Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66712
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳學禮
dc.contributor.authorYu-Syuan Linen
dc.contributor.author林禹萱zh_TW
dc.date.accessioned2021-06-17T00:52:55Z-
dc.date.available2021-10-20
dc.date.copyright2012-01-17
dc.date.issued2011
dc.date.submitted2011-10-20
dc.identifier.citation參考文獻
[1] “文/吳民耀、劉威志,” 物理雙月刊(廿八卷二期)pp. 486-496, 2006.
[2] E. S. Kooij, H. Wormeester, E. a M. Brouwer, E. van Vroonhoven, A. van Silfhout, and B. Poelsema, “Optical Characterization of Thin Colloidal Gold Films by Spectroscopic Ellipsometry,” Langmuir, vol. 18, no. 11, pp. 4401-4413, May. 2002.
[3] H.-L. Zhang, S. D. Evans, and J. R. Henderson, “Spectroscopic Ellipsometric Evaluation of Gold Nanoparticle Thin Films Fabricated Using Layer-by-Layer Self-Assembly,” Advanced Materials, vol. 15, no. 6, pp. 531-534, Mar. 2003.
[4] R. Bhat and J. Genzer, “Using spectroscopic ellipsometry for quick prediction of number density of nanoparticles bound to non-transparent solid surfaces,” Surface Science, vol. 596, pp. 187-196, Oct. 2005.
[5] M. Chen and R. G. Horn, “Refractive index of sparse layers of adsorbed gold nanoparticles.,” Journal of Colloid and Interface Science, vol. 315, no. 2, pp. 814-7, Nov. 2007.
[6] D. Wan, H.-L. Chen, Y.-S. Lin, S.-Y. Chuang, J. Shieh, and S.-H. Chen, “Using spectroscopic ellipsometry to characterize and apply the optical constants of hollow gold nanoparticles.,” ACS Nano, vol. 3, no. 4, pp. 960-70, Apr. 2009.
[7] T. K. Sau and A. L. Rogach, “Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control.,” Advanced Materials (Deerfield Beach, Fla.), vol. 22, no. 16, pp. 1781-804, Apr. 2010.
[8] A. Gole and C. J. Murphy, “Seed-Mediated Synthesis of Gold Nanorods: Role of the Size and Nature of the Seed,” Chemistry of Materials, vol. 16, no. 19, pp. 3633-3640, Sep. 2004.
[9] N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods,” The Journal of Physical Chemistry B, vol. 105, no. 19, pp. 4065-4067, May. 2001.
[10] B. Nikoobakht and M. A. El-sayed, “Preparation and Growth Mechanism of Gold Nanorods ( NRs ) Using Seed-Mediated Growth Method,” Growth (Lakeland), no. 16, pp. 1957-1962, 2003.
[11] C. J. Murphy and N. R. Jana, “Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires,” Advanced Materials, vol. 14, no. 1, pp. 80-82, Jan. 2002.
[12] J.-S. Huang et al., “Mode imaging and selection in strongly coupled nanoantennas.,” Nano Letters, vol. 10, no. 6, pp. 2105-10, Jun. 2010.
[13] B. Nikoobakht and M. a El-Sayed, “Surface-Enhanced Raman Scattering Studies on Aggregated Gold Nanorods ,” The Journal of Physical Chemistry A, vol. 107, no. 18, pp. 3372-3378, May. 2003.
[14] H. Guo et al., “Correlating the Shape, Surface Plasmon Resonance, and Surface-Enhanced Raman Scattering of Gold Nanorods,” Journal of Physical Chemistry C, vol. 113, no. 24, pp. 10459-10464, Jun. 2009.
[15] T. K. Sau and C. J. Murphy, “Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution.,” Journal of the American Chemical Society, vol. 126, no. 28, pp. 8648-9, Jul. 2004.
[16] C. J. Murphy et al., “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications.,” Journal of Physical Chemistry. B, vol. 109, no. 29, pp. 13857-70, Jul. 2005.
[17] C. V. Raman and the Discovery of the Raman Effect'. Physics in Perspective (PIP) 4 (4): 399–420
[18] Landsberg G., Mandelstam. L, 'Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen'. Naturwissenschaften,1928.
[19] Zur Quantentheorie der Dispersion'. Naturwissenschaften 11 (43): 873–875.
[20] H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media.,” Small, vol. 4, no. 10, pp. 1576-99, Oct. 2008.
[21] D. Venardos, “Communications to the editor pH-activity response for immobilized beta-glucosidase.,” Biotechnology and Bioengineering, vol. 19, no. 9, p. 1405, Sep. 1977.
[22] E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire Plasmon Excitation by Adiabatic Mode Transformation,” Physical Review Letters, vol. 102, no. 20, pp. 1-4, May. 2009.
[23] J. Takahara, S. Yamagishi, H. Taki, a Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter.,” Optics Letters, vol. 22, no. 7, pp. 475-7, Apr. 1997.
[24] a J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” Journal of Applied Physics, vol. 87, no. 8, p. 3785, 2000.
[25] D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics, vol. 4, no. 2, pp. 83-91, Jan. 2010.
[26] D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” Journal of Applied Physics, vol. 104, no. 3, p. 034311, 2008.
[27] S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, “Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy,” The Journal of Physical Chemistry Letters, vol. 1, no. 24, pp. 3427-3432, Dec. 2010.
[28] J. Aizpurua, P. Hanarp, D. Sutherland, M. Käll, G. Bryant, and F. García de Abajo, “Optical Properties of Gold Nanorings,” Physical Review Letters, vol. 90, no. 5, pp. 5-8, Feb. 2003.
[29] V. Giannini and J. a Sánchez-Gil, “Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas.,” Optics Letters, vol. 33, no. 9, pp. 899-901, May. 2008.
[30] Z. Zhang, a Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, “Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter.,” Nano Letters, vol. 9, no. 12, pp. 4505-9, Dec. 2009.
[31] N. a Hatab et al., “Free-Standing Optical Gold Bowtie Nanoantenna with -Variable Gap Size for Enhanced Raman Spectroscopy.,” Nano Letters, vol. 8, pp. 4952-4955, Nov. 2010.
[32] C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source.,” Nano Letters, vol. 7, no. 9, pp. 2784-8, Sep. 2007.
[33] V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. a Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters.,” Chemical Reviews, vol. 111, no. 6, pp. 3888-912, Jun. 2011.
[34] P. G. Etchegoin, “Quo vadis surface-enhanced Raman scattering?,” Physical Chemistry Chemical Physics : PCCP, vol. 11, no. 34, pp. 7348-9, Sep. 2009.
[35] J. Mclellan, a Siekkinen, J. Chen, and Y. Xia, “Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes,” Chemical Physics Letters, vol. 427, no. 1-3, pp. 122-126, Aug. 2006.
[36] E. Nalbant Esenturk and a R. Hight Walker, “Surface-enhanced Raman scattering spectroscopy via gold nanostars,” Journal of Raman Spectroscopy, vol. 40, no. 1, pp. 86-91, Jan. 2009.
[37] A. J. Haes, C. L. Haynes, A. D. Mcfarland, and G. C. Schatz, “P lasmonic Materials for Surface-Enhanced Sensing and,” MRS Bulletin, vol. 30, no. May, 2005.
[38] Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect.,” Nano Letters, vol. 5, no. 1, pp. 119-24, Jan. 2005.
[39] S. Nie, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science, vol. 275, no. 5303, pp. 1102-1106, Feb. 1997.[3-40]A.
[40] M. Schwartzberg et al., “Unique Gold Nanoparticle Aggregates as a Highly Active Surface-Enhanced Raman Scattering Substrate,” Journal of Physical Chemistry B, vol. 108, no. 50, pp. 19191-19197, Dec. 2004
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66712-
dc.description.abstract表面增強拉曼散射技術因為能有效偵測低濃度的分子,因此許多研究都致力於研究不同的金屬奈米結構,希望能再大幅提升其偵測的靈敏度,甚至達到單分子的偵測能力。但製作特殊結構通常費時又耗成本,且測量的再現性低。在本篇論文第一部分中,我們透過三維時域有限差分(three dimensional finite-difference time-domain, 3D FDTD)模擬討論在不同覆蓋面積以及不同直徑的金奈米粒子局部電場以及預期的表面拉曼增強效果並透過實驗加以印證,比較熱點個數及熱點強度對拉曼訊號的影響。在本篇論文第二部分,我們將利用晶種成長法(seed-mediated growth)製作金屬奈米棒狀粒子,並使用高分子先將金的奈米球接在矽基板上,再利用具有適當官能基的高分子,兩端各抓住金奈米棒及金奈米球,使得在金奈米球上方再形成金奈米棒層。利用橢圓儀量測的方法,觀察金奈米球與金奈米棒之間是否有出現耦合的現象,並同時利用建構光學多層膜模型來進行分析,考慮各層的光學常數及厚度,依照正確的順序建立,再藉由多次最小方差法最佳化,調整未知的光學常數或厚度參數,將此金屬奈米粒子層的光學常數求出。並進一步利用金奈米棒的高靈敏度,製作生物分子感測器,並透過橢圓儀對薄膜量測的高敏感度,希望得到偵測低濃度生物分子的光電生化感測器。zh_TW
dc.description.abstractSurface-enhanced Raman scattering technique can detect molecules of low concentrations, so many groups are dedicated to study different metallic nanostructures and hope to improve the sensitivity even to single-molecule level. However, it is time-consuming and high-cost to manufacture the special structure and the detection usually performs poor repeatability. In the first part of this thesis, we use the FDTD method to simulate the localized electronic field and expected surface enhanced Raman scattering effect of gold nanospheres under different area coverage and diameters. Besides, we use design experiment to prove the results from related simulations, which compares the effect of hot spots’ numbers and intensity on the SERS signal. In the second part of this thesis, we use seed-mediated growth method to synthesize the gold nanorods. And we first place the gold nanospheres on the silicon substrate by binding agent. Then, we use polymer with appropriate end functional group to form nanorods layers on top the gold nanospheres layer. By ellipseometric measurement, we can observe the electromagnetic coupling between the gold nanospheres and the nanorods. We construct the multilayer optical thin film model to fit the optical constant. Furthermore, we take advantages of the high-sensitivity of gold nanorods to produce the bio-sensor and detect the molecules by ellipsometric measurement, and hope to obtain an optoelectronic bio-sensor with high sensitivity.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:52:55Z (GMT). No. of bitstreams: 1
ntu-100-R98527028-1.pdf: 2821224 bytes, checksum: b1e0bfcdd185faa1c00fafa407bb0f24 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄
第一章 緒論 1
1.1前言 1
1.2 論文結構 2
第二章 文獻回顧 3
2.1奈米粒子合成方法以及相關性質 3
2.1.1 局域化表面電漿子共振 (localized surface plasma resonance) 3
2.1.2 利用橢圓儀量測金屬奈米粒子陣列之光學常數 7
2.2奈米粒子製造 10
2.3表面增強拉曼光譜 12
2.3.1表面增強拉曼散射 ( surface-enhanced Raman scattering ) 12
2.3.2表面增強拉曼散射技術 13
2.3.3應用奈米金屬粒子於表面增強拉曼散射技術 18
第三章 金屬奈米粒子在表面增強拉曼散射的應用 22
3.1前言 22
3.2實驗方法 24
3.3實驗結果與討論 25
3.3.1不同直徑單一粒子的電場分布圖 25
3.3.2不同覆蓋面積及不同直徑大小的金奈米金奈米粒子群的表面電漿共振波段 27
3.3.3入射光為表面電漿共振波段時相同覆蓋面積下不同直徑大小的比較 33
3.3.4入射光為表面電漿共振波段時相同直徑時不同覆蓋面積的比較 45
3.3.5入射光為633奈米時相同覆蓋面積下不同直徑大小的比較 47
3.3.6表面增強拉曼光譜 56
3.4結論 70
第四章 金屬奈米粒子在生物感測器的應用 71
4.1前言 71
4.2實驗方法 73
4.3實驗結果與討論 75
4.3.1利用晶種成長法合成金奈米棒狀粒子 75
4.3.2將帶正電的金奈米粒子接著於硬質基板 78
4.3.3不同密度的金奈米棒的橢圓儀參數 80
4.3.4利用橢圓儀偵測分子濃度的變化 85
4.4結論 89
第五章 結論 90
5.1實驗總結 90
5.2未來展望 91
參考文獻 92
dc.language.isozh-TW
dc.subject三維時域有限差分zh_TW
dc.subject表面增強拉曼散射技術zh_TW
dc.subject晶種成長法zh_TW
dc.subject金屬奈米粒子zh_TW
dc.subject橢圓儀zh_TW
dc.subjectSurface-enhanced Raman scatteringen
dc.subjectthree dimensional finite-difference time-domainen
dc.subjectseed-mediated growthen
dc.subjectellipseometricen
dc.subjectmetallic nanoparticlesen
dc.title金屬奈米粒子陣列在表面增強拉曼散射與光電生化感測器上之應用zh_TW
dc.titleApplications of Metallic Nanoparticles on Surface-Enhanced Raman Scattering and Bio-sensoren
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee劉福鯤,林明瑜,賴宇紳
dc.subject.keyword表面增強拉曼散射技術,三維時域有限差分,晶種成長法,橢圓儀,金屬奈米粒子,zh_TW
dc.subject.keywordSurface-enhanced Raman scattering,three dimensional finite-difference time-domain,seed-mediated growth,ellipseometric,metallic nanoparticles,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2011-10-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved