Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66701
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃坤祥
dc.contributor.authorLi-Hui Chengen
dc.contributor.author鄭禮輝zh_TW
dc.date.accessioned2021-06-17T00:52:14Z-
dc.date.available2017-01-17
dc.date.copyright2012-01-17
dc.date.issued2011
dc.date.submitted2011-11-01
dc.identifier.citation1. 黃坤祥,粉末冶金學,中華民國粉末冶金協會,第二版,2003,246-260頁。
2. R. M. German, Powder Injection Molding, Metal Powder Industries Federation, Princeton, NJ, 1990, pp. 3-19.
3. V. M. Kryachek, 'Injection Moulding (Review)', Powder Metallurgy and Metal Ceramics, 2004, Vol. 43, No. 7, pp. 336-348.
4. G. Barbezat, 'Rational Manufacture of Components with Complicated Geometries', Sulzer Technical Review, 1991, Vol. 73, No. 1, pp. 10-12.
5. A. C. Goncalves, 'Metallic Powder Injection Molding Using Low Pressure', Journal of Materials Processing Technology, 2001, Vol. 118, No. 1-3, pp. 193-198.
6. L. H. Cheng, K. S. Hwang, and Y. L. Fan, 'Molding Properties and Causes of Deterioration of Recycled Powder Injection Molding Feedstock', Metallurgical and Materials Transactions A, 2009, Vol. 40, No. 13, pp. 3210-3216.
7. K. M. Kulkarni and J. B. Kolts, 'Recyclability of a Commerical MIM Feedstock', International Journal of Powder Metallurgy, 2002, Vol. 38, No. 6, pp. 43-48.
8. M. M. Dewidar, K. A. Khalil, and J. K. Lim, 'Processing and Mechanical Properties of Porous 316L Stainless Steel for Biomedical Applications', Trans. Nonferrous Met. Soc. China, 2007, Vol. 17, No. 3, pp. 468-473.
9. D. A. Barrow, 'Developments in Powder Metallurgy (PM) Materials', Materials & Design, 1988, Vol. 9, No. 6, pp. 345-354.
10. ASM Specialty Handbook: Stainless Steels, Edited by J. R. Davids, ASM International, Materials Park, OH, 1994, pp. 89-106.
11. 王繼敏,不銹鋼與金屬腐蝕,科技圖書股份有限公司,1990,33-36頁。
12. G. J. Shu, K. S. Hwang, and Y. T. Pan, 'Improvements in Sintered Density and Dimensional Stability of Powder Injection-Molded 316L Compacts by Adjusting the Alloying Compositions', Acta Materialia, 2006, Vol. 54, No. 5, pp. 1335-1342.
13. M. Karaminezhaad, S. Sharafi, and K. Dalili, 'Effect of Molybdenum on SCC of 17-4PH Stainless Steel under Different Aging Conditions in Chloride Solutions', Journal of Materials Science, 2006, Vol. 41, No. 11, pp. 3329-3333.
14. M. Pozuelo, J. E. Wittig, J. A. Jimenez, and G. Frommeyer, 'Enhanced Mechanical Properties of a Novel High-Nitrogen Cr-Mn-Ni-Si Austenitic Stainless Steel via TWIP/TRIP Effects', Metallurgical and Materials Transactions A, 2009, Vol. 40, No. 8, pp. 1826-1834.
15. 'Materials Standards for Metal Injection Molded Parts', MPIF Standard 35, Metal Powder Industries Federation, Princeton, NJ.
16. T. Hartwig, G. Veltl, F. Petzoldt, H. Kunze, R. Scholl, and B. Kieback, 'Powders for Metal Injection Molding', Journal of the European Ceramic Society, 1998, Vol. 18, No. 9, pp. 1211-1216.
17. E. Otero, A. Pardo, M. V. Utrilla, E. Saenz, and J. F. Alvarez, 'Corrosion Behaviour of AISI 304L and 316L Stainless Steels Prepared by Powder Metallurgy in the Presence of Sulphuric and Phosphoric Acid', Corrosion Science, 1998, Vol. 40, No. 8, pp. 1421-1434.
18. E. Klar and P. K. Samal, Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties, ASM International, Materials Park, OH, 2004, pp. 23-38, 59-97.
19. N. Dautzenberg and H. Gesell, 'Production Technique and Properties of Austenitic Cr-Ni Stainless Steel Powders', Powder Metallurgy International, 1976, Vol. 8, No. 1, pp. 14-16.
20. Y. Wu, R. M. German, D. Blaine, B. Marx, and C. Schlaefer, 'Effects of Residual Carbon Content on Sintering Shrinkage, Microstructure and Mechanical Properties of Injection Molded 17-4 PH Stainless Steel', Journal of Materials Science, 2002, Vol. 37, No. 17, pp. 3573-3583.
21. S. H. Lee, J. W. Choi, W. Y. Jeung, and T. J. Moon, 'Effects of Binder and Thermal Debinding Parameters on Residual Carbon in Injection Moulding of Nd(Fe, Co)B Powder', Powder Metallurgy, 1999, Vol. 42, No. 1, pp. 41-44.
22. S. C. Hu and K. S. Hwang, 'Dilatometric Analysis of Thermal Debinding of Injection Moulded Iron Compacts', Powder Metallurgy, 2000, Vol. 43, No. pp. 239-244.
23. G. J. Shu and K. S. Hwang, 'Effect of Heating Rate and Phase Transformation on the Dimensional Control of Ferrous PIM Compacts', Materials Transactions, 2005, Vol. 46, No. 2, pp. 298-302.
24. G. Lei, R. M. German, and H. S. Nayar, 'Influence of Sintering Variables on the Corrosion Resistance of 316L Stainless Steel', Powder Metallurgy International, 1983, Vol. 15, No. 2, pp. 70-75.
25. P. Suri, R. P. Koseski, and R. M. German, 'Microstructural Evolution of Injection Molded Gas- and Water-Atomized 316L Stainless Steel Powder During Sintering', Materials Science and Engineering A, 2005, Vol. 402, No. 1-2, pp. 341-348.
26. Powder Metallurgy Applications, Advantages and Limitations, Edited by E. Klare, Materials Park, OH, 1983, pp. 3.
27. B. Cole, 'Ceramic Belt Development for High Temperature Furnace Sintering', Industrial Heating, 1992, Vol. 59, No. 6, pp. 51-53.
28. H. B. Li, Z. H. Jiang, Z. R. Zhang, and Y. Yang, 'Effect of Grain Size on Mechanical Properties of Nickel-Free High Nitrogen Austenitic Stainless Steel', Journal of Iron and Steel Research, International, 2009, Vol. 16, No. 1, pp. 58-61.
29. B. P. Kashyap and K. Tangri, 'On the Hall-Petch Relationship and Substructural Evolution in Type 316L Stainless Steel', Acta Metallurgica et Materialia, 1995, Vol. 43, No. 11, pp. 3971-3981.
30. X. H. Chen, J. Lu, L. Lu, and K. Lu, 'Tensile Properties of a Nanocrystalline 316L Austenitic Stainless Steel', Scripta Materialia, 2005, Vol. 52, No. 10, pp. 1039-1044.
31. S. Rajasekhara, L. P. Karjalainen, A. Kyrolainen, and P. J. Ferreira, 'Microstructure Evolution in Nano/Submicron Grained AISI 301LN Stainless Steel', Materials Science and Engineering A, 2010, Vol. 527, No. 7-8, pp. 1986-1996.
32. S. Lal and G. S. Upadhyaya, 'Effect of Phosphorus and Silicon Addition on the Sintered Properties of 316L Austenitic Stainless Steel and its Composites Containing 4 vol % Yttria', Journal of Materials Science, 1989, Vol. 24, No. 9, pp. 3069-3075.
33. D. Uzunsoy, 'The Characterisation of PM 304 Stainless Steel Sintered in the Presence of a Copper Based Additive', Materials Letters, 2007, Vol. 61, No. 1, pp. 10-15.
34. X. Yang and S. J. Guo, 'Fe-Mo-B Enhanced Sintering of P/M 316L Stainless Steel', Journal of Iron and Steel Research, International, 2008, Vol. 15, No. 1, pp. 10-14.
35. H. I. Bakan, D. Heaney, and R. M. German, 'Effect of Nickel Boride and Boron Additions on Sintering Characteristics of Injection Moulded 316L Powder using Water Soluble Binder System', Powder Metallurgy, 2001, Vol. 44, No. 1, pp. 235-242.
36. J. K. Baczewska and M. Rosso, 'Effect of Boron on Microstructure and Mechanical Properties of PM Sintered and Nitrided Steels', Powder Metallurgy, 2001, Vol. 44, No. pp. 221-227.
37. H. O. Gulsoy and S. Salman, 'Microstructures and Mechanical Properties of Injection Molded 17-4PH Stainless Steel Powder with Nickel Boride Additions', Journal of Materials Science, 2005, Vol. 40, No. 13, pp. 3415-3421.
38. R. M. German, Sintering Theory and Practice, Wiley-Interscience, New York, NY, 1996, pp. 142-175, pp. 155-56.
39. E. Klar, Powder Metallurgy, ASM International, Materials Park, OH, 1987, pp. 360-400.
40. A. Bose, I. Otsuka, T. Yoshida, and H. Toyoshima, 'Metal Injection Molding of Ultra-Fine 316L Stainless Steel Powders', Advances in Powder Metallurgy and Particulate Materials, Edited by J. Engquist and T. F. Murphy, MPIF, Princeton, NJ, 2007, pp. 25-30.
41. R. Speiser, H. L. Johnston, and P. Blackburn, 'Vapor Pressure of Inorganic Substances. III. Chromium between 1283 and 1561 °K', Journal of the American Chemical Society, 1950, Vol. 72, No. 9, pp. 4142-4143.
42. K. S. Hwang and Y. W. Hsueh, 'Post-Sintering Thermal Treatment of Nitrogen Containing Pressed and Sintered and PIM Stainless Steels', Powder Metallurgy, 2007, Vol. 50, No. 1, pp. 165-171.
43. T. H. Lee, E. Shin, S. J. Kim, and S. Takai, 'On the Crystal Structure of Cr2N Precipitates in High-Nitrogen Austenitic Stainless Steel. III. Neutron Siffraction Study on the Ordered Cr2N Superstructure', Acta Crystallographica Section B, 2006, Vol. 62, No. pp. 979-986.
44. H. Ha and H. Kwon, 'Effects of Cr2N on the Pitting Corrosion of High Nitrogen Stainless Steels', Electrochimica Acta, 2007, Vol. 52, No. 5, pp. 2175-2180.
45. C. Garcia, F. Martin, P. de Tiedra, and L. G. Cambronero, 'Pitting Corrosion Behaviour of PM Austenitic Stainless Steels Sintered in Nitrogen-Hydrogen Atmosphere', Corrosion Science, 2007, Vol. 49, No. 4, pp. 1718-1736.
46. Z. Z. Yuan, Q. X. Dai, X. N. Cheng, and K. M. Chen, 'Microstructural Thermostability of High Nitrogen Austenitic Stainless Steel', Materials Characterization, 2007, Vol. 58, No. 1, pp. 87-91.
47. N. Nakada, N. Hirakawa, T. Tsuchiyama, and S. Takaki, 'Grain Refinement of Nickel-Free High Nitrogen Austenitic Stainless Steel by Reversion of Eutectoid Structure', Scripta Materialia, 2007, Vol. 57, No. 2, pp. 153-156.
48. J. W. Simmons, 'Overview: High-Nitrogen Alloying of Stainless Steels', Materials Science and Engineering A, 1996, Vol. 207, No. 1, pp. 159-169.
49. High Temperature Sintering, Edited by H. I. Sanderow, Metal Powder Industries Federation, Princeton, NJ, 1990, pp. 55-90.
50. J. Rawers, F. Croydon, R. Krabbe, and N. Duttlinger, 'Tensile Characteristics of Nitrogen Enhanced Powder Injection Moulded 316L Stainless Steel', Powder Metallurgy, 1996, Vol. 39, No. 2, pp. 125-129.
51. J. Rawers, F. Croydon, R. Krabbe, and N. Duttlinger, 'Nitrogen Enhanced Stainless Steel by Powder Injection Molding', The International Journal of Powder Metallurgy, 1996, Vol. 32, No. 4, pp. 319-322.
52. J. Rawers and M. Grujicic, 'Effects of Metal Composition and Temperature on the Yield Strength of Nitrogen Strengthened Stainless Steels', Materials Science and Engineering A, 1996, Vol. 207, No. 1, pp. 188-194.
53. H. Leda, 'Nitrogen in Martensitic Stainless Steels', Journal of Materials Processing Technology, 1995, Vol. 53, No. 1, pp. 263-272.
54. V. G. Gavriljuk, 'Nitrogen in Iron and Steel', Iron and Steel Institute of Japan, 1996, Vol. 36, No. 7, pp. 738-745.
55. D. Cui, J. Jiang, G. Cao, E. Xiao, and X. Qu, 'Preparation of High Nitrogen and Nickel-Free Austenitic Stainless Steel by Powder Injection Molding', Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2008, Vol. 15, No. 2, pp. 150-154.
56. A. P. Tschiptschin, C. M. Garzon, and D. M. Lopez, 'The Effect of Nitrogen on the Scratch Resistance of Austenitic Stainless Steels', Tribology International, 2006, Vol. 39, No. 2, pp. 167-174.
57. A. J. Sedriks, Corrosion of Stainless Steels, John Wiley & Sons, Inc., New York, NY, 1996, pp. 15.
58. U. Lindstedt and B. Karlsson, 'Microstructure and Mechanical Behaviour of Single Pressed and Vacuum Sintered Gas and Water Atomised 316L Stainless Steel Powders', Powder Metallurgy, 1998, Vol. 41, No. 4, pp. 261-268.
59. H. Gulsoy, S. Zbek, and T. Baykara, 'Microstructural and Mechanical Properties of Injection Moulded Gas and Water Atomised 17-4 PH Stainless Steel Powder', Powder Metallurgy, 2007, Vol. 50, No. 1, pp. 120-126.
60. H. J. Sung, T. K. Ha, S. Ahn, and Y. W. Chang, 'Powder Injection Molding of a 17-4 PH Stainless Steel and the Effect of Sintering Temperature on its Microstructure and Mechanical Properties', Journal of Materials Processing Technology, 2002, Vol. 130-131, No. 1, pp. 321-327.
61. I. Costa, C. V. Franco, C. T. kunioshi, and J. L. Rossi, 'Corrosion Resistance of Injection-Molded 17-4 PH Steel in Sodium Chloride Solution', Corrosion Engineering Scetion, 2006, Vol. 62, No. 1, pp. 357-365.
62. R. M. Larsen and K. A. Thorsen, 'Equilibria and Kinetics of Gas-Metal Reactions during Sintering of Austenitic Stainless Steel', Powder Metallurgy, 1994, Vol. 37, No. 1, pp. 61-66.
63. T. Tunberg and L. Nyborg, 'Surface Reactions during Water Atomization and Sintering of Austenitic Stainless Steel Powder', Powder Metallurgy, 1995, Vol. 38, No. 1, pp. 120-130.
64. T. Tunberg, L. Nyborg, and C. X. Liu, 'Enhanced Vacuum Sintering of Water-Atomized Austenitic Stainless Steel Powder by Carbon Addition', Advances in Powder Metallurgy and Particulate Materials, Edited by J. Capus and R. German, MPIF, Princeton, NJ, 1992, pp. 383-396.
65. D. A. Mortimer and M. Nicholas, 'The Wetting of Carbon and Carbides by Copper Alloys', Journal of Materials Science, 1973, Vol. 8, No. 5, pp. 640-648.
66. R. Ekbom, 'Hot Isostatic Pressing/Powder Metallurgy in Gas and Steam Turbines', Materials & Design, 1990, Vol. 11, No. 1, pp. 37-42.
67. U. K. Mudali and B. Raj, High Nitrogen Steels and Stainless Steels: Manufacturing, Properties and Applications, ASM, Materials Park, OH, 2004, pp. 94-132.
68. D. Shahapurkar and W. Small, 'Nitrogen Solubility in Complex Liquid Fe−Cr−Ni Alloys', Metallurgical and Materials Transactions B, 1987, Vol. 18, No. 1, pp. 225-230.
69. J. Rawers, J. Dunning, G. Asai, and R. Reed, 'Characterization of Stainless Steels Melted under High Nitrogen Pressure', Metallurgical and Materials Transactions A, 1992, Vol. 23, No. 7, pp. 2061-2068.
70. J. Rawers, G. Asai, R. Doan, and J. Dunning, 'Mechanical and Microstructural Properties of Nitrogen-High Pressure Melted Fe-Cr-Ni Alloys', Journal of Materials Research, 1992, Vol. 7, No. 5, pp. 1083-1092.
71. J. C. Rawers, 'High Carbon-Nitrogen Iron Alloys', Journal of Materials Science, 1999, Vol. 34, No. 1, pp. 941-944.
72. T. Tsuchiyama, H. Ito, K. Kataoka, and S. Takaki, 'Fabrication of Ultrahigh Nitrogen Austenitic Steels by Nitrogen Gas Absorption into Solid Solution', Metallurgical and Materials Transactions A, 2003, Vol. 34, No. 1, pp. 2591-2599.
73. A. Rhouma, H. Sidhom, C. Braham, J. Ledion, and M. Fitzpatrick, 'Effects of Surface Preparation on Pitting Resistance, Residual Stress, and Stress Corrosion Cracking in Austenitic Stainless Steels', Journal of Materials Engineering and Performance, 2001, Vol. 10, No. 5, pp. 507-514.
74. F. Laroudie, C. Tassin, and M. Pons, 'Hardening of 316L stainless steel by laser surface alloying', Journal of Materials Science, 1995, Vol. 30, No. 14, pp. 3652-3657.
75. B. Weiss and R. Stickler, 'Phase Instabilities During High Temperature Exposure of 316 Austenitic Stainless Steel', Metallurgical and Materials Transactions B, 1972, Vol. 3, No. 4, pp. 851-866.
76. G. M. Michal, F. Ernst, H. Kahn, Y. Cao, F. Oba, N. Agarwal, and A. H. Heuer, 'Carbon Supersaturation due to Paraequilibrium Carburization: Stainless Steels with Greatly Improved Mechanical Properties', Acta Materialia, 2006, Vol. 54, No. 6, pp. 1597-1606.
77. A. H. Heuer, F. Ernst, H. Kahn, A. Avishai, G. M. Michal, D. J. Pitchure, and R. E. Ricker, 'Interstitial Defects in 316L Austenitic Stainless Steel Containing 'Colossal' Carbon Concentrations: An Internal Friction Study', Scripta Materialia, 2007, Vol. 56, No. 12, pp. 1067-1070.
78. G. Michal, F. Ernst, and A. Heuer, 'Carbon Paraequilibrium in Austenitic Stainless Steel', Metallurgical and Materials Transactions A, 2006, Vol. 37, No. 6, pp. 1819-1824.
79. F. Ernst, A. Avishai, H. Kahn, X. Gu, G. M. Michal, and A. H. Heuer, 'Enhanced Carbon Diffusion in Austenitic Stainless Steel Carburized at Low Temperature', Metallurgical and Materials Transactions A, 2009, Vol. 40, No. 8, pp. 1768-1780.
80. G. Michal, X. Gu, W. Jennings, H. Kahn, F. Ernst, and A. Heuer, 'Paraequilibrium Carburization of Duplex and Ferritic Stainless Steels', Metallurgical and Materials Transactions A, 2009, Vol. 40, No. 8, pp. 1781-1790.
81. Y. Cao, F. Ernst, and G. M. Michal, 'Colossal Carbon Supersaturation in Austenitic Stainless Steels Carburized at Low Temperature', Acta Materialia, 2003, Vol. 51, No. 14, pp. 4171-4181.
82. T. Christiansen and M. Somers, 'Stress and Composition of Carbon Stabilized Expanded Austenite on Stainless Steel', Metallurgical and Materials Transactions A, 2009, Vol. 40, No. 8, pp. 1791-1798.
83. H. Kahn, G. Michal, F. Ernst, and A. Heuer, 'Poisson Effects on X-Ray Diffraction Patterns in Low-Temperature-Carburized Austenitic Stainless Steel', Metallurgical and Materials Transactions A, 2009, Vol. 40, No. 8, pp. 1799-1804.
84. F. Ernst, Y. Cao, and G. M. Michal, 'Carbides in Low-Temperature-Carburized Stainless Steels', Acta Materialia, 2004, Vol. 52, No. 6, pp. 1469-1477.
85. F. J. Martin, P. M. Natishan, E. J. Lemieux, T. M. Newbauer, R. J. Rayne, R. A. Bayles, H. Kahn, G. M. Michal, F. Ernst, and A. H. Heuer, 'Enhanced Corrosion Resistance of Stainless Steel Carburized at Low Temperature', Metallurgical and Materials Transactions A, 2009, Vol. 40, No. 8, pp. 1805-1810.
86. M. Tahara, H. Senbokuya, K. Kitano, and T. Hayashida, 'Method of Carburizing Austenitic Stainless Steel and Austenitic Stainless Steel Products Obtained Thereby', U.S. Patent 5,792,282, 1998.
87. M. Tahara, H. Senbokuya, K. Kitano, and T. Hayashida, 'Method of Carburizing Austenitic Metal', U.S. 5,593,510, 1997.
88. P. C. Williams and S. V. Marx, 'Modified Low Temperature Case Hardening Process', U.S. 6,547,888, 2003.
89. Y. L. Fan, K. S. Hwang, S. H. Wu, and Y. C. Liau, 'Minimum Amount of Binder Removal Required during Solvent Debinding of Powder-Injection-Molded Compacts', Metallurgical and Materials Transactions A, 2009, Vol. 40, No. 4, pp. 768-779.
90. 'Materials Standards for PM Structural Parts', MPIF Standard 35, Metal Powder Industries Federation, Princeton, NJ.
91. A. Upadhyaya and S. Balaji, 'Sintered Intermetallic Reinforced 434L Ferritic Stainless Steel Composites', Metallurgical and Materials Transactions A, 2009, Vol. 40, No. 3, pp. 673-683.
92. R. Tongsri, S. Asavavisithchai, C. Mateepithukdharm, T. Piyarattanatrai, and P. Wangyao, 'Effect of Powder Mixture Conditions on Mechanical Properties of Sintered Al2O3-SS 316L Composites under Vacuum Atmosphere', Journal of Metals, Materials and Minerals, 2007, Vol. 17, No. 1, pp. 81-85.
93. S. Christopher, S. John, and L. Alan, 'Stainless Steel AISI Grades for PM Applications', International Journal of Powder Metallurgy, 2008, Vol. 44, No. 3, pp. 57-67.
94. A. D. Schino, J. M. Kenny, M. G. Mecozzi, and M. Barteri, 'Development of High Nitrogen, Low nickel, 18%Cr Aaustenitic Stainless Steels', Journal of Materials Science, 2000, Vol. 35, No. 19, pp. 4803-4808.
95. P. J. Uggowitzer, R. Magdowski, and M. O. Speidel, 'Nickel Free High Nitrogen Austenitic Steels', ISIJ International, 1996, Vol. 36, No. 7, pp. 901-908.
96. Y. S. Lim, J. S. Kim, S. J. Ahn, H. S. Kwon, and Y. Katada, 'The Influences of Microstructure and Nitrogen Alloying on Pitting Corrosion of Type 316L and 20 wt.% Mn-Substituted Type 316L Stainless Steels', Corrosion Science, 2001, Vol. 43, No. 1, pp. 53-68.
97. S. Barnes, M. J. Nash, and M. H. Lim, 'Machining Performance of PM Material Containing MnX Additives', Journal of Engineering Materials and Technology, 2000, Vol. 122, No. 4, pp. 379-383.
98. S. Cleays and K. Chopra, 'Enhanced Machinability and Oxidation Resistance with MnS Containing Additions to Iron', Advances in Powder Metallurgy and Particulate Materials, Edited by R. A. McKotch and R. Webb, MPIF, Princeton, NJ, 1997, pp. 111-123.
99. A. Pardo, M. C. Merino, M. Carboneras, A. E. Coy, and R. Arrabal, 'Pitting Corrosion Behaviour of Austenitic Stainless Steels with Cu and Sn Additions', Corrosion Science, 2007, Vol. 49, No. 2, pp. 510-525.
100. D. Itzhak and P. Peled, 'The Effect of Cu Addition on the Corrosion Behaviour of Sintered Stainless steel in H2SO4 Environment', Corrosion Science, 1986, Vol. 26, No. 1, pp. 49-54.
101. L. Fedrizzi, A. Molinari, F. Deflorian, A. Tiziani, and P. L. Bonora, 'Corrosion Study of Industrially Sintered Copper Alloyed 316L Austenitic Stainless Steel', British Corrosion Journal, 1991, Vol. 26, No. 1, pp. 46-50.
102. T. Akasawa, H. Sakurai, M. Nakamura, T. Tanaka, and K. Takano, 'Effects of Free-Cutting Additives on the Machinability of Austenitic Stainless Steels', Journal of Materials Processing Technology, 2003, Vol. 143-144, No. pp. 66-71.
103. S. T. Kim and Y. S. Park, 'Effects of Copper and Sulfur Additions on Machinability Behavior of High Performance Austenitic Stainless Steel', Metals and Materials International, 2009, Vol. 15, No. 2, pp. 221-230.
104. N. Tosngthum, P. Muangtong, O. Coovattanachai, M. Morakotjinda, T. Yodkaew, P. Wila, R. Krataitong, B. Vetayanugul, and R. Tongsri, 'Effects of Tin Powder on Properties of Sintered Stainless Steels', Journal of Metals, Materials and Minerals, 2008, Vol. 18, No. 1, pp. 47-51.
105. M. A. Pao and E. Klar, 'Corrosion Phenomena in Regular and Tin Modified P/M Stainless Steels', Progress in Powder Metallurgy, Edited by H. Nayar,S. Kaufman, and K. Meiners, MPIF, Princeton, NJ, 1987, pp. 431-444.
106. W. Wang, 'Effect of Tin Addition on the Microstructure Development and Corrosion Resistance of Sintered 304L Stainless Steels', Journal of Materials Engineering and Performance, 1999, Vol. 8, No. 6, pp. 649-652.
107. O. Coovattanachai, N. Tosangthum, M. Morakotjinda, T. Yotkaew, A. Daraphan, R. Krataitong, B. Vetayanugul, and R. Tongsri, 'Performance Improvement of P/M 316L by Addition of Liquid Phase Forming Powder', Materials Science and Engineering A, 2007, Vol. 445, No. 1, pp. 440-445.
108. M. S. El-Eskandarany, Mechanical Alloying for Fabrication of Advanced Engineering Materials, William Andrew Publishing, Norwich, NY, 2001, pp. 7-8.
109. 'Srandard Test Methods for Metal Powders and Powder Metallurgy Products', MPIF Standard 10, Metal Powder Industries Federation, Princeton, NJ.
110. 鄭文彬,'碳勢控制對碳工具鋼熱處理性質的影響',碩士論文,國立台灣大學機械工程學研究所,2007,4頁。
111. J. Slycke and L. Sproge, 'Assessment of Nitrogen Based Atmospheres for Industrial Heat Treating', Journal of Heat Treating, 1988, Vol. 5, No. 2, pp. 97-114.
112. 黃振賢,金屬熱處理,新文京開發出版股份有限公司,第十八版,2008,151-153頁。
113. H. K. Lin and K. S. Hwang, 'In Situ Dimensional Changes of Powder Injection-Molded Compacts during Solvent Debinding', Acta Materialia, 1998, Vol. 46, No. 12, pp. 4303-4309.
114. S. Yu, H. Ryoo, S. Hwang, and D. Shin, 'Monte-carlo Modeling of Grain Growth in Zr Equal Channel Angular Pressed and Recrystallized', Metals and Materials International, 2003, Vol. 9, No. 2, pp. 107-114.
115. J. A. Tippes and L. E. Byrnes, 'Carburizing Method', US 7,468,107 B2, 2008.
116. H. K. D. H. Bhadeshia and R. W. K. Honeycombe, Steels: Microstructure and Properties, Butterworth-Heinemann, Oxford, 2006, pp. 11-12, 39-69.
117. J. Kucera and K. Stransky, 'Diffusion in Iron, Iron Solid Solutions and Steels', Materials Science and Engineering, 1982, Vol. 52, No. 1, pp. 1-38.
118. A. Bowen and G. Leak, 'Solute Diffusion in Alpha- and Gamma-Iron', Metallurgical and Materials Transactions B, 1970, Vol. 1, No. 6, pp. 1695-1700.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66701-
dc.description.abstract316L為常用於射出成形的不銹鋼材料,可製作具有良好抗腐蝕性之精密零件,但其沃斯田鐵之結構導致其強度不高,限制了316L在工業界的應用,本實驗利用晶粒細化、氮固溶強化、熱處理及添加合金元素等方式,增加316L不銹鋼之硬度及強度,以提升316L不銹鋼之競爭力,實驗中亦分析了不銹鋼中氮化鉻之形成機制,並提供其消除方法,以改進其硬度、強度及抗腐蝕性質。
一般射出成形316L需利用高溫燒結才能達到高密度,而高溫燒結易導致晶粒成長使強度下降,若以低溫的1120℃於裂解氨下燒結細316L不銹鋼粉( D50=4.1 μm)兩小時,由於細粉具有較大的燒結驅動力,其密度可達7.70 g/cm3、晶粒尺寸約10 μm、氮含量約0.3 wt%、硬度約95 HRB、拉伸強度約740 MPa;相對地,一般粒度之 316L粉(D50=12.0 μm)試片在經過1370℃以真空燒結二小時之後。其密度約7.50 g/cm3、晶粒尺寸約64 μm、硬度約52 HRB、拉伸強度約450 MPa。此外,若將裂解氨燒結之316L不銹鋼置於氮氣中進行熱均壓製程,可將氮含量增加至0.8 wt%,於1120℃燒結的細粉316L之硬度及拉伸強度分別可再提升至110 HRB (約37 HRC)及820 MPa,而以1370℃裂解氨燒結之一般粒度316L粉試片之硬度及拉伸強度則由72 HRB增加至100 HRB (約24 HRC)及530 MPa增加至730 MPa。將1370℃真空燒結兩小時之一般粉316L試片,以500℃低溫滲碳24小時,2.85 mm厚之試片滲碳層可達約40μm,表面硬度可達810 HV,由於滲碳之後並無碳化鉻生成,所以仍具有良好的抗腐蝕性,且仍可依一般之製程研磨拋光,製作成外觀件。將低溫滲碳處理應用於乾壓成形不銹鋼,利用其內部具有連通孔之特性,滲碳過程碳可進入工件心部而強化,能有效提高不銹鋼之硬度及強度。
zh_TW
dc.description.abstractPowder Injection Molded (PIM) 316L stainless steels are widely applied in the industry for making small components with complicated shapes, but its austenitic structure and poor strength limit its applications. The methods of grain refinement, solid-solution strengthing by nitrogen, carburizing treatments, and alloying were used in this study to improve the mechanical properties of 316L.
In order to attain high sintered density, 316L is generally sintered at high temperatures, which causes significant grain growth. To circumvent this drawback, fine (D50 = 4.1 μm) 316L powder was sintered at a low temperature of 1120℃ for 2 hrs in dissociated ammonia. A high sintered density of 7.70 g/cm3 was obtained, the nitrogen content reached 0.3 wt%, and the hardness and tensile strength achieved were 95 HRB and 740 MPa, respectively. Sintering regular (D50 = 12.0 μm) 316L powder at 1370℃ for 2 hrs in vacuum can reach only 7.50 g/cm3 density, 52 HRB hardness, and 450 MPa tensile strength. With hot isostatic pressing in nitrogen, the nitrogen content in the fine 316L specimen that was sintered in dissociated ammonia for 2 hours can be further increased from 0.3 wt% to 0.8 wt% and the hardness and tensile strength of fine 316L specimen were improved to 110 HRB and 820 MPa, respectively. After being low-temperature carburized (LTC) at 500℃ for 24 hrs, the surface hardness of 316L reached 810 HV. The corrosion resistance remained the same because no Cr23C6 formed during carburization. The hardness and tensile strength of powder metallurgy 316L and 304L can also be increased by LTC obviously, since carbon can diffuse into the center of the specimen through interconnected pores.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:52:14Z (GMT). No. of bitstreams: 1
ntu-100-D96527015-1.pdf: 9669151 bytes, checksum: 9e910074f35c0714ec6b53ace6d08df3 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝.............................................i
摘要............................................ii
Abstract.......................................iii
目錄.............................................iv
圖目錄.........................................viii
表目錄........................................xviii
第一章 文獻回顧....................................1
1.1 金屬粉末射出成形簡介............................1
1.2 316L沃斯田鐵不銹鋼之簡介........................4
1.3 316L不銹鋼之射出成形...........................6
1.3.1 316L不銹鋼粉末之製造.........................6
1.3.2 熱脫脂製程對316L射出成形性質的影響.............10
1.3.3 燒結溫度對316L射出成形性質的影響...............10
1.3.4 燒結氣氛對316L 射出成形性質的影響.............. 12
1.3.5 降溫速率對316L 射出成形性質的影響.............. 13
1.4 氮、碳及氧含量對316L不銹鋼的影響................. 15
1.4.1 氮對射出成形工件316L性質的影響.................15
1.4.2 碳含量對射出成形316L性質的影響.................17
1.4.3 氧含量對射出成形316L性質的影響.................19
1.5 316L不銹鋼之熱處理.............................21
1.5.1 熱均壓(Hot Isostatic Pressing,簡稱HIP)..... 21
1.5.2 滲氮處理................................... 22
1.5.3 低溫滲碳(Low-Temperature Carburization,簡稱LTC).... 22
1.6 添加合金元素對316L 射出成形性質的影響.............28
1.6.1 鈮的影響................................... 29
1.6.2 錳的影響................................... 30
1.6.3 銅與錫的影響 ................................30
1.7 研究動機.....................................31
第二章 實驗步驟................................... 32
2.1 實驗設計......................................32
2.2 原料.........................................33
2.2.1 基礎粉..................................... 33
2.2.2 黏結劑..................................... 33
2.3 球磨方式及混煉.................................41
2.4 成形.........................................43
2.5 溶劑脫脂與熱脫脂...............................45
2.5.1 溶劑脫脂................................... 45
2.5.2 熱脫脂..................................... 45
2.6 燒結.........................................46
2.7 熱處理....................................... 47
2.7.1 熱均壓製程..................................47
2.7.2 滲氮處理................................... 47
2.7.3 低溫滲碳處理................................ 49
2.8 性質量測及分析.................................51
2.8.1 脫脂率..................................... 51
2.8.2 雷射膨脹儀(Laser Dilatometer)...............51
2.8.3 碳、氮及氧含量分析........................... 52
2.8.4 燒結密度的測量.............................. 53
2.8.5 機械性質測試 ................................53
2.8.6 抗腐蝕試驗..................................54
2.8.7 金相製備及微結構分析..........................54
2.9 測試儀器..................................... 56
第三章 結果與討論..................................58
3.1 燒結製程參數的影響............................. 58
3.1.1 粒徑、氣氛及燒結溫度的影響.....................58
3.1.2 冷卻速度的影響...............................71
3.1.3 真空及裂解氨燒結時,氮氣及氬氣之氣氛轉換..........73
3.2 熱處理........................................81
3.2.1 熱均壓製程...................................81
3.2.1.1 氮氣氣氛熱均壓.............................83
3.2.1.2 氬氣氣氛熱均壓.............................87
3.2.2 滲氮處理................................... 90
3.2.3 低溫滲碳................................... 97
3.2.3.1 金屬粉末射出成形...........................97
3.2.3.2 傳統粉末冶金乾壓成形.......................121
3.3 添加合金元素的影響............................129
3.3.1 氮親和力元素 (Nb, Mn)......................129
3.3.2 氮排斥元素(Cu、Sn).........................137
3.3.2.1銅的影響.................................137
3.3.2.2 錫的影響................................140
3.3.2.3 316LSC (316L+ 2 wt% Cu+ 1 wt% Sn)......145
3.3.3 添加碳化鈮之影響............................146
3.4 討論........................................154
3.4.1 氮含量與射出成形316L硬度、強度及抗腐蝕性的關係...154
3.4.2 低溫滲碳對射出成形及粉末冶金不銹鋼之影響及碳化物生成機制.....159
第四章 結論......................................168
第五章 未來工作...................................170
第六章 參考文獻...................................171
dc.language.isozh-TW
dc.subject射出成形zh_TW
dc.subject熱處理zh_TW
dc.subject固溶強化zh_TW
dc.subject晶粒細化zh_TW
dc.subject粉末冶金zh_TW
dc.subjectpowder metallurgyen
dc.subject316L stainless steelen
dc.subjectgrain refinementen
dc.subjectsolid-solution strengtheningen
dc.subjectheat treatmenten
dc.subjectPowder injection moldingen
dc.title高強度 316L 不銹鋼之金屬射出成形製程研究zh_TW
dc.titleThe Study of High-Strength Powder Injection Molded
316L Stainless Steel
en
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳永傳,蔡履文,林招松,林東毅,陸永忠
dc.subject.keyword射出成形,晶粒細化,固溶強化,熱處理,粉末冶金,zh_TW
dc.subject.keywordPowder injection molding,316L stainless steel,grain refinement,solid-solution strengthening,heat treatment,powder metallurgy,en
dc.relation.page184
dc.rights.note有償授權
dc.date.accepted2011-11-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
9.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved