Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66560
標題: 使用伽馬散度之穩健線性判別分析法
Robust linear discriminant analysis based on γ-­divergence
作者: Wen­-Shao He
何文劭
指導教授: 陳定立(Ting-Li Chen)
關鍵字: 穩健統計學,線性判別分析,降維,γ-散度,影響函數,
Robust statistics,Linear discriminant analysis,Dimension reduction,γ-divergence,Influence function,
出版年 : 2020
學位: 碩士
摘要: 線性判別分析可最大程度地提高組間差異與組內差異的比率,它被廣泛用於監督維度縮減中。在傳統的線性判別分析中,判別空間會被標籤錯誤的數據嚴重影響。為了克服這個問題,我們提出了基於伽馬散度的穩健線性判別分析。本文將介紹伽馬線性判別分析算法,並透過影響函數分析其穩健性。我們也藉由模擬資料與人臉辨識資料來展現新方法的優越性。
Linear discriminant analysis (LDA) which maximizes the ratio of the between-class variance to the within-class variance is widely used in supervised dimension reduction. In the traditional LDA, the discriminant space can be badly affected by the mislabeled data. To overcome this issue, we propose a robust linear discriminant analysis based on the γ-divergence which is a more robust measure than the Kullback-Leibler divergence. In this thesis, we will introduce the γ-LDA algorithm and analyze its robustness by the influence function. Furthermore, we will show the superior performance of γ-LDA on the simulated examples as well as face image data.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66560
DOI: 10.6342/NTU201901737
全文授權: 有償授權
顯示於系所單位:應用數學科學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
3.04 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved