請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66507
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭博成 | |
dc.contributor.author | Tsai Tsung Lin | en |
dc.contributor.author | 蔡宗霖 | zh_TW |
dc.date.accessioned | 2021-06-17T00:39:37Z | - |
dc.date.available | 2012-02-16 | |
dc.date.copyright | 2012-02-16 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-01-20 | |
dc.identifier.citation | 參考文獻
1.鍾文定, 鐵磁學(中), 科學出版社, (1987) 。 2.將壽亭, 凝聚態磁性物理, 科學技術出版社, (2003) 。 3.金重勳,磁性技術手冊,中華民國磁性技術協會出版 (2002)。 4.近角聰信著,張煦、李學養譯,“磁性物理學”,聯經出版事業公司 (1982)。 5.P. Pernod, V. Preobrazhensky. Journal of Magnetism and Magnetic Materials 184,173-178,(1998). 6.P. F. Carcia, et al., Appl. Phys. Lett. 47 178 (1985). 7.L. Mayer, J. Appl. Phys. 29 1454 (1958). 8.D.Chen, G.N. Otto and F.M. Schimit, IEEE Tran on Magn.,9,66 (1973). 9.Legvold etal., Phys. Rev. Lett., 10 509 (1963). 10.A.E.Clark, et al., Phys. Rev., 138 A216 (1965). 11.J.Rhyne, et al., Phys.Rev., 138 A507 (1965). 12.A.E.Clark, Ferromagnetic Materials, edited by E.P. Wolfarth, Vol.1 P.532 (1980). 13.A.E.Clark, et al., AIP Conf. Proc., 10 749 (1973). 14.A.E.Clark, et al., AIP Conf. Proc., 18 1015 (1973). 15.A.E.Clark, J.P. Teter and O.D. Mcmaster, J. Appl. Phys. 63 3910(1958). 16.Clark A E,Restorff J B,Wun—Fogle M, et a1. Piezomagnetic pfoperties and △E effect in TbZn at 77 K. IEEE Trans.Magn.36,3238,(2000). 17.Clark A E, Hathaway K B, M.Wun-Fogle and J.B.Restorff, T.A.Lograsso V.M.Keppens,G.Petculescu,and R.A.Taylor, Extraordinary magnetoelasticity and lattice softening in bcc Fe-Ga alloys, Journal of Applied Physics, 93,8621,(2003). 18.Xu Lihong,Jiang Chengbao, Xu Huibin. Magnetostriction and electrical resistivity of Si doped Tb0.3Dy0.7Fe1.95 oriented crystals.Appl.Phys.Lett. 89,192,(2006). 19.Chopra I.Review of state of art of smart structures and integrated systems.Journal,403,2145,(2002). 20.Dapino M J,Nonlinear and Hysteretic MagnetomechaIlical Model for Magnetostrictive Transducer.Iowa State university,(l999). 21.Kellogg R A,Development and Modeling of Iron-Gallium alloys Engineering Mechanics.Iowa State UniVersity. 22. Wuttig M,Dai L, Cullen J. Elasticity and magnetoelasticity of Fe_Ga solid solutions.Appl.Phys.Lett,80,1135,(2002). 23.Clark A E,Wun-Fogle M,Restorff J B,et a1.Effect of Quenching on the Magnetostriction of Fe1-xGax(0.13 < x < 21).IEEE.Trans.Magn.37. 3728-3680 (200l). 24.Anouar Belahcen, Magneto-elasticity,magnetic forces and magnetostriction in electrical machines,[Doctoral thesis]. Helsinki UniVersity of Technology. August 27,(2004). 25.Teter J P, Hathaway K B,Clark A E.Zero field damping capacity in (TbxDy1-x)Fey.J.Appl.Phys. 79,6213,(1996). 26.Massalski TB(ed) Binary phase diagrams, 2nd edn. ASM International,Materials Park, Ohio, (2004). 27.O.Ikeda, R.Kainuma,I.Ohnuma,K.Fukamichi,K.Ishida,Phase equilibria and stability of ordered b.c.c.phases in the Fe-rich portion of the FeGa system, Journal of Alloys and Compounds,347,198,(2002). 28.Lograsso T A, Ross A R, Schlagel D L, et a1. Structural transfomations in quenched Fe-Ga alloys. Journal of Alloys and Compounds,350,95-101,(2003). 29.H.Okamoto ASM international, The FeGa System, Bulletin of Alloy Phase Diagrams,11,6,(1990). 30.Srisukhumbowornchai N, Guruswamy S, Influence of ordering on the magnetostriction of Fe-27.5 at.%Ga alloys,Journal of Applied Physics,92,5371(2002). 31.Kawamiya N, Adachi K, Nakamura Y. Magnetic properties and Moss Bauer investigations of Fe-Ga alloys.J.Phys.Soc.Jpn,33,13-18,(972). 32.L. Dai, J. Cullen, M. Wuttig, T.A. Lograsso, and E. Quandt, J. Appl. Phys. 93, 8627 (2003). 33.Wu Ruqian. Origin of large magnetostriction in FeGa alloys. J.Appl.Phys.91, 7358,(2002). 34.Clark A E, Hathaway K B, M.Wun-Fogle and J.B.Restorff, T.A.Lograsso V.M.Keppens, G.Petculescu, and R.A.Taylor, Extraordinary magnetoelasticity and lattice softening in bcc Fe-Ga alloys, Journal of Applied Physics, 93,8621,(2003). 35.Clark A E,James B.Restorff,Maarilyn Wun-Fogle, Thomas A.Lograsso, and Deborah L.Schlagel, Magnetostrictive Properties of Body-Centered Cubic FeGa and and FeGaAl Alloys, IEEE Transactions on Magnetics,36,3238,(2000). 36.E.M.Summers.T.A.Lograsso.M.Wun-Fogle magnetostriction of binary and ternary FeGa alloys,J.Mater.Sci,9582-9594.(2007). 37.Srisukhumbowornchai N,Guruswamy S,Journal of Applied Physics,90,5680(2001). 38.A. E. Clark, M. Wun-Fogle, J. B. Restorff, K. W. Dennis, T. A. Lograsso et al. Temperature dependence of the magnetic anisotropy and magnetostriction of Fe100xGax (x = 8.6, 16.6, 28.5), J. Appl. Phys. 97, 10M316 (2005). 39. N. Kawamiya, K. Adachi, and Y. Nakamura J. Phys. Soc. Jpn. 33, 1318 (1972). 40. R. A. Kellogg, A. B. Flatau, A. E. Clark, M. Wun-Fogle, and T. A. Lograsso, Temperature and stress dependencies of the magnetic and magnetostrictive properties of Fe0.81Ga0.19,J. Appl. Phys. 91, 7821 (2002). 41. Liyang Dai, James Cullen, Manfred Wuttig, T. Lograsso, and Eckhard Quand, Magnetism, elasticity, and magnetostriction of FeCoGa alloys, J. Appl. Phys. 93, 8627 (2003). 42. Sadia Rafique, James R. Cullen, Manfred Wuttig, and Jun Cui, Magnetic anisotropy of FeGa alloys, J. Appl. Phys. 95, 6939 (2004). 43. J.M. Gaudet, T.D. Hatchard, S.P. Farrell, R.A. Dunlap, Properties of Fe–Ga based powders prepared by mechanical alloying, Journal of Magnetism and Magnetic Materials,320,821-829,(2008). 44. Pinai Mungsantisuk, Robert P. Corson, and Sivaraman Guruswamy, Influence of Be and Al on the magnetostrictive behavior of FeGa alloys J. Appl. Phys.98,123907 (2005). 45. Mungsantisuk P, Corson R, Guruswamy S In: Chandra D, Bautista RG, Schlapbach L (eds) Advanced materials for energy conversion II. TMS, p 275,(2004). 46. Mungsantisuk P, Corson R, Guruswamy S J Appl Phys 98,123907,(2005). 47. J.B.Restorff and M.Wun-Fogle A.E.Clark T.A.Lograsso, A.R.Ross, and D.L.Schlagel magnetostriction of Ternary Fe-Ga-X alloys(s=Ni,Mo,Sn,Al) J. Appl. Phys.91,8225 (2002). 48. C. Bormio-Nunes, R. Sato Turtelli, H. Müller, R. Grössinger, H. Sassik and M.A. Tirelli, J. Magn. Magn. Mater. 290–291,820–822(2005). 49. GONG Yan,JIANG Chengbao, XU Huibin, Effects of boron addition on phase structure and magnetostriction of Fe-Ga alloys, 42, 830-834 (2006). 50. S.Guruswamy, N. Srisukhumbowornchai, A.E.Clark, J.B.Restorff, and M.Wun-Fogle, Scr.Mater., 43 239 (2000). 51. D. P. Pappas, C. R. Brundle, and H. Hopster, Phys. Rev. B, 45, 8169 (1992). 52. S. Muller, P. Bayer, C. Reischl, K. Heinz, B. Feldmann, H. Zillgen, and M. Wuttig, Phys. Rev. Lett, 74, 765 (1995). 53. M. T. Lin, J. Shen, W. Kuch, H. Jenniches, M. Klaua, C. M. Schneider, and J. Kirschner, Phys. Rev. B, 55, 5886 (1997). 54. N. A. Morley, A. Javed, and M. R. J. Gibbs. Journal of Applied Physics 105. 07A912(2009). 55. S. F. Xu, H. P. Zhang, et. al. J.Phys. D: Appl. 41 015002 (2008). 56.高銘南,國立海洋大學光電所碩士論文 (2001)。 57. S. U. Jen, C. C. Liu. Thin Solid Films 471 218-223(2005). 58. William F.Smith著,李春穎、許煙明、陳忠仁譯,“材料科學與工程”, 高立圖書有限公司(1994)。 59. 李正中,“薄膜光學與鍍膜技術“,藝軒圖書出版社(2002)。 60.賴耿陽 編譯,”薄膜製做工藝學” ,復漢出版社, p.99~p.105,(1990)。 61.方俊鑫,陸棟,'固態物理學(上)',亞東書局,p.320~p.324(1989)。 62.T.R.Mcguire,R.I.Potter,IEEE Tans. Magn. MAG-11,p.1022 (1975). 63.魏志達,”Magnetoresistance and Hall effect of Co-Pd alloy films”, National Taiwan Ocean University,(1994). 64.陳元宗,國立清華大學材料科學工程研究所博士論文 (2006) 。 65.黃榮俊,物理雙月刊,十七卷六期,663-973 (1995) 。 66.鄭振東,“實用磁性材料”,全華科技圖書股份有限公司(1999)。 67.劉國雄,林樹均,李勝隆,鄭晃忠,葉鈞蔚,“機械材料學”,全華科技圖書股份有限公司(1996). 68.P. D. McGary and B. J. H. Stadler J. Appl. Phys. 97, 10R503 (2005). 69.M. C. Zhang, H. L. Jiang, X. X. Gao, J. Zhu, and S. Z. Zhou J. Appl. Phys. 99,023903 (2006). 70. M.C. Zhang, X.X. Gao, H.L. Jiang, Y. Qiao, S.Z. Zhou Journal of Alloys and Compounds 431 42–44 (2007). 71. J.M.Borrego, J.S.Blazquez,C.F.Conde,A.Conde,S.Roth,Intermetallics 15,193-200 (2007). 72.H.Basumatary, M.Palit, J.A.Chelvane, S.Pandian, M.M.Raja, V.Chandrasekaran, Scripta Materialia 59, 878 (2008). 73.N.Lupu, P.Pascariu, C.Gherasim,H.Chiriac,IEEE Transactions on Magnetics 44,3005 (2008). 74.M.C.Zhang, J.C. Jia, J.Zhu, X.X.Gao, J.E.Li, Scripta Materialia, 61, 557, (2009). 75.Feiming Bai, Huaiwu Zhang, Jiefang Li, and D. Viehland , Appl. Phys. Lett. 95, 152511 (2009). 76.A.Javed, T.Szumiata, N.A.Morley, M.R.J.Gibbs, Acta Materialia.58, 4003 (2010). 77.S. U. Jen, T. L. Tsai, M. S. Li, P. C. Kuo, and M. Y. Lin, Magnetic properties of Fe62Co19Ga19 films deposited on Si(100) substrates, J. Appl. Phys.109,07A920 (2011). 78.T. L. Tsai, S. U. Jen, and P. C. Kuo, High temperature magnetic properties of Fe81−xCoxGa19/Si(100) films, J. Appl. Phys. 109,07E325 (2011). 79.蘇清森,“真空技術”,東華書局(1992)。 80.John F. O’Hanlon, “A User’s Guide to Vacuum Technology ”, Wiley (1989). 81.“真空技術與應用”,行政院國家科學委員會精密儀器發展中心(2001)。 82.呂登復,”實用真空技術”,國興出版(1986)。 83.劉奇青,國立海洋大學光電所碩士論文 (2008)。 84.中央研究院物理所XRD操作手冊。 85.孫國衡,國立臺灣海洋大學光電科學系碩士論文(2008)。 86.中研院物理所Hitachi S-4200 FESEM&EDS 簡易操作步驟手冊。 87.G. Binnig, C. F. Quate, Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986). 88.V. J. Morris, A. R. Kirby, A. P. Gunning, Atomic Force Microscopy for Biologists, Imperial College Press: London (1999). 89.楊念庭,國立台灣科技大學機械研究所碩士論文 (2007)。 90.賴一凡,國立台灣科技大學機研所碩士論文(2002)。 91.Dektak3 user’s manual, Sloan Technology (1991). 92.Model 7407 Vibrating Sample Magnetometer user’s manual, Lake Shore. 93.韓寶善 北京中科院物理所磁學重點實驗室DI-NanoScope IIIa-D3100 MFM操作步驟。 94.張有進,國立台灣科技大學機械研究所碩士論文(2005)。 95.Pantmaks A et al.Electronics Letter,22(14),737,(1986). 96.劉皇昇,國立臺灣科技大學機械研究所碩士論文(2008)。 97.B. W. Wang, S. Y. Li, Y. Zhou, et. al. Journal of Magnetic Materials 320,769-773,(2008). 98.HU Yong, DING Yu-tian, LIU Fen-xia, ZHANG Yan-long, WANG Jing (State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou 730050;China). 99.B. W. Wang, S. Y. Li, Y. Zhou, W. H. Huang, and S. Y. Cao, J. Magn.Magn. Mater. 320, 769 (2008). 101. H. B. Callen and N. Goldberg, J. Appl. Phys. 36, 976 (1965). 102. E. M. Summer, T. A. Lograsso, and M. Wun-Fogle, J. Mater. Sci. 42,9582 (2007). 103. Y. N. Zhang, J. X. Cao, and R. Q. Wu, Appl. Phys. Lett. 96, 062508 (2010). 104. R. Wu, J. Appl. Phys. 91, 7358 (2002). 105. S. U. Jen, Y. D. Yao, Y. T. Chen, J. M. Wu, C. C. Lee, T. L. Tsai, and Y. C. Chang, J. Appl. Phys. 99, 053701 (2006). 106. J. J. Qiu, G. C. Han, K. B. Li, Z. Y. Liu, B. Y. Zong, and Y. H. Wu, J. Appl. Phys. 99, 094304 (2006). 107. S. U. Jen, T. L. Tsai, P. C. Kuo, W. L. Chi, and W. C. Cheng, J. Appl.Phys. 107, 013914 (2010). 108. E. Du Tremolet de Lacheisserie, Phys. Status Solidi B 54, K135 (1972). 109. Q. Xing and T. A. Lograsso, Appl. Phys. Lett. 93, 182501 (2008). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66507 | - |
dc.description.abstract | 本論文是藉由磁控濺鍍的方式製作Fe81-yCoyGa19薄膜,首先沉積於Corning 0211玻璃基板上,在本論文再次研究Co添加效應對於Fe81Ga19合金之影響:首先所添加Co之範圍是寬廣的可以到達23%,其中Co原子的含量範圍(從y=0至y=23); 第二,從添加Co原子去了解結構變化,經過量測及分析,得知Fe81-yCoyGa19薄膜結構以生長方向為<110>的織構為主,為BCC結構;第三,因為高頻率的性能,限制了渦流效應,在大多數鐵磁金屬,也很重要,我們研究了添加Co對電阻率ρ的效應,ρ大約是200μΩ-cm; 第四,隨著y從0增加到19 %,飽和磁致伸縮λs穩定增加,由23增至70 ppm; 假如Co成分繼續增加從19增至23 %,結果造成λs下降。
接著,將Fe81-yCoyGa19薄膜沉積於矽(100)基板上,也是利用磁控濺鍍的方式製作Fe81-yCoyGa19薄膜,這次所添加Co之範圍也是寬廣的到達到23%,而且於各成分下沉積七種不同的厚度,薄膜厚度從30nm至400 nm,這篇論文主要的結論如下: 第一,隨著y成分增加從0%增至19 %,λs也隨著增加,由36增至98 ppm;假如Co成分繼續增至23 %,結果造成λs下降; 這些結果顯示添加鈷原子到FeGa合金是有利於增加飽和磁致伸縮; 第二,比較Fe81-yCoyGa19薄膜/玻璃基板與Fe81-yCoyGa19薄膜/Si(100)之飽和磁致伸縮λs變化情況; 第三,了解Fe62Co19Ga19薄膜/Si(100)之結構性質由A2相與B2相組成; 第四,Fe62Co19Ga19薄膜分析隨著薄膜厚度與λs和矯頑磁力的關係; 第五,為了瞭解Fe62Co19Ga19薄膜/Si(100)上層與底層界面的關係,我們利用歐傑電子能譜儀測量了解各原子縱深分佈情形; 第六,Fe62Co19Ga19薄膜其他物理性質如下:飽和磁化量4πMs =1.8至2.0 T,矯頑磁力Hc=35至64 Oe,平均晶粒尺寸Dp=29.6 nm並且柱狀晶粒尺寸DL差不多接近薄膜厚度。 經實驗分析後發現,整體而言添加鈷於鐵鎵合金系統中都可以使飽和磁致伸縮量增加,而且飽和磁致伸縮量λS在鈷成份y=19時都比其他鈷成份來的大。 藉由不同溫度下VSM的量測Fe81-yCoyGa19薄膜/Si(100)之高溫磁性質從室溫增加至8000C如下: (1)所有Fe62Co19Ga19薄膜/Si(100)我們找到了兩個居里溫度點,一個是低溫相的居里點(Tc1),另一個為高溫相的居里點(Tc2); (2)飽和磁化量4Ms是依賴溫度的變化,我們計算的方式藉由reduced hyperbolic Bessel function I5/2 (T); 並利用關係式λs(T)=λs (RT) × I5/2 (T),我們比較高溫之飽和磁致伸縮λs(T)變化; (3)飽和磁致伸縮量λS隨著Co成分變化的關係我們所得知; (4) 當溫度增加時矯頑磁力稍微下降,但是溫度繼續增加矯頑磁力呈現最大值時近似為Tc1或Tc2;本論文的結論認為Fe62Co19Ga19薄膜這一個薄膜有最佳化高溫的磁性質,包含較大的λs (T)與較高的Tc1以及較好的Hc(T)。 一個良好的磁致伸縮薄膜致動器,傳感器,或者感知器應該掌握以下幾個特點,大的飽和磁致伸縮和低飽和磁場,使得磁致伸縮靈敏度是高的;在本篇論文成功製作出Fe62Co19Ga19/Si(100) 奈米晶薄膜共用直流磁控濺鍍技術改變製程參數如下:氬氣壓力工作壓力從 1到15 mTorr,濺射功率從10到120 watt,沉積溫度從室溫到3000C,我們將薄膜厚度固定在175 nm。 我們就FeCoGa薄膜進行以下各實驗: [1]原子力顯微鏡或磁力顯微鏡(AFM和MFM)。 [2]磁性質(VSM)。 [3]縱向與橫向的磁致伸縮(λ//orλ┴)。 [4]電阻率測量(ρ)。 [5] 飽和磁致伸縮靈敏測量(SH)。 Fe62Co19Ga19薄膜的優質化製程參數以及最佳性質如下表示: 例如PAr=5 mTorr,PW=80 watt,TS = RT,λS=80 ppm,HS=19.8 Oe,SH=6.1 ppm/Oe,ρ=57.0 μΩ-cm 。 其中Fe62Co19Ga19薄膜在室溫下以五種方式沉積於矽基板,分別是Ta/Fe62Co19Ga19(Tf)/Ta/Si(100),Ta/Fe62Co19Ga19(Tf)/Si(100),Fe62Co19Ga19(Tf)/Ta/Si(100),Fe62Co19Ga19(Tf)/Si(100),Ta/Fe62Co19Ga19(Tf)/Ta(X)/Si(100),除了Ta(X)在濺鍍時不轉外,所有Fe62Co19Ga19 (Tf)和Ta在濺鍍時皆有旋轉,濺鍍時轉速設在12 r.p.m;Ta或Ta(X)當作覆蓋層或阻隔層時,膜厚固定在5nm;Fe62Co19Ga19 (Tf)的膜厚範圍介於5 nm至207nm之間。 量測所有樣品的飽和磁致伸縮量時,飽和磁致伸縮量和飽和磁場的定義分別是λS = (2/3)λ= (2/3)Δλ(λ?-λ┴)、HS,其中λ?為縱向磁致伸縮量,λ┴為橫向磁致伸縮量。 乃研究Ta做為覆蓋層或阻隔層,進一步探討隨著Fe62Co19Ga19膜厚的改變對飽和磁致伸縮量(λS)、飽和磁場(HS)的影響。 從實驗中發現,當Ta做為覆蓋層,隨著Fe62Co19Ga19膜厚遞減,飽和磁致伸縮量(λS)會顯著的增加。 假如Ta做為阻隔層,隨著Fe62Co19Ga19膜厚遞減,飽和磁場(HS)會遞增。當薄膜厚度tf=50 nm時,這一系列Ta/Fe62Co19Ga19/Ta (R)的飽和磁致伸縮靈敏度,其SH//=(Δλ///ΔH)為8.5 ppm/Oe、SH┴=(Δλ┴/ΔH) 為-5.7 ppm/Oe,SH=2/3(SH//-SH┴) 為9.4 ppm/Oe與沒有添加Ta層的Fe62Co19Ga19/Si(100)薄膜作比較其SH//=Δλ///ΔH)為9.2 ppm/Oe、SH┴=(Δλ┴/ΔH)為-7.7 ppm/Oe, SH=2/3(SH//-SH┴) 為11.2 ppm/Oe,由數據顯示在此膜厚時,沒有添加Ta層Fe62Co19Ga19/Si(100)薄膜的飽和磁致伸縮靈敏比較佳。 綜合所有磁致伸縮實驗及飽和磁致伸縮靈敏數據後,當tf=10 nm時,飽和磁致伸縮量(λS)的最大值在123ppm與當tf=50 nm時, 飽和磁致伸縮靈敏度的最大值在SH=11.2ppm/Oe,表示Fe62Co19Ga19薄膜有機會用於磁微機電的應用上。 | zh_TW |
dc.description.abstract | In this research, Fe81-yCoyGa19 films were made by the dc magnetron sputtering method by depositing Fe81-yCoyGa19 thin films on Corning 0211 glass substrate. Herein we investigate the Co-substitution effect on the Fe81Ga19 alloy based on the following: (i) the Co-substitution range is wider, i.e., up to 19 at. %Co; (ii) the structural change from adding Co in the (110) textured Fe81-yCoyGa19 films; (iii) the high frequency performance limited by the eddy current effect electrical resistivity ρ of the FeCoGa films, ρ is about 200μΩ-cm; ( iv) λsincreases steadily from 23 to 56 ppm, as x increases from 0 to 19 at. % Co.
Next, Fe81–yCoyGa19 films, with y=0-23 atom % Co, were deposited on Si(100) substrates, respectively, by the dc magnetron sputtering method. For each alloy target, we prepared six different thickness samples. Film thickness (tf) ranged from 30 to 400 nm. First, Our main finding is that as y increases from 0 to 19 atom % Co, λS increases from 36 to 98 ppm; as y increase for this, from 19 to 23 atom % Co, λS decreases. These results indicate that the addition of Co in the Fe81Ga19 alloy is advantageous in enhancing λS up to y~19% ; second, we that compare the λS of Fe81–yCoyGa19/glass with that of Fe81–yCoyGa19/Si(100); Third, from XRD, the Fe62Co19Ga19/Si(100) film reveals the A2 and B2 phases; Fourth, we analysis of the film thickness (tf) dependencies of λS and coercivity (Hc) of the Fe62Co19Ga19 film was by made; Fifth, the top and bottom interfaces, we performed Auger-depth (AES-DP) profile analysis on one Fe62Co19Ga19/Si(100) film. Sixth, Other physical properties of the Fe62Co19Ga19 films include the following:saturation magnetization 4πMS=1.8–2.0 T, coercivity HC=35–64 Oe, planar (mean) grain size DP=29.6 nm, and columnar grain size DL≈tf. After measuring and analyzing, we can know that the substitution of Co for Fe could give rise to increases in λS, and samples with composition y=19 have the largest magnetostriction. Furthermore, we measured the magnetic properties of Fe81-xCoxGa19 films at higher temperature. By the measurement of VSM at different temperature, Magnetic hysteresis loops of each film were measured from room temperature (RT) to 8000C. In terms of high temperature magnetic properties,(A) we find that for each film, there is one low-temperature-phase Curie point (TC1) and one high-temperature-phase Curie point (TC2); (B) based on the temperature dependence of 4πMS; (C) we calculated the reduced hyperbolic Bessel function Î5/2 (T); from the relationship λs (T) = λs (RT) × Î5/2 (T), we can compare the performances of λs (T) at higher temperatures; (D) Initially HC decreases slightly as T increases, but it turns around reaches a maximum value when either TC1 or TC2 is approached. It is concluded that the Fe62Co19Ga19 film has the optimal high-temperature magnetic properties, including a larger λs (T), higher TC1, and moderate HC (T). A good magnetostrictive thin film actuator, transducer, or sensor should acquire following characteristics,large saturation magnetostriction (λS) and low saturation (or anisotropy) field (HS), so that its magnetostriction susceptibility (SH ≡ Δλ/HS ≡ [λ//S - λ⊥S]/HS, where λ//S and λ⊥S are the longitudinal and transverse magnetostriction at HS) can be as large as possible. In this study, we have made Fe62Co19Ga19/Si(100) nano-crystalline films by using the dc magnetron sputtering technique under various fabrication conditions: Ar working gas pressure (pAr) varied from 1 to 15 mTorr, sputtering power (Pw) from 10 to 120 watt, deposition temperature (TS) from room temperature (RT) to 3000C, and film thickness (tf) fixed at 175 nm. The following experiments were performed on films: [1] the atomic force and magnetic force microscope (AFM and MFM), [2] the magnetic hysteresis-loop, [3] the longitudinal and transverse magnetostriction, [4] ferromagnetic resonance (FMR), and [5] the electrical resistivity (ρ) measurements. Each magnetic domain looks like a long leaf, with its long-axis being about 12 to 15 μm and short-axis about 1.5 μm. The optimal magnetic and electrical properties are collected from the Fe62Co19Ga19 film made with the following sputter deposition parameters, such as pAr= 5 mTorr, Pw= 80 watt, and TS = RT. Those optimal properties include λS = 80 ppm, HS = 19.8 Oe, SH = 6.1 ppm/Oe, and ρ = 57.0 μΩ-cm. Note that SH for the conventional magnetostrictive Terfenol-D film is, in general, equal to 1.5 ppm/Oe. Five series of Fe62Co19Ga19 films were deposited on Si(100) substrates at roomtemperature: they were (IR) Ta/Fe 62Co19Ga19(tf)/Ta/Si(100), (IIR) Ta/Fe62Co19Ga19(tf) /Si(100), (IIIR) Fe62Co19Ga19(tf)/Ta/Si(100), (IVR) Fe62Co19Ga19(tf)/Si(100), and (INR) Ta/Fe62Co19Ga19(tf)/Ta/Si(100), where R means the Si substrate was rotated at a speed of 12 rpm, while depositing Fe62Co19Ga19; NR means the Si substrate not rotated; the thickness of the Ta capping and/or barrier layer was 10 nm; and tf, ranging from 5 to 290 nm, is the thickness of Fe62Co19Ga19 film. We have measured the longitudinal and transverse magnetostriction (λ//S and λ⊥S) at the saturation field Hs for these films. The saturation magnetostriction is defined as λs≡ (2/3)Δλ= (2/3)(λ//s-λ⊥s), and the magnetostriction susceptibility (or sensitivity) as SH≡ (Δλ)/Hs. The main objective of this work is to study the Ta capping and/or barrier layer effect on λs or SH of Fe62Co19Ga19 films. The tf dependence of λs is similar to that of SH for each series of Fe62Co19Ga19 film: as tf decreases from 290nm, λs or SH first increases, reaches the maximum value λsm or SHm at tf= tf(K)m or tf= tf(K)M, where K≡IR to IVR and INR, and finally decreases if tf < tf(K)m or tf < tf (K)M. We found that if there is either a Ta capping or barrier layer, and if there are both, the tf(K)m or tf(K)M value is much reduced, but the λsm or SHm value is ,however, enhanced. The optimal value for λs is about 123 ppm obtained from the (IR)m film and that for SH is 6.1 ppm/Oe from the (IVR)M film, respectively. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:39:37Z (GMT). No. of bitstreams: 1 ntu-101-D97527012-1.pdf: 8971679 bytes, checksum: 0df7bca51c81c4c3f291dad244ddd5b1 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書.........................................Ⅰ誌謝.....................................................Ⅲ 中文摘要……………………………………………………………….Ⅴ 英文摘要……………………………………………………………….Ⅷ目錄…………………………………………………………………….XⅡ 圖目錄………………………………………………………………….XV 表目錄…………………………………………………………………XXⅢ 第一章 前 言…………………………………………………………….........1 1.1磁致伸縮簡介與發展……………………………………………………...............1 1.1.1磁致伸縮效應…………………………………………………………...........1 1.1.2磁致伸縮起源…………………………………………………………...........1 1.1.3磁致伸縮之發展……………………………………………………….............5 1.2 磁致伸縮主要應用可分為兩類………………………………………………...................8 1.3 Fe-Ga合金中的相結構及其影響因素………………………………………........................11 1.4 相結構對Fe-Ga 合金磁致伸縮性能的影響………………………………..............................15 1.5.1 取向對於Fe-Ga 合金磁致伸縮性能的影響……………………………………..........................17 1.5.2温度对Fe-Ga合金磁致伸缩性能的影響……………………………………..........................19 1.5.3 FeGa 合金的磁性質……………………………………………………………........22 1.6 第三元素添加对FeGa合金的影響………………………………………………..................26 1.7研究動機與目的…………………………………………………………………....27 第二章 理論基礎與文獻回顧…………………………………………………………..........30 2.1磁致伸縮之理論………………………………………………………………......30 2.1.1單晶立方體之磁致伸縮材料………………………………………………..................30 2.1.2等向性材料磁致伸縮………………………………………………………............31 2.1.3 多晶體之磁致伸縮材料…………………………………………………………..........32 2.1.4磁致伸縮計算………………………………………………………………………32 2.2 分子場理論…………………………………………………………………....34 2.2.1 分子場假說…………………………………………………………………....34 2.2.2 磁區假設……………………………………………………………………..34 2.2.3 交換作用理論…………………………………………………………………....34 2.2.3-1 古典分子場理論…………………………………………………………..........35 2.2.3-2 Single Ion Model (SIM)理論………………………………………........................37 2.3薄膜電阻基本理論…………………………………………………………………....39 2.4 X光繞射儀理論……………………………………………………………………..40 2.4-1晶格常數外插法計算……………………………………………………..............43 2.5 磁性物質種類介紹……………………………………………………………........43 2.6 影響薄膜成長之因素…………………………………………………………..........45 2.7磁異向性………………………………………………………………………45 2.8 文獻回顧………………………………………………………………………49 第三章 實驗方法與步驟………………………………………………………………......57 3.1 高真空磁濺鍍系統………………………………………………………............60 3.2. 本論文磁控濺鍍系統介紹………………………………………………..................64 3.3 磁控濺鍍機高真空與鍍膜操作步驟………………………………………........................66 3.4 磁控濺鍍機抽真空步驟……………………………………………………..............67 3.5 磁控濺鍍機鍍膜步驟………………………………………………………............67 3.6 熱蒸鍍機鍍膜步驟…………………………………………………………..........68 3.7 探針式膜厚量測儀……………………………………………………………........70 3.8 樣品振動磁力量測儀………………………………………………………............73 3.8.1樣品振動磁力計操作步驟……………………………………………………..............74 3.9 光學法磁致伸縮量測儀……………………………………………………..............76 3.9.1光學法磁致伸縮量測儀操作步驟…………………………………………......................78 3.10電阻率量測設備…………………………………………………………..........79 3.10.1電阻率量測操作步驟……………………………………………………..............79 3.11 XRD繞射儀操作步驟………………………………………………………............80 3.12掃描式電子顯微鏡量測……………………………………………………..............80 3.13奈米歐傑電子能譜儀量測…………………………………………………................82 3.14原子力顯微鏡………………………………………………………………......83 3.14.1原子力顯微鏡操作步驟…………………………………………………................84 3.14.2 磁力顯微鏡操作步驟…………………………………………………………..........86 3.15穿透式電子顯微鏡…………………………………………………………..........89 3.16 奈米壓痕儀操作…………………………………………………………..........93 第四章 鐵鈷鎵薄膜/玻璃基板之磁致伸縮與結構研究…………………………..................................96 4.1鐵鈷鎵/玻璃基板之結構研究………………………………………………..................96 4.2成分分析、磁性、電阻率及機械性質之研究……………………………...............................104 4.2.1成分分析結果…………………………………………………………….......104 4.2.2磁致伸縮分析結果………………………………………………………...........105 4.2.3電阻率之分析結果………………………………………………………...........108 4.2.4機械性質分析結果………………………………………………………...........109 第五章 鐵鈷鎵薄膜/矽(100)基板上之磁性研究……………………………….............................112 5.1 FeCoGa薄膜/矽基板之結構研究………………………………………….....................113 5.2 FeCoGa薄膜/矽基板之磁致伸縮與矯頑磁力(Hc)分析研究……………...........................................116 5.3 FeCoGa薄膜之表面粗糙度Sq與歐傑電子能譜儀-縱深分析研究………...............................................121 第六章 高溫下Fe81-yCoyGa19/Si(100)薄膜之磁性研究………………………….................................127 6.1高溫下Fe81-yCoyGa19/Si(100)薄膜的磁性質與居里溫度之研究………….............................................127 6.2高溫下Fe81-yCoyGa19/Si(100)薄膜的磁致伸縮與矯頑磁力之研究………...............................................131 第七章 FeCoGa/Si(100)薄膜優質化的製程參數……………………………….............................137 7.1 Fe62Co19Ga19/Si(100)之薄膜產生飽和磁致伸縮最大值起源………………….......................................138 7.2 優質化的製程參數討論…………………………………………………….............139 7.3 Ta保護層與阻障層對飽和磁場的影響……………………………………….......................143 7-4 飽和磁致伸縮與飽和磁致伸縮靈敏度的討論……………………………...............................146 第八章 結論…………………………………………………………………….151 參考文獻…………………………………………………………….153 歷年著作…………………………………………………………….164 圖目錄 圖1-1 光學法磁致伸縮示意圖…………………………………………………................3 圖1-2磁致伸縮機制示意圖 ……………………………………………………................3 圖1-2-1 磁致伸縮隨磁場變化圖 …………………………………………………..................4 圖1-2-2 磁壁移動對與旋轉對磁致伸縮之影響 ………………………………................................4 圖1-3磁致伸縮材料在聲納系統中的應用…………………………………….........................11 圖1-3-1 A2、B2、DO19、Ll2、Do19,和B2-like晶體結構圖………………….......................................12 圖1-3-2 Fe-Ga合金相圖………………………………………………………….........13 圖1-3-3 Fe-Ga合金部分相圖…………………………………………………….............14 圖1-3-4 Fe-Ga 合金b.c.c亞穩相圖………………………………………….....................14 圖1-4-1 不同熱處理條件下獲得的相其磁致伸縮值………………………….................................16 圖1-4-2 (a) 室溫下Fe100-xGax合金磁致伸縮…………………………………….........................17 圖1-4-2 (b) 室溫下Fe100-xGax合金磁致伸縮…………………………………….........................17 圖1-5-1 Fe100-xGax (x = 18.2∼26.5)合金溫度與(3/2)λ100 的關係………….............................................20 圖1-5-2 45.3 Mpa外加應力下Fe81Ga19在3種不同溫度下的磁致伸縮………….............................................21 圖1-5-3 在45.3Mpa外加應力下Fe81Ga19溫度與磁化強度、磁致伸縮的關係.................................................22 圖1-5-3-1 FeGa 單晶磁晶各向異性常數……………………………………….......................24 圖1-6-1 Fe-Ga-Co合金的磁致伸縮性能……………………………………………...................26 圖1-6-2 Fe-Ga-X 合金的磁致伸縮性……………………………………………...................26 圖 2-1-1 單晶立方體磁化量與量測方向圖…………………………………….........................31 圖 2-1-2 等向性磁致伸縮[Cullity (1972), p. 258]……………………….....................................32 圖2.2.3-1 M(T)/M(0)相對於 | |
dc.language.iso | zh-TW | |
dc.title | Fe81-yCoyGa19薄膜之結構與磁致伸縮研究 | zh_TW |
dc.title | Study on the Structure and Magnetostriction Properties of Fe81-yCoyGa19 thin films | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 任盛源 | |
dc.contributor.oralexamcommittee | 黃暉理,黃建華,陳勝吉 | |
dc.subject.keyword | 磁致伸縮,鐵鈷鎵薄膜, | zh_TW |
dc.subject.keyword | Magnetostriction,FeCoGa film, | en |
dc.relation.page | 188 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-01-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 8.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。