請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66681完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 連雙喜(Shuang-Shii Lian) | |
| dc.contributor.author | Yen-ting Liu | en |
| dc.contributor.author | 劉彥廷 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:50:53Z | - |
| dc.date.available | 2015-01-17 | |
| dc.date.copyright | 2012-01-17 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-11-16 | |
| dc.identifier.citation | [1] J.H Hirschenhofer, D.B. Stauffer, R.R. Engleman, M.G. Klett(eds.), Fuel Cell Handbook, November 2004, p7-7.
[2] Effects of minor Ti, Mo, Co, and La additions on the high temperature oxidation behavior of Fe-Cr-Mn alloy, Wen-Sheng Wang, July 2009 [3] M. Hsu, “Fuel cell seminar abstracts”, (Tucson, AZ., May 19-22﹐1985), Courtesy Associate, 1985, p57. [4] M. Hsu, in: H.S.Isaacs, S.Srinivasan, I.L. Harry (Eds.), Proceedings of the Workshop on High-Temperature Solid Oxide Fuel Cells, Brookhaven National Laboratory, 1978, p127. [5] W.Z Zhu, S.C. Deevi, “Development of Interconnect Materials For Solid Oxide Fuel Cells”, Materials Science and Engineering: A, Volume 348, Issues 1-2, 15 May 2003, p227-243. [6] H.Ide, T.Yoshida, H . U e d a , N.Horiuchi, “Natural Gas Reformed Fuel Cell Power Generation Systems-A Comparison of Three System Efficiencies-”, The Institute of Electrical and Electronics Engineers, 1989, p1517-1522. [7] A. Khandkar, S. Elangovan, “Planar SOFC Development Status”, Proceedings of the Second Annual Fuel Cells Contractors Review Meeting, June, 1991, p152. [8] S.C. Singhal, “Science and Technology of Solid-Oxide Fuel Cells”, MRS Bulletin, Volume March 2000, p16-21, March 2000. [9] Nguyen Q. Minh, “Ceramic Fuel Cells”, Journal of the American Ceramic Society, Volume 76 Issue 3, March 1993, p563-798. [10] Zhenguo Yang, “Recent advances in metallic interconnects for solid oxide fuel cells”, International Materials Reviews, Volume 53, Number 1, January 2008, p39-54. [11] W.Z.Zhu, S.C.Deevi, “Opportunity of metallic interconnectors for solid oxide fuel cells: a status on contact resistance”, Materials Research Bulletin, Volume 38, Issue 6, 26 May 2003, p957-972. [12] Zhenguo Yang, K. Scott Weil, Dean M. Paxton, and Jeff W. Stevenson, “Selection and Evaluation of Heat-Resistant Alloys for SOFC Interconnect Applications”, Journal of the Electrochemical Society, Volume 150, Issue 9 , September 2003, A1188-A1201. [13] J.H. Hirschenhofer, D.B. Stauffer, R.R. Engleman, M.G. Klett (Eds.), Fuel Cell Handbook , November 2004, p1-3 [14]Jeffrey W. Fergus, “Metallic interconnects for solid oxide fuel cells”, Materials Science and Engineering: A, Volume 391 , February 2005, p 271-283. [15] Zhenguo Yang, Guan-Guang Xia, Chong-MinWang, Zimin Nie, Joshua Templeton, JeffryW. Stevenson, Prabhakar Singh, “Investigation of iron-chromium-niobium-titanium ferritic stainless steel for solid oxide fuel cell interconnect applications”, Journal of Power Sources, Volume 183, Issue 2, 2008, p660-667. [16] P. Kofstad, in: B. Thorstensen (Ed.), Proceedings of Second European Solid Oxide Fuel Cell Forum, Volume 2, May 6-10, 1996, p479. [17] J. Urbanek, M. Miller, H. Schmidt, K. Llipert, in: A.J. McEvoy (Ed.), Proceedings of Fourth European Solid Oxide Fuel Cell Forum, Volume 2, July 10-14, 2000, p503. [18] D. Dulieu, J. Cotton, H. Greiner, in: P. Stevens (Ed.), Proceedings of Third European Solid Oxide Fuel Cell Forum, June 2-5, 1998, p447. [19] A.S.Khanna, “Introduction to high temperature oxidation and corrosion”, 1st edition, ASM International, 2002 [20] W. J. Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, “Metallic interconnectors for solid oxide fuel cells - a review”, Materials at High Temperatures, Volume 20, Number 2, May 2003, p115-127. [21] W. J. Quadakkers, T. Malkow, J. Piron-Abellan, U. Flesch, V. Shemet and L. Singheiser, in: Proceedings of the 4th European SOFC Forum, Volume 2, 2000, p827-836. [22] Zhenguo Yang, Guan-Guang Xia, Matthew S. Walker, Chong-Min Wang, Jeffry W. Stevenson, Prabhakar Singh, “High temperature oxidation/corrosion behavior of metals and alloys under a hydrogen gradient”, International Journal of Hydrogen Energy, Volume 32, Issue 16, November 2007, p3770-3777. [23] P. Kofstad, “Nonstoichometry, Diffusion and Electrical Conductivity in Binary Metal Oxides”, Wiley-Intersicence, 1972, p133. [24] Zigui Lu; Jiahong Zhu; Payzant, E. Andrew; Paranthaman, Mariappan P, ” Electrical Conductivity of the Manganese Chromite Spinel Solid Solution” , Journal of the American Ceramic Society, Volume 88 Issue 4, Apr2005, p1050-1053 [25] A.V. Virkar, D.M. England, US Patent 6054231 - Solid oxide fuel cell interconnector, April 25, 2000. [26] V. Shement, J. Piron-Abellan, W.J. Quadakkers, L. Singheiser,” Metallic Materials in Solid Oxide Fuel Cells”, Full Cell Technologies: State and Perspectives, 2005, p97-106. [27] M. P. Brady, B. A. Pint, Z. G. Lu,_ J. H. Zhu, C. E. Milliken, E. D. Kreidler, L. Miller, T. R. Armstrong, and L. R. Walker,” Comparison of Oxidation Behavior and Electrical Properties of Doped NiO- and Cr2O3-Forming Alloys for Solid-Oxide, Fuel-Cell Metallic Interconnects”, Oxidation of Metals, Volume 65, April 2006, p237-p261 [28] W. J. Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, “Metallic interconnectors for solid oxide fuel cells - a review”,Materials at High Temperatures , Volume 20, May 2003, p115-127. [29] Evaluation of ferritic steels for use as interconnects and porous metal supports in IT-SOFCs ,I. Antepara , I. Villarreal, L.M. Rodr´ıguez-Mart´ınez, N. Lecanda, U. Castro, A. Laresgoiti [30] 徐偉勛,劉謹豪,蕭敏郎,熊迪南,陳順發,李輝隆,'以粉末冶金製程開發固態氧化物燃料電池之連結板' 台灣保來得公司 [31] Fe22.6Cr0.4Mn0.1Si0.1Al after 1000h oxidation at 800 ℃ in air P. Huczkowski , N. Christiansen , V. Shemet , L. Niewolak , J. Piron-Abellan , L. Singheiser , W. J. Quadakkers [32] W.Z.Zhu, S.C.Deevi, “Opportunity of metallic interconnectors for solid oxide fuel cells: a status on contact resistance”, Materials Research Bulletin, Volume 38, Issue 6, 26 May 2003, p957-972. [33] T. Brylewski , K. Przybylski , J. Morgiel, “Microstructure of Fe-25Cr/(La, Ca)CrO3 composite interconnector in solid oxide fuel cell operating conditions”, Materials Chemistry and Physics, Volume 81, 2003, p434-437 [34] Influence of post-treatments on the contact resistance of plasma-sprayed La0.8Sr0.2MnO3 coating on SOFC metallic interconnector ,D.P. Lim, D.S. Lim, J.S. Ohb and I.W. Lyob [35] Oxidation behavior of metallic interconnect coated with La–Sr–Mn film by screen painting and plasma sputtering ,Chun-LinChu, JyeLee, Tien-Hsi Lee, and Yung-Neng Cheng. [36] Y.D. Zhen, San Ping Jiang , Sam Zhang, Vincent Tan, “Interaction between metallic interconnect and constituent oxides of (La, Sr)MnO3 coating of solid oxide fuel cells”, Journal of the European Ceramic Society, Volume 26 Issue15, 2006 , p3253-3264. [37] Christopher Johnson, Randall Gemmen, Nina Orlovskaya, “Nano-structured self-assembled LaCrO3 thin film deposited by RF-magnetron sputtering on a stainless steel interconnect material”, Composites Part B: Engineering, Volume 35 Issue 2, 2004, p167-172. [38] Nina Orlovskaya , Anthony Coratolo , Mykola Lugovy ,Christopher Johnson, Randall Gemmen, “Structural evolution of La-Cr-O thin films: Part I. Microstructure and phase development”, Thin Solid Films, Volume 515 Issue 4, 2006, p1741-1747. [39] S. Fontana , R. Amendola, S. Chevalier , P. Piccardob, G. Caboche, M. Viviani, R. Molins , M. Sennour, “Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys”, Journal of Power Sources, Volume 171 Issue 2 , 2007, p652-662. [40] Zigui Lu, Jiahong Zhu, Ye Pana, Naijuan Wu , Alex Ignatiev, “Improved oxidation resistance of a nanocrystalline chromite-coated ferritic stainless steel”, Journal of Power Sources, Volume 178 Issue1 , 2008, p282-290. [41] W.Z Zhu, S.C. Deevi, “Development of Interconnect Materials For Solid Oxide Fuel Cells”, Materials Science and Engineering: A, Volume 348, Issues 1-2, 15 May 2003, p227-243. [42] Nima Shaigan, Douglas G. Ivey,Weixing Chen, “Co/LaCrO3 composite coatings for AISI 430 stainless steel solid oxide fuel cell interconnects”, Journal of Power Sources, Volume 185 Issue1 , 2008, p331-337. [43] Y.D. Zhen, San Ping Jiang , Sam Zhang, Vincent Tan, “Interaction between metallic interconnect and constituent oxides of (La, Sr)MnO3 coating of solid oxide fuel cells”, Journal of the European Ceramic Society Volume 26 Issue 15, 2006, p3253-3264. [44] Zhenguo Yang , Guan-Guang Xia, Gary D. Maupin, Jeffry W. Stevenson, “Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications”,Surface & Coatings Technology, Volume 201 Issue 7, 2006, p4476-4483. [45] A.S.Khanna, “Introduction to high temperature oxidation and corrosion”, 1st edition, ASM International, 2002. [46] 連雙喜,石明倫, 雙自熔旋轉電極合金粉末的製造方法 [47] Taylor G. ,”The Instability of Liquid Surfaces when Accelerated in a Direction Perpendicular to their Planes,”Proc. Royal Society,201,192-196,1950 [48] 黃坤祥粉末冶金學 2001 [49]MuraszewA.,”Continuous Fuel-Injection Systems with Rotating Fuel Chamber,”Engineering, 165-166, pp.316-317 , 1948 [50]Drombrowski N., Frazeer R.P. and Routley J.H.,” The Filming of Liquids by Spinning Cup,” Chemical Engineering Science, 18, pp. 323-337 , 1963 [51]Electrical and microstructural characterization of spinel phasesas potential coatings for SOFC metallic interconnects, William Qua,Li Jian, Josephine M. Hill ,Douglas G. Ivey | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66681 | - |
| dc.description.abstract | 金屬連接板由於必須在高溫環境下運作,因此需要優異的抗高溫氧化性及良好的導電性。但目前的合金仍未完美達成上述要求,且成本仍然偏高。為了改善上述的缺點,本論文將利用粉末冶金法製成指定形狀之成品,如此便不必經過傳統製程後續的繁複加工,達到節省成本之目的
。 在成分的選擇上,由於鐵鉻錳合金是常見的金屬連接板材料,另外根據前人研究添加鈷可以大幅改善高溫氧化、高溫電阻及熱膨脹性質。故本論文將以鐵-鉻-錳-鈷為主要研究對象。 本論文使用旋轉電極法製造所需之合金粉末,再壓胚燒結直接製成指定形狀之成品。所得之合金再進行150小時不連續高溫氧化實驗、高溫電阻實驗、金相成分分析等後續之分析及性質檢定。 由於粉末冶金法製出之合金因孔洞過多使其高溫氧化性質不如預期,故另外嘗試在合金表面上鍍上一層LSM薄膜,以期堵住其孔洞,進而改善其高溫氧化性質。實驗結果發現鍍上LSM薄膜僅能小幅改善其抗高溫氧化性質,因為合金和鍍層之熱膨脹係數不夠匹配以及合金表面孔洞影響造成鍍膜有所破損,使其保護效果降低。 | zh_TW |
| dc.description.abstract | The SOFC metal interconnector must have excellent oxidation behavior in high temperature and good electrical conductivity, because it operates in high temperature surroundings, but the cost is still high currently. So the thesis use power metallurgy method to manufacture the products, which avoids complicate manufacture process and reduce the cost.
The Fe-Cr-Mn alloy is the common SOFC metal interconnector material, and according to previous research, the addition of Co reinforces the high temperature oxidation behavior, electrical resistance, and thermal expansion. For these advantages, the thesis use Fe-Cr-Mn-Co for the composition of SOFC metal interconnector. The thesis manufactures alloy powders by REP method, and sinters it for products in next procedure. Finally the products is analyzed by non-continuous 150hr high temperature oxidation, high temperature electrical resistance, and metallographic analysis. Due to the porous surface, the high temperature oxidation behavior is weaker than expected. To reinforce it, the thesis tries coating LSM film on the surface of the product. The results show that LSM coating improves high temperature oxidation behavior slightly, due to the mismatch of thermal expansion coefficient(CTE) and the porosity of the alloy surface cause the LSM film damaged partly. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:50:53Z (GMT). No. of bitstreams: 1 ntu-100-R98527022-1.pdf: 15731950 bytes, checksum: 75388a76fa9514f529fc369331586f4b (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 中文摘要 iii
Abstract iv 圖目錄 vi 表目錄 x 第一章 前言 1 第二章 文獻回顧 2 2.1 燃料電池金屬連接板簡介 2 2.2 金屬連接板的發展現況 6 2.3 高溫氧化機制 15 2.4 旋轉電極製粉法原理[46] 23 第三章 實驗步驟與方法 28 3.1 合金相圖計算 30 3.2 電極棒材料選擇 31 3.3 旋轉電極製作粉末 31 3.4 粉末壓胚燒結 35 3.5 合金性質分析 37 3.6 表面鍍膜處理 38 3.7 高溫氧化實驗 39 3.8 高溫氧化試片分析 40 3.9 電弧熔煉爐熔煉合金 43 3.10 熱軋處理 45 3.11 均質化處理 45 第四章 結果與討論 46 4.1 合金模擬結果 46 4.2 旋轉電極製備粉末 49 4.3 壓胚與燒結數據 53 4.4 燒結橫截面金相觀察 61 4.5 高溫氧化實驗&數據 72 a.高溫氧化表面觀測 72 b.高溫氧化橫截面觀測 87 c.氧化層X-Ray觀測 103 d.高溫氧化增重探討 107 4.6 高溫電阻數據 119 4.7 熱膨脹數據 121 第五章 結論 124 第六章 參考文獻 126 | |
| dc.language.iso | zh-TW | |
| dc.subject | 燃料電池 | zh_TW |
| dc.subject | 金屬連接板 | zh_TW |
| dc.subject | 旋轉電極 | zh_TW |
| dc.subject | 高溫氧化 | zh_TW |
| dc.subject | 表面鍍膜 | zh_TW |
| dc.subject | surface coating | en |
| dc.subject | metallic interconnect | en |
| dc.subject | rotating electrode process(REP) | en |
| dc.subject | high temperature oxidation | en |
| dc.subject | SOFC | en |
| dc.title | 以旋轉電極法製備鐵鉻基燃料電池連接板高溫氧化性質之探討 | zh_TW |
| dc.title | The Discussion of High Temperature Oxidation Behavior of Fe-Cr Based SOFC Interconnector by REP Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李瑞益(Ruey-Yi Lee),林立夫(Li-Fu Lin) | |
| dc.subject.keyword | 燃料電池,金屬連接板,旋轉電極,高溫氧化,表面鍍膜, | zh_TW |
| dc.subject.keyword | SOFC,metallic interconnect,rotating electrode process(REP),high temperature oxidation,surface coating, | en |
| dc.relation.page | 130 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-11-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 15.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
