, D., & Mauriello, G. (2007). Membrane toxicity of antimicrobial compounds from essential oils. Journal of Agricultural and Food Chemistry, 55, 4863–4870. doi: 10.1021/jf0636465 Doyle, A. A., Krämer, T., Kavanagh, K., & Stephens, J. C. (2019). Cinnamaldehydes: Synthesis, antibacterial evaluation, and the effect of molecular structure on antibacterial activity. Results in Chemistry, 1, 100013. doi: 10.1016/j.rechem.2019.100013 Farkas, D. F., & Hoover, D. G. (2000). High pressure processing. Journal of Food Science, 65, 47–64. doi: 10.1111/j.1750-3841.2000.tb00618.x Farr, D. (1990). High pressure technology in the food industry. Trends in Food Science and Technology, 1, 14–16. doi: 10.1016/0924-2244(90)90004-I Feyaerts, J., Rogiers, G., Corthouts, J., & Michiels, C. W. (2015). Thiol-reactive natural antimicrobials and high pressure treatment synergistically enhance bacterial inactivation. Innovative Food Science and Emerging Technologies, 27, 26–34. doi: 10.1016/j.ifset.2014.12.005 Fisher, K., & Phillips, C. (2008). Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends in Food Science and Technology, 19, 156–164. doi: 10.1016/j.tifs.2007.11.006 Floros, J. D., Newsome, R., Fisher, W., Barbosa-Cánovas, G. V., Chen, H., Dunne, C. P., … Ziegler, G. R. (2010). Feeding the world today and tomorrow: The importance of food science and technology. Comprehensive Reviews in Food Science and Food Safety, 9, 572–599. doi: 10.1111/j.1541-4337.2010.00127.x Friedman, M. (2017). Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. Journal of Agricultural and Food Chemistry, 65, 10406–10423. doi: 10.1021/acs.jafc.7b04344 Gänzle, M., & Liu, Y. (2015). Mechanisms of pressure-mediated cell death and injury in Escherichia coli: From fundamentals to food applications. Frontiers in Microbiology, 6, 599. doi: 10.3389/fmicb.2015.00599 Gayán, E., Torres, J. A., & Paredes-Sabja, D. (2012). Hurdle Approach to Increase the Microbial Inactivation by High Pressure Processing: Effect of Essential Oils. Food Engineering Reviews, 4, 141–148. doi: 10.1007/s12393-012-9055-y George, R. C., Lew, J., & Graves, D. J. (2013). Interaction of cinnamaldehyde and epicatechin with tau: Implications of beneficial effects in modulating Alzheimer’s disease pathogenesis. Journal of Alzheimer’s Disease, 36, 21–40. doi: 10.3233/JAD-122113 Gill, A. O., & Holley, R. A. (2006). Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. International Journal of Food Microbiology, 111, 170–174. doi: 10.1016/j.ijfoodmicro.2006.04.046 Goh, S. G., Kuan, C. H., Loo, Y. Y., Chang, W. S., Lye, Y. L., Soopna, P., … Son, R. (2012). Listeria monocytogenes in retailed raw chicken meat in Malaysia. Poultry Science, 91, 2686–2690. doi: 10.3382/ps.2012-02349 Gunther, N. W., Sites, J., & Sommers, C. (2015). The effects of high-pressure treatments on Campylobacter jejuni in ground poultry products containing polyphosphate additives. Poultry Science, 94, 2297–2302. doi: 10.3382/ps/pev199 Gupta, R., Balasubramaniam, V. M., Schwartz, S. J., & Francis, D. M. (2010). Storage Stability of Lycopene in Tomato Juice Subjected to Combined Pressure-Heat Treatments. Journal of Agricultural and Food Chemistry, 58, 8305–8313. doi: 10.1021/jf101180c Hite, B. H. (1899). The effect of high pressure preservation of milk. West Virginia Agricultural Experiment Station, 58, 15–35. Holley, R. A., & Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiology, 22, 273–292. doi: 10.1016/j.fm.2004.08.006 Hsu, H. Y., Sheen, S., Sites, J., Cassidy, J., Scullen, B., & Sommers, C. (2015). Effect of High Pressure Processing on the survival of Shiga Toxin-Producing Escherichia coli (Big Six vs. O157: H7) in ground beef. Food Microbiology, 48, 1–7. doi: 10.1016/j.fm.2014.12.002 Huang, C. Y., Sheen, S., Sommers, C., & Sheen, L. Y. (2018). Modeling the survival of Escherichia coli O157:H7 under hydrostatic pressure, process temperature, time and allyl isothiocyanate stresses in ground chicken meat. Frontiers in Microbiology, 9, 1871. doi: 10.3389/fmicb.2018.01871 Jakhetia, V., Patel, R., Khatri, P., Pahuja, N., Garg, S., Pandey, A., & Sharma, S. (2010). Cinnamon: a Pharmacological Review. Journal of Advanced Scientific Research, 1, 19–23. Jayatilaka, A., Poole, S. K., Poole, C. F., & Chichila, T. M. P. (1995). Simultaneous micro steam distillation/solvent extraction for the isolation of semivolatile flavor compounds from cinnamon and their separation by series coupled-column gas chromatography. Analytica Chimica Acta, 302, 147–162. doi: 10.1016/0003-2670(94)00445-R Juneja, V. K., & Friedman, M. (2008). Carvacrol and cinnamaldehyde facilitate thermal destruction of Escherichia coli O157:H7 in raw ground beef. Journal of Food Protection, 71, 1604–1611. doi: 10.4315/0362-028X-71.8.1604 Juneja, V. K., Yadav, A. S., Hwang, C. A., Sheen, S., Mukhopadhyay, S., & Friedman, M. (2012). Kinetics of thermal destruction of Salmonella in ground chicken containing trans-cinnamaldehyde and carvacrol. Journal of Food Protection, 75, 289–296. doi: 10.4315/0362-028X.JFP-11-307 Kang, L. L., Zhang, D. M., Ma, C. H., Zhang, J. H., Jia, K. K., Liu, J. H., … Kong, L. D. (2016). Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation. Scientific Reports, 6, 27460. doi: 10.1038/srep27460 Khasnavis, S., & Pahan, K. (2012). Sodium benzoate, a metabolite of cinnamon and a food additive, upregulates neuroprotective Parkinson disease protein DJ-1 in astrocytes and neurons. Journal of Neuroimmune Pharmacology, 7, 424–435. doi: 10.1007/s11481-011-9286-3 Kim, S. H., Hyun, S. H., & Choung, S. Y. (2006). Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. Journal of Ethnopharmacology, 104, 119–123. doi: 10.1016/j.jep.2005.08.059 King, J. W. (2014). Modern Supercritical Fluid Technology for Food Applications. Annual Review of Food Science and Technology, 5, 215–238. doi: 10.1146/annurev-food-030713-092447 Kumar, Y., Yadav, D. N., Ahmad, T., & Narsaiah, K. (2015). Recent Trends in the Use of Natural Antioxidants for Meat and Meat Products. Comprehensive Reviews in Food Science and Food Safety, 14, 796–812. doi: 10.1111/1541-4337.12156 Lado, B. H., & Yousef, A. E. (2002). Alternative food-preservation technologies: Efficacy and mechanisms. Microbes and Infection, 4, 433–440. doi: 10.1016/S1286-4579(02)01557-5 Larson W. P., Harzell, T. B., & Diehl, H. S. (1918). The effect of high pressure on bacteria. Journal of Infectious Diseases, 22, 271–79. Lawrence, L. M. & Gilmour, A. (1994). Incidence of Listeria spp. and Listeria monocytogenes in a Poultry Processing Environment and in Poultry Products and Their Rapid Confirmation by Multiplex PCR. Applied and Environmental Microbiology, 60, 4600–4604. Leach, M. J., & Kumar, S. (2012). Cinnamon for diabetes mellitus. Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd. doi: 10.1002/14651858.CD007170.pub2 Li, H., & Gänzle, M. (2016). Effect of hydrostatic pressure and antimicrobials on survival of Listeria monocytogenes and enterohaemorrhagic Escherichia coli in beef. Innovative Food Science and Emerging Technologies, 38, 321–327. doi: 10.1016/j.ifset.2016.05.003 Li, L., Mendis, N., Trigui, H., Oliver, J. D., & Faucher, S. P. (2014). The importance of the viable but non-culturable state in human bacterial pathogens. Frontiers in Microbiology, 5, 258. doi: 10.3389/fmicb.2014.00258 Martínez-Monteagudo, S. I., & Saldaña, M. D. A. (2014). Modeling the retention kinetics of conjugated linoleic acid during high-pressure sterilization of milk. Food Research International, 62, 169–176. doi: 10.1016/j.foodres.2014.02.014 Martínez-Monteagudo, S. I., Saldaña, M. D. A., Torres, J. A., & Kennelly, J. J. (2012). Effect of pressure-assisted thermal sterilization on conjugated linoleic acid (CLA) content in CLA-enriched milk. Innovative Food Science and Emerging Technologies, 16, 291–297. doi: 10.1016/j.ifset.2012.07.004 Mild, R. M., Joens, L. A., Friedman, M., Olsen, C. W., McHugh, T. H., Law, B., & Ravishankar, S. (2011). Antimicrobial Edible Apple Films Inactivate Antibiotic Resistant and Susceptible Campylobacter jejuni Strains on Chicken Breast. Journal of Food Science, 76, 163–168. doi: 10.1111/j.1750-3841.2011.02065.x Molina-Gutierrez, A., Stippl, V., Delgado, A., Gänzle, M. G., & Vogel, R. F. (2002). In situ determination of the intracellular pH of Lactococcus lactis and Lactobacillus plantarum during pressure treatment. Applied and Environmental Microbiology, 68, 4399–4406. doi: 10.1128/AEM.68.9.4399-4406.2002 Mozhaev, V. V., Heremans, K., Frank, J., Masson, P., & Balny, C. (1994). Exploiting the effects of high hydrostatic pressure in biotechnological applications. Trends in Biotechnology, 12, 493–501. doi: 10.1016/0167-7799(94)90057-4 National Advisory Committee on Microbiological Criteria for Foods. (2006). Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization. Journal of Food Protection, 69, 1190–1216. doi.org/10.4315/0362-028X-69.5.1190 Oey, I., Verlinde, P., Hendrickx, M., & Van Loey, A. (2006). Temperature and pressure stability of L-ascorbic acid and/or [6s] 5-methyltetrahydrofolic acid: A kinetic study. European Food Research and Technology, 223, 71–77. doi: 10.1007/s00217-005-0123-x Oliveira, T. L. C. de, Ramos, A. L. S., Ramos, E. M., Piccoli, R. H., & Cristianini, M. (2015). Natural antimicrobials as additional hurdles to preservation of foods by high pressure processing. Trends in Food Science and Technology, 45, 60–85. doi: 10.1016/j.tifs.2015.05.007 Ooi, L. S. M., Li, Y., Kam, S. L., Wang, H., Wong, E. Y. L., & Ooi, V. E. C. (2006). Antimicrobial activities of Cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. American Journal of Chinese Medicine, 34, 511–522. doi: 10.1142/S0192415X06004041 Park, S. H., Balasubramaniam, V. M., & Sastry, S. K. (2014). Quality of shelf-stable low-acid vegetables processed using pressure-ohmic-thermal sterilization. LWT - Food Science and Technology, 57, 243–252. doi: 10.1016/j.lwt.2013.12.036 Ravindran, P. N., Shylaja, M., Babu K. N., & Krishnamoorthy, B. (2004). Botany and crop improvement of cinnamon and cassia. In P. N. Ravindran, K. N. Babu, & M. Shylaja (Eds.), Cinnamon and Cassia—The Genus Cinnamomum. Boca Raton, FL: CRC Press. Ravishankar, S., Zhu, L., Olsen, C. W., McHugh, T. H., & Friedman, M. (2009). Edible apple film wraps containing plant antimicrobials inactivate foodborne pathogens on meat and poultry products. Journal of Food Science, 74, 440–445. doi: 10.1111/j.1750-3841.2009.01320.x Rogiers, G., Kebede, B. T., Van Loey, A., & Michiels, C. W. (2017). Membrane fatty acid composition as a determinant of Listeria monocytogenes sensitivity to trans-cinnamaldehyde. Research in Microbiology, 168, 536–546. doi: 10.1016/j.resmic.2017.03.001 Rothrock, M. J., Micciche, A. C., Bodie, A. R., & Ricke, S. C. (2019). Listeria Occurrence and Potential Control Strategies in Alternative and Conventional Poultry Processing and Retail. Frontiers in Sustainable Food Systems, 3, 33. doi: 10.3389/fsufs.2019.00033 Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., … Griffin, P. M. (2011). Foodborne illness acquired in the United States–Major pathogens. Emerging Infectious Diseases, 17, 7–15. doi: 10.3201/eid1701.P11101 Scharff, R. L. (2012). Economic Burden from Health Losses Due to Foodborne Illness in the United States. Journal of Food Protection, 75, 123–131. doi: 10.4315/0362-028X.JFP-11-058 Schottroff, F., Fröhling, A., Zunabovic-Pichler, M., Krottenthaler, A., Schlüter, O., & Jäger, H. (2018). Sublethal injury and Viable but Non-culturable (VBNC) state in microorganisms during preservation of food and biological materials by non-thermal processes. Frontiers in Microbiology, 9, 2773. doi: 10.3389/fmicb.2018.02773 Sheen, S., Cassidy, J., Scullen, B., & Sommers, C. (2015). Inactivation of a diverse set of shiga toxin-producing Escherichia coli in ground beef by high pressure processing. Food Microbiology, 52, 84–87. doi: 10.1016/j.fm.2015.07.001 Sheen, S., Cassidy, J., Scullen, B., Uknalis, J., & Sommers, C. (2015). Inactivation of Salmonella spp. in ground chicken using high pressure processing. Food Control, 57, 41–47. doi: 10.1016/j.foodcont.2015.04.005 Sheen, S., Huang, C. Y., Ramos, R., Chien, S. Y., Scullen, O. J., & Sommers, C. (2018). Lethality Prediction for Escherichia Coli O157:H7 and Uropathogenic E. coli in Ground Chicken Treated with High Pressure Processing and Trans-Cinnamaldehyde. Journal of Food Science, 83, 740–749. doi: 10.1111/1750-3841.14059 Sizer, C. E., Balasubramaniam, V. M., & Ting, E. (2002). Validating high-pressure processes for low-acid foods. Food Technology, 56, 36–42. Sohaib, M., Anjum, F. M., Arshad, M. S., & Rahman, U. U. (2016). Postharvest intervention technologies for safety enhancement of meat and meat based products; a critical review. Journal of Food Science and Technology, 53, 19–30. doi: 10.1007/s13197-015-1985-y Sommers, C. H., Scullen, O. J., & Sheen, S. (2016). Inactivation of Uropathogenic Escherichia coli in Ground Chicken Meat Using High Pressure Processing and Gamma Radiation, and in Purge and Chicken Meat Surfaces by Ultraviolet Light. Frontiers in Microbiology, 7, 413. doi: 10.3389/fmicb.2016.00413 Soxhlet, F. (1881). Supposed conversion of starch into sugar by water at a high temperature. Journal of the Chemical Society, Abstracts, 42, 554–557. Stern, O. (1897). The influence of a pressure of 500 atmospheres on the rate of inversion of cane sugar. Annalen der Physik, 59, 652. Syed, Q. A., Buffa, M., Guamis, B. V., & Saldo, J. (2016). Factors Affecting Bacterial Inactivation during High Hydrostatic Pressure Processing of Foods: A Review. Critical Reviews in Food Science and Nutrition, 56, 474–483. doi: 10.1080/10408398.2013.779570 Tajkarimi, M. M., Ibrahim, S. A., & Cliver, D. O. (2010). Antimicrobial herb and spice compounds in food. Food Control, 21, 1199–1218. doi: 10.1016/j.foodcont.2010.02.003 Teuscher, E. (2006). Medicinal Spices - A Handbook of Culinary Herbs, Spices, Spice Mixtures and Their Essential Oils (pp. 459). Stuttgart, Germany: Medpharm Scientific Publishers. Tholozan, J. L., Ritz, M., Jugiau, F., Federighi, M., & Tissier, J. P. (2000). Physiological effects of high hydrostatic pressure treatments on Listeria monocytogenes and Salmonella Typhimurium. Journal of Applied Microbiology, 88, 202–212. doi: 10.1046/j.1365-2672.2000.00917.x Ting E. (2011). High-pressure processing equipment fundamentals. In H. Q. Zhang, G. V. Barbosa-Cánovas, V. M. Balasubramaniam, C. P. Dunne, D. F. Farkas & James T. C. Yuan (Eds.), Nonthermal Processing Technologies for Food (pp. 20–27). Hoboken, NJ: John Wiley & Sons Ltd. Tiwari, B. K., Valdramidis, V. P., O’Donnell, C. P., Muthukumarappan, K., Bourke, P., & Cullen, P. J. (2009). Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry, 57, 5987–6000. doi: 10.1021/jf900668n Tonello, C. (2011). Case of studies on high-pressure processing of foods. In H. Q. Zhang, G. V. Barbosa-Cánovas, V. M. Balasubramaniam, C. P. Dunne, D. F. Farkas & James T. C. Yuan (Eds.), Nonthermal Processing Technologies for Food (pp. 36–50). Hoboken, NJ: John Wiley & Sons Ltd. Tongnuanchan, P., & Benjakul, S. (2014). Essential Oils: Extraction, Bioactivities, and Their Uses for Food Preservation. Journal of Food Science, 79, 1231–1249. doi: 10.1111/1750-3841.12492 U.S. Department of Agriculture, Agricultural Research Service. (2010). Tracing Listeria monocytogenes in a Commercial Chicken Cooking Plant. Retrieved from https://www.ars.usda.gov/news-events/news/research-news/2010/tracing-listeria-monocytogenes-in-a-commercial-chicken-cooking-plant/ U.S. Department of Agriculture, Food Safety and Inspection Service. (2014). Progress report on Salmonella and Campylobacter testing of raw meat and poultry products, CY 1998-2013. Retrieved from https://www.fsis.usda.gov/wps/wcm/connect/885647f4-2568-48bf-ae5c-4a0d8279f435/Progress-Report-Salmonella-Campylobacter-CY2013.pdf?MOD=AJPERES Verbeyst, L., Oey, I., Van der Plancken, I., Hendrickx, M., & Van Loey, A. (2010). Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chemistry, 123, 269–274. doi: 10.1016/j.foodchem.2010.04.027 Vergis, J., Gokulakrishnan, P., Agarwal, R. K., & Kumar, A. (2015). Essential Oils as Natural Food Antimicrobial Agents: A Review. Critical Reviews in Food Science and Nutrition, 55, 1320–1323. doi: 10.1080/10408398.2012.692127 Wesche, A. M., Gurtler, J. B., Marks, B. P., & Ryser, E. T. (2009). Stress, Sublethal Injury, Resuscitation, and Virulence of Bacterial Foodborne Pathogens. Journal of Food Protection, 72, 1121–1138. doi: 10.4315/0362-028X-72.5.1121 Wu, C., Zhuang, Y., Jiang, S., Tian, F., Teng, Y., Chen, X., … Zou, X. (2017). Cinnamaldehyde induces apoptosis and reverses epithelial-mesenchymal transition through inhibition of Wnt/β-catenin pathway in non-small cell lung cancer. International Journal of Biochemistry and Cell Biology, 84, 58–74. doi: 10.1016/j.biocel.2017.01.005 Yao, Y., Huang, H. Y., Yang, Y. X., & Guo, J. Y. (2015). Cinnamic aldehyde treatment alleviates chronic unexpected stress-induced depressive-like behaviors via targeting cyclooxygenase-2 in mid-aged rats. Journal of Ethnopharmacology, 162, 97–103. doi: 10.1016/j.jep.2014.12.047 Yossa, N., Patel, J., Macarisin, D., Millner, P., Murphy, C., Bauchan, G., & Lo, Y. M. (2014). Antibacterial activity of cinnamaldehyde and sporan against Escherichia coli O157:H7 and Salmonella. Journal of Food Processing and Preservation, 38, 749–757. doi: 10.1111/jfpp.12026 Zeng, L., Ruan, M., Liu, J., Wilde, P., Naumova, E. N., Mozaffarian, D., & Zhang, F. F. (2019). Trends in Processed Meat, Unprocessed Red Meat, Poultry, and Fish Consumption in the United States, 1999-2016. Journal of the Academy of Nutrition and Dietetics, 119, 1085–1098. doi: 10.1016/j.jand.2019.04.004 Zhou, S., Sheen, S., Pang, Y.-H., Liu, L., & Yam, K. L. (2015). Modeling the impact of vapor thymol concentration, temperature, and modified atmosphere condition on growth behavior of Salmonella on raw shrimp. Journal of Food Protection, 78, 293–301. doi: 10.4315/0362-028X.JFP-14-264 Zhu, R., Liu, H., Liu, C., Wang, L., Ma, R., Chen, B., … Gao, S. (2017). Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacological Research, 122, 78–89. doi: 10.1016/j.phrs.2017.05.019 Zuo, J., Zhao, D., Yu, N., Fang, X., Mu, Q., Ma, Y., … Gao, S. (2017). Cinnamaldehyde Ameliorates Diet-Induced Obesity in Mice by Inducing Browning of White Adipose Tissue. Cellular Physiology and Biochemistry, 42, 1514–1525. doi: 10.1159/000479268 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66820 | - |
| dc.description.abstract | 美國國民健康與營養訪問調查(National Health and Nutrition Examination Survey, 1999-2016)指出,美國成年人口對禽類的攝取量首次超越長期居冠的非加工類紅肉。肉品食用傾向的轉移代表相關食品微生物危害風險的上升。本篇研究使用中央合成設計以瞭解高靜水壓處理(high hydrostatic pressure processing, 266-434 MPa; 3.3-11.7 min)與反式肉桂醛(trans-cinnamaldehyde, 0.016-0.084%, w/w)作為柵欄技術,對於減少雞絞肉中沙門氏菌與李斯特菌數量之效果,並依此實驗架構建立統計模型描述其變化,而後透過反應曲面分析獲得達成目標殺菌數所需之最佳因子設定(最低參數值)。考量到食品病原菌在亞致死狀態下仍具有代謝活性及致病力,雖無法在逆境中生成菌落,卻能夠在適當條件下修復損傷進而增殖,以選擇性培養基進行食品病原菌的檢測可能會高估食品加工技術的殺菌效果。經高靜水壓處理後,沙門氏菌之好氧性平板計數(aerobic plate count, APC)高出其選擇性培養基(Xylose-Lysine-Tergitol 4, XLT-4)讀數約1至2個對數循環(log colony-forming unit per gram);李斯特菌在APC與其選擇性培養基(Polymyxin Acriflavin Lithium-chloride Ceftazidime Aesculin Mannitol, PALCAM)讀數間沒有顯著差異。在400 MPa以下,李斯特菌對高靜水壓的抗性較沙門氏菌強,然而此情形在高靜水壓處理加入反式肉桂醛後得到相反結果。保存試驗顯示,高靜水壓處理與反式肉桂醛抑制了李斯特菌在4 °C的生長達9天,並持續減少沙門氏菌達3.4個對數循環。以沙門氏菌與李斯特菌的減少作為變數之線性迴歸模型分別具有0.91與0.95之R2。非線性迴歸模型擴展了其因子設計的上下限,增加統計模型對目標殺菌數的描述範圍。依據模型預測與實驗證實,參數「372 MPa, 8.5 min, 0.07% tCinn」與「373 MPa, 8.0 min, 0.05% tCinn」分別減少沙門氏菌與李斯特菌5個對數循環。此外,掃描式電子顯微鏡影像呈現了病原菌經處理後的細胞結構變化。 | zh_TW |
| dc.description.abstract | This article investigated the impact of high hydrostatic pressure processing (HPP) in the presence of trans-cinnamaldehyde (tCinn) on the survival of Salmonella and Listeria monocytogenes in ground chicken meat, and developed statistical models, based on a central composite design (CCD), to quantify the microbial response to the imposed stress. The results demonstrated, at pressure level (266 to 434 MPa), processing time (3.3 to 11.7 min), and tCinn (0.016 to 0.084%, w/w), a 5-log reduction (colony-forming unit per gram) in the microbial population can be achieved. Due to the recovery of sublethally injured bacterial cells under proper growth conditions (e.g. nutrient-rich substrates, temperature, etc.), enumeration of foodborne pathogens using selective media may lead to an overestimation of process lethality. The viable count of HPP-stressed Salmonella demonstrated a 1- to 2-log difference between Xylose-Lysine-Tergitol 4 (XLT-4) agar and aerobic plate counts (APC), while there was no significant difference in that of HPP-stressed L. monocytogenes between Polymyxin Acriflavin Lithium-chloride Ceftazidime Aesculin Mannitol (PALCAM) agar and APC. Overall, L. monocytogenes was found more pressure-resistant than Salmonella at lower levels (< 400 MPa), but more susceptible to high-pressure treatments in the presence of tCinn. Post-treatment (HPP with tCinn) storage at 4 °C inhibited the growth of the surviving population of L. monocytogenes, and reduced that of Salmonella by 3.4 log at day 9. The R2 of Salmonella and L. monocytogenes linear regression models were 0.91 and 0.95, respectively. Dimensionless nonlinear models covered a factorial range slightly wider than the CCD-coded high- and low-end limits. As specified by ridge analysis, variable values targeting 5 log cycles of Salmonella and L. monocytogenes reduction were projected and verified at [372 MPa, 8.5 min, 0.07% tCinn], and [373 MPa, 8.0 min, 0.05% tCinn], respectively. In addition, structural changes of the bacterial cells treated with high pressure and tCinn were demonstrated in scanning electron microscope images. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:08:52Z (GMT). No. of bitstreams: 1 ntu-109-R06641036-1.pdf: 1796333 bytes, checksum: d60be6a37f8a0a0df61c55a48d57ed18 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS I
摘要 II ABSTRACT III LIST OF FIGURES VII LIST OF TABLES VIII CHAPTER 1 Introduction 1 CHAPTER 2 Background and Literature Review 4 2.1. Ground chicken 4 2.1.1. Composition 4 2.1.2. Labeling requirements 5 2.1.3. Ground vs. mechanically separated 5 2.2. Foodborne microorganisms associated with chicken 6 2.2.1. Salmonella 7 2.2.2. Listeria monocytogenes 8 2.3. High hydrostatic pressure processing 9 2.3.1. Principles 10 2.3.2. Historical development 11 2.3.3. Alteration of chemical bonds 12 2.3.4. Mechanism of bacterial inactivation 12 2.3.5. Effectiveness in reducing microbial populations 13 2.4. Cinnamon and trans-cinnamaldehyde 14 2.4.1. Origin and uses 15 2.4.2. Chemical properties 16 2.4.3. Antimicrobial activity 16 2.4.4. Modes of antimicrobial action 18 CHAPTER 3 Materials and Methods 20 3.1. Ground chicken irradiation sterilization 20 3.2. Bacterial strains and culturing 20 3.3. Sample preparation for high-pressure treatments 21 3.4. High hydrostatic pressure processing operation 22 3.5. Microbial enumeration 22 3.6. Model development upon a three-factor central composite design 23 3.7. Statistical analyses 23 3.8. General model expressions 24 3.9. Model verification and validation 25 3.10. Scanning electron microscopy 26 CHAPTER 4 Results and Discussion 28 4.1. Viable count differential of the HPP-stressed microbes plated on selective and nonselective growth media 28 4.2. Synergistic effect of HPP and trans-cinnamaldehyde on bacterial inactivation 29 4.3. Linear regression model development 33 4.4. Dimensionless nonlinear model development 34 4.5. Response surface modeling 35 4.6. Model performance 38 4.7. Model verification and validation 38 4.8. Effect of trans-cinnamaldehyde on the HPP-stressed microbes: storage test 39 4.9. Scanning electron micrographs 42 CHAPTER 5 Conclusions 44 References 45 Publications 58 | |
| dc.language.iso | en | |
| dc.subject | 高靜水壓處理 | zh_TW |
| dc.subject | 反式肉桂醛 | zh_TW |
| dc.subject | 沙門氏菌 | zh_TW |
| dc.subject | 李斯特菌 | zh_TW |
| dc.subject | 雞絞肉 | zh_TW |
| dc.subject | 統計模型 | zh_TW |
| dc.subject | High hydrostatic pressure processing | en |
| dc.subject | trans-Cinnamaldehyde | en |
| dc.subject | Salmonella | en |
| dc.subject | Listeria monocytogenes | en |
| dc.subject | Ground chicken meat | en |
| dc.subject | Statistical models | en |
| dc.title | 建構高靜水壓處理與反式肉桂醛對沙門氏菌與李斯特菌在雞絞肉中之殺菌模型 | zh_TW |
| dc.title | Modeling the Inactivation of Salmonella and Listeria monocytogenes in Ground Chicken under High Hydrostatic Pressure in the Presence of trans-Cinnamaldehyde | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 沈秀樹(Shiowshuh Sheen) | |
| dc.contributor.oralexamcommittee | 李允中(Yeun-Chung Lee),陳家揚(Chia-Yang Chen),蔡宗佑(Tsung-Yu Tsai) | |
| dc.subject.keyword | 高靜水壓處理,反式肉桂醛,沙門氏菌,李斯特菌,雞絞肉,統計模型, | zh_TW |
| dc.subject.keyword | High hydrostatic pressure processing,trans-Cinnamaldehyde,Salmonella,Listeria monocytogenes,Ground chicken meat,Statistical models, | en |
| dc.relation.page | 58 | |
| dc.identifier.doi | 10.6342/NTU201904361 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-01-21 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 1.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
