Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66560
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳定立(Ting-Li Chen)
dc.contributor.authorWen­-Shao Heen
dc.contributor.author何文劭zh_TW
dc.date.accessioned2021-06-17T00:43:13Z-
dc.date.available2021-02-10
dc.date.copyright2020-02-10
dc.date.issued2020
dc.date.submitted2020-02-05
dc.identifier.citation[CR92] CY Chork and Peter J Rousseeuw. Integrating a high-breakdown option into discriminant analysis in exploration geochemistry. Journal of
Geochemical Exploration, 43(3):191–203, 1992.
[DKK+19] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur
Moitra, and Alistair Stewart. Robust estimators in high-dimensions
without the computational intractability. SIAM Journal on Computing,
48(2):742–864, 2019.
[Don82] David L Donoho. Breakdown properties of multivariate location estimators. Technical report, Technical report, Harvard University, Boston.
URL http://www-stat. stanford …, 1982.
[FE08] Hironori Fujisawa and Shinto Eguchi. Robust parameter estimation
with a small bias against heavy contamination. J. Multivar. Anal.,
99(9):2053–2081, October 2008.
[FT74] Jerome H Friedman and John W Tukey. A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on computers,
100(9):881–890, 1974.
[Ham68] Frank R Hampel. Contribution to the theory of robust estimation. Ph.
D. Thesis, University of California, Berkeley, 1968.
[Ham74] Frank R. Hampel. The influence curve and its role in robust estimation.
Journal of the American Statistical Association, 69(346):383–393, 1974.
HD04] Mia Hubert and Katrien Driessen. Fast and robust discriminant analysis.
Computational Statistics Data Analysis, 45:301–320, 03 2004.
[HF00] Xuming He and Wing Fung. High breakdown estimation for multiple
populations with applications to discriminant analysis. Journal of Multivariate Analysis, 72:151–162, 02 2000.
[HM97] Douglas M. Hawkins and Geoffrey J. McLachlan. High-breakdown linear
discriminant analysis. Journal of the American Statistical Association,
92(437):136–143, 3 1997.
[HR09] Peter J Huber and Elvezio M Ronchetti. Robust statistics; 2nd ed. Wiley
Series in Probability and Statistics. Wiley, Hoboken, NJ, 2009.
[HRRS11] F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw, and W.A. Stahel. Robust
Statistics: The Approach Based on Influence Functions. Wiley Series in
Probability and Statistics. Wiley, 2011.
[Hub64] Peter J. Huber. Robust estimation of a location parameter. Ann. Math.
Statist., 35(1):73–101, 03 1964.
[Hub85] Peter J. Huber. Projection pursuit. Ann. Statist., 13(2):435–475, 06
1985.
[LRV16] Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation
of mean and covariance. In 2016 IEEE 57th Annual Symposium on
Foundations of Computer Science (FOCS), pages 665–674. IEEE, 2016.
[Mar76] Ricardo Antonio Maronna. Robust m-estimators of multivariate location
and scatter. Ann. Statist., 4(1):51–67, 01 1976.
[MB98] A.M. Martinez and R. Benavente. The ar face database. Technical Report
24, Computer Vision Center, 06 1998.
[PB10] Ana M Pires and Jo˜ao A Branco. Projection-pursuit approach to robust linear discriminant analysis. Journal of Multivariate Analysis,
101(10):2464–2485, 2010.
[Rou81] Peter J Rousseeuw. A new infinitesimal approach to robust estimation. Zeitschrift f¨ur Wahrscheinlichkeitstheorie und verwandte Gebiete,
56(1):127–132, 1981.
[Rou85] Peter Rousseeuw. Multivariate estimation with high breakdown point.
Mathematical Statistics and Applications Vol. B, pages 283–297, 01 1985.
[Sta81] Fachgruppe Fuer Statistik. Breakdown of covariance estimators. Research Report, 1981.
[Ste79] G.W. Stewart. Pertubation bounds for the definite generalized eigenvalue
problem. Linear algebra and its applications, 23:69–85, 1979.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66560-
dc.description.abstract線性判別分析可最大程度地提高組間差異與組內差異的比率,它被廣泛用於監督維度縮減中。在傳統的線性判別分析中,判別空間會被標籤錯誤的數據嚴重影響。為了克服這個問題,我們提出了基於伽馬散度的穩健線性判別分析。本文將介紹伽馬線性判別分析算法,並透過影響函數分析其穩健性。我們也藉由模擬資料與人臉辨識資料來展現新方法的優越性。zh_TW
dc.description.abstractLinear discriminant analysis (LDA) which maximizes the ratio of the between-class variance to the within-class variance is widely used in supervised dimension reduction. In the traditional LDA, the discriminant space can be badly affected by the mislabeled data. To overcome this issue, we propose a robust linear discriminant analysis based on the γ-divergence which is a more robust measure than the Kullback-Leibler divergence. In this thesis, we will introduce the γ-LDA algorithm and analyze its robustness by the influence function. Furthermore, we will show the superior performance of γ-LDA on the simulated examples as well as face image data.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:43:13Z (GMT). No. of bitstreams: 1
ntu-109-R07246009-1.pdf: 3115195 bytes, checksum: 6153c7978f698b6983e48f1feee29fdd (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsAcknowledgements i
Abstract ii
1 Introduction 1
1.1 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Robust Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . 3
2 Robustness of Linear Discriminant Analysis 4
2.1 Robust Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Measurement of Robustness . . . . . . . . . . . . . . . . . . . 5
2.1.2 M-estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Robustness of Linear Discriminant Analysis . . . . . . . . . . . . . . 8
3 The Minimum γ-Divergence Estimation 12
4 γ-LDA Algorithm 16
4.1 Model Specification and Estimation . . . . . . . . . . . . . . . . . . . 17
4.2 Plug-in γ-LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Projection Pursuit γ-LDA . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Projection Pursuit . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Simulation and Compression of γ-LDA . . . . . . . . . . . . . . . . . 23
5 Robustness of γ-LDA 29
6 Real Data 32
7 Discussion and Future Work 34
dc.language.isoen
dc.title使用伽馬散度之穩健線性判別分析法zh_TW
dc.titleRobust linear discriminant analysis based on γ-­divergenceen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳素雲(Su-Yun Huang),杜憶萍(I-Ping Tu),王偉仲(Wei-Chung Wang)
dc.subject.keyword穩健統計學,線性判別分析,降維,γ-散度,影響函數,zh_TW
dc.subject.keywordRobust statistics,Linear discriminant analysis,Dimension reduction,γ-divergence,Influence function,en
dc.relation.page38
dc.identifier.doi10.6342/NTU201901737
dc.rights.note有償授權
dc.date.accepted2020-02-06
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用數學科學研究所zh_TW
Appears in Collections:應用數學科學研究所

Files in This Item:
File SizeFormat 
ntu-109-1.pdf
  Restricted Access
3.04 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved