Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66449
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor溫政彥(Cheng-Yen Wen)
dc.contributor.authorYu-Yu Chenen
dc.contributor.author陳昱宇zh_TW
dc.date.accessioned2021-06-17T00:36:23Z-
dc.date.available2020-02-17
dc.date.copyright2020-02-17
dc.date.issued2020
dc.date.submitted2020-02-06
dc.identifier.citation[1] H. Nishiyama et al., “Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol., vol. 169, no. 3, pp. 438–449, 2010.
[2] M. Yamanaka, N. I. Smith, and K. Fujita, “Introduction to super-resolution microscopy,” Microscopy, vol. 63, no. 3, pp. 177–192, 2014.
[3] N. De Jonge and F. M. Ross, “Electron microscopy of specimens in liquid,” Nat. Nanotechnol., vol. 6, no. 11, pp. 695–704, 2011.
[4] F. M. Ross, “Opportunities and challenges in liquid cell electron microscopy,” Science (80-. )., vol. 350, no. 6267, 2015.
[5] T. Ishida, “Development of MEMS liquid cell to visualize the dynamics of bubbles and droplets at the microscale,” Electron. Commun. Japan, vol. 102, no. 9, pp. 55–60, 2019.
[6] K. L. Liu et al., “Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions,” Lab Chip, vol. 8, no. 11, pp. 1915–1921, 2008.
[7] L. Yang, X.-Y. Yu, Z. Zhu, T. Thevuthasan, and J. P. Cowin, “ Making a hybrid microfluidic platform compatible for in situ imaging by vacuum-based techniques ,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 29, no. 6, p. 061101, 2011.
[8] Z. Zeng et al., “In Situ Study of Lithiation and Delithiation of MoS2 Nanosheets Using Electrochemical Liquid Cell Transmission Electron Microscopy,” Nano Lett., vol. 15, no. 8, pp. 5214–5220, 2015.
[9] S. Y. Park et al., “Enhanced differentiation of human neural stem cells into neurons on graphene,” Adv. Mater., vol. 23, no. 36, pp. 263–267, 2011.
[10] J. Zhang et al., “Clean Transfer of Large Graphene Single Crystals for High-Intactness Suspended Membranes and Liquid Cells,” Adv. Mater., vol. 29, no. 26, pp. 1–7, 2017.
[11] P. A. Midgley and R. E. Dunin-Borkowski, “Electron tomography and holography in materials science,” Nat. Mater., 2009.
[12] K. W. West et al., “3D structure of individual nanocrystals in solution by electron microscopy” vol. 349, no. 6245, 2015.
[13] S. Keskin and N. De Jonge, “Reduced Radiation Damage in Transmission Electron Microscopy of Proteins in Graphene Liquid Cells,” Nano Letters, vol. 18, no. 12. pp. 7435–7440, 2018.
[14] M. Textor and N. de Jonge, “Strategies for Preparing Graphene Liquid Cells for Transmission Electron Microscopy,” Nano Lett., vol. 18, p. acs.nanolett.8b01366, 2018.
[15] A. K. Zettl, “( 12 ) United States Patent,” vol. 2, no. 12, 2016.
[16] “國立臺灣大學材料科學與工程學研究所 碩士論文 用於觀察流體內物質之電子顯微鏡石墨烯視窗的製作 Making Graphene Membranes in Electron Microscopy Liquid Cells 洪郁婷 Yu-Ting Hong 指導教授 : 溫政彥 博士 Advisor : Cheng-Yen Wen , Ph . D . 中華民國 107 年 1 月 January , 2018,” 2018.
[17] X. Lu, M. Yu, H. Huang, and R. S. Ruoff, “Tailoring graphite with the goal of achieving single sheets,” Nanotechnology, vol. 10, no. 3, pp. 269–272, 1999.
[18] X. Liang et al., “Erratum: Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites (Nano Letters (2009) 9:2 (919-919)),” Nano Lett., vol. 9, no. 2, p. 919, 2009.
[19] K. Parvez et al., “Exfoliation of graphite into graphene in aqueous solutions of inorganic salts,” J. Am. Chem. Soc., vol. 136, no. 16, pp. 6083–6091, 2014.
[20] X. Li et al., “Highly conducting graphene sheets and Langmuir-Blodgett films,” Nat. Nanotechnol., vol. 3, no. 9, pp. 538–542, 2008.
[21] X. Gao, J. Jang, and S. Nagase, “Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design,” J. Phys. Chem. C, vol. 114, no. 2, pp. 832–842, 2010.
[22] W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, “New insights into the structure and reduction of graphite oxide,” Nat. Chem., vol. 1, no. 5, pp. 403–408, 2009.
[23] D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol., vol. 3, no. 2, pp. 101–105, 2008.
[24] M. Sprinkle et al., “Scalable templated growth of graphene nanoribbons on SiC,” Nat. Nanotechnol., vol. 5, no. 10, pp. 727–731, 2010.
[25] S. Saadi et al., “On the role of metal step-edges in graphene growth,” J. Phys. Chem. C, vol. 114, no. 25, pp. 11221–11227, 2010.
[26] C. Mattevi, H. Kim, and M. Chhowalla, “A review of chemical vapour deposition of graphene on copper,” J. Mater. Chem., vol. 21, no. 10, pp. 3324–3334, 2011.
[27] X. S. Li, W. W. Cai, L. Colombo, and R. S. Ruoff, “Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling,” Nano Lett., vol. 9, no. 12, pp. 4268–4272, 2009.
[28] Y. T. Megra and J. W. Suk, “Adhesion properties of 2D materials,” J. Phys. D. Appl. Phys., vol. 52, no. 36, 2019.
[29] S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch, “Ultrastrong adhesion of graphene membranes,” Nat. Nanotechnol., vol. 6, no. 9, pp. 543–546, 2011.
[30] G. B. Barin, Y. Song, I. D. F. Gimenez, A. G. S. Filho, L. S. Barreto, and J. Kong, “Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on grapheme final performance,” Carbon N. Y., vol. 84, no. C, pp. 82–90, 2015.
[31] L. Gao et al., “Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum,” Nat. Commun., vol. 3, 2012.
[32] X. Li et al., “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett., vol. 9, no. 12, pp. 4359–4363, 2009.
[33] H. H. Kim, S. K. Lee, S. G. Lee, E. Lee, and K. Cho, “Wetting-Assisted Crack- and Wrinkle-Free Transfer of Wafer-Scale Graphene onto Arbitrary Substrates over a Wide Range of Surface Energies,” Adv. Funct. Mater., vol. 26, no. 13, pp. 2070–2077, 2016.
[34] Wei-Hsiang Lin, Ting-Hui Chen, Jan-Kai Chang, Jieh-I Taur, Yuan-Yen Lo, Wei-Li Lee, Chia-Seng Chang, Wei-Bin Su, and Chih-I Wu “A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate,” Am. Chem. Soc. NANO, vol. 8, no. 2, pp. 1784–1791, 2014.
[35] D. Y. Wang et al., “Clean-lifting transfer of large-area residual-free graphene films,” Adv. Mater., vol. 25, no. 32, pp. 4521–4526, 2013.
[36] J. W. Suk et al., “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano, vol. 5, no. 9, pp. 6916–6924, 2011.
[37] X. Liang et al., “Toward clean and crackless transfer of graphene,” ACS Nano, vol. 5, no. 11, pp. 9144–9153, 2011.
[38] B. H. Son and Y. H. Ahn, “Efficient Large-Scale Removal of Poly(methyl methacrylate) Layers by Using a Methyl Isobutyl Ketone Solution,” J. Korean Phys. Soc., vol. 75, no. 10, pp. 817–820, 2019.
[39] Z. Xiao, Q. Wan, and C. Durkan, “Cleaning Transferred Graphene for Optimization of Device Performance,” Adv. Mater. Interfaces, vol. 6, no. 11, pp. 1–8, 2019.
[40] Y. C. Lin, C. C. Lu, C. H. Yeh, C. Jin, K. Suenaga, and P. W. Chiu, “Graphene annealing: How clean can it be?,” Nano Lett., vol. 12, no. 1, pp. 414–419, 2012.
[41] “20190316Rapid Selective Etching of PMMA Residues from Transferred Graphene by Carbon Dioxide.pdf.” .
[42] W. Choi et al., “Effect of annealing in Ar/H 2 environment on chemical vapor deposition-grown graphene transferred with poly (Methyl Methacrylate),” IEEE Trans. Nanotechnol., vol. 14, no. 1, pp. 70–74, 2015.
[43] A. Suhail, K. Islam, B. Li, D. Jenkins, and G. Pan, “Reduction of polymer residue on wet-transferred CVD graphene surface by deep UV exposure,” Appl. Phys. Lett., vol. 110, no. 18, 2017.
[44] “國立臺灣大學工學院材料科學與工程學研究所 碩士論文 以反應氣氛控制石墨烯成核密度以達 大面積石墨烯成長之研究 Increase the domain size of graphene by adjusting the atmosphere in chemical vapor deposition growth 陳友銓 Yu-Chuan Chen Advisor : Cheng-Yen Wen , Ph . D . 中華民國 108 年 6 月 June , 2019,” 2019.
[45] M. J. Meijerink, K. P. de Jong, and J. Zečević, “Erratum to: Assessment of oxide nanoparticle stability in liquid phase transmission electron microscopy (Nano Research, (2019), 10.1007/s12274-019-2419-3),” Nano Res., vol. 12, no. 9, pp. 2355–2363, 2019.
[46] Z. H. Ni et al., “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett., vol. 7, no. 9, pp. 2758–2763, 2007.
[47] C. Linsmeier, “Auger electron spectroscopy,” Vacuum, vol. 45, no. 6–7, pp. 673–690, 1994.
[48] K. H. W. van den Bos, T. Altantzis, A. De Backer, S. Van Aert, and S. Bals, “Recent breakthroughs in scanning transmission electron microscopy of small species,” Adv. Phys. X, vol. 3, no. 1, pp. 815–833, 2018.
[49] T. Gupta, N. M. Schneider, J. H. Park, D. Steingart, and F. M. Ross, “Spatially dependent dose rate in liquid cell transmission electron microscopy,” Nanoscale, vol. 10, no. 16, pp. 7702–7710, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66449-
dc.description.abstract液體槽(Liquid cell)技術出現使得以電子顯微鏡觀測液體中的樣品更為簡單,而電子顯微鏡的高解影像,以及能夠進行臨場動態觀察的優點,讓Liquid cell 技術快速地被應用於各種實驗中。目前以氮化矽薄膜作為Liquid cell 封膜的技術已經商業化,然而氮化矽的厚度無可避免的會導致影像的解析度下降。石墨烯(graphene)是已知最薄的二維材料,具備高強度、高導電性、高熱傳系係數、化學活性安定以及利於細胞吸附等特質,若將其應用於密封液體於電子顯微鏡的真空腔體,以電子顯微鏡觀察液體內物質的解析度則得以提升。本研究開發製程方法,結合石墨烯與氮化矽兩種材料,製備新型態的Liquid cell,我們稱作石墨烯視窗液體槽微晶片(Graphene liquid cell (GLC) microchip),此新型態Liquid cell以石墨烯做為電子觀察視窗,因此保留了石墨烯的優點,同時利用氮化矽薄膜作為支撐基板,未來可以進一步於Liquid cell 結構內製作液體微流道以及電化學分析用電極。然而這樣的晶片工序繁複,其中石墨烯轉印是具有最多考慮因素的步驟,因此本研究的主要重點之一為嘗試開發可靠的石墨烯轉印的製程,以提高製備GLC microchip的良率成為本研究的重點之一。最後,藉由以掃描式電子顯微鏡觀察不同的液態樣品,比較GLC microchip與氮化矽Liquid cell在影像解析度上的差異。zh_TW
dc.description.abstractThe advent of liquid cell technology facilitates the observation of liquid samples in electron microscopes. Such a method has been applied to different researching fields because of its high spatial resolution and feasibility of in-situ observations. Thin Si3N4 membranes are commonly used in commercial liquid cells, but the thickness of the Si3N4 membrane inevitably degrades the image resolution. On the other hand, graphene is the thinnest 2D material with high mechanical strength and high thermal and electrical conductivities. It is chemically inert and also a great adhesive layer for biological cells. It is expected that the liquid cell with graphene as the membrane material to seal liquid will have an improved image resolution for electron microscopy. In this research, we use graphene and Si3N4 in the newly designed liquid cell, which is named the graphene liquid cell microchip (GLC microchip). In the GLC microchip, graphene is used as the viewing window, and a suspended holey Si3N4 thin film supports the graphene membrane. The advantageous properties of graphene are preserved in such a liquid cell; besides, microfluidic channels and electrodes can be fabricated on the Si3N4 supporting layer for electrochemical observations. Nonetheless, the fabrication process of the GLC microchip is complicated. Amount the fabricating steps, transferring graphene onto the holey Si3N4 thin film is the most crucial process. Developing a reliable graphene transfer process is one of the major focuses in this study. Finally, we show the improved image resolution by comparing the scanning electron microscopy images of several kinds of nanoparticle solutions taken respectively from the GLC microchip and the conventional liquid cells.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:36:23Z (GMT). No. of bitstreams: 1
ntu-109-R07527037-1.pdf: 15873304 bytes, checksum: 5d7ffc7ce51d7551b7a309ac27bf3440 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xvi
Chapter 1 研究動機 1
Chapter 2 結合石墨烯與氮化矽薄膜作為新型態Liquid cell之觀察視窗 5
2.1 氮化矽薄膜作為Liquid cell視窗 5
2.2 石墨烯薄膜作為Liquid cell視窗 8
2.3 開發新型態石墨烯/氮化矽視窗之需求 13
2.3.1 不同GLC之設計 13
2.3.2 晶片狀的Graphene/Si3N4 Liquid cell 14
Chapter 3 石墨烯/氮化矽視窗製備方法 16
3.1 氮化矽基板支撐薄膜製備方法 16
3.1.1 精密晶圓切割機切割基板 17
3.1.2 以微影製程與乾蝕刻定義觀察視窗 18
3.1.3 濕蝕刻製備視窗薄膜 18
3.2 製備石墨烯 20
3.2.1 機械玻璃法 20
3.2.2 化學還原法 21
3.2.3 磊晶成長法 22
3.2.4 化學氣相沉積法 23
3.3 不同石墨烯轉印方法 27
3.3.1 高分子輔助濕式轉印法 27
3.3.2 無高分子輔助濕式轉印法 31
3.3.3 乾式轉印法 33
3.4 PMMA 殘留物移除方法 35
3.4.1 化學溶液法 36
3.4.2 退火法 38
3.4.3 紫外光輔助移除法 41
Chapter 4 實驗方法與研究方法 43
4.1 最佳化石墨烯轉印製程實驗設計 43
4.2 SEM 石墨烯Liquid cell觀測奈米粒子 45
4.3 模擬光沉積反應 45
4.4 分析工具 46
4.4.1 光學顯微鏡 46
4.4.2 掃描式電子顯微鏡 47
4.4.3 漏液測試 48
4.4.4 歐傑電子能譜儀 48
4.4.5 穿透式電子顯微鏡 49
Chapter 5 結果與討論 51
5.1 最佳化石墨烯轉印品質 51
5.2 SEM 石墨烯Liquid cell觀測奈米粒子 58
5.3 模擬光沉積反應 60
Chapter 6 結論與未來展望 64
REFERENCE 65
dc.language.isozh-TW
dc.subject石墨烯zh_TW
dc.subject液體槽zh_TW
dc.subject掃描式電子顯微鏡zh_TW
dc.subject轉印技術zh_TW
dc.subject奈米粒子懸浮液zh_TW
dc.subjectGrapheneen
dc.subjectliquid cellen
dc.subjectscanning electron microscopyen
dc.subjectgraphene transferen
dc.subjectnanoparticle solutionsen
dc.title應用石墨烯於掃描式電子顯微鏡液體觀察視窗之製程開發zh_TW
dc.titleDeveloping Graphene Viewing Windows for Scanning Electron Microscopy Observation of Liquid Phasesen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李紹先(Shao-Sian Li),王迪彥(Di-Yan Wang)
dc.subject.keyword石墨烯,液體槽,掃描式電子顯微鏡,轉印技術,奈米粒子懸浮液,zh_TW
dc.subject.keywordGraphene,liquid cell,scanning electron microscopy,graphene transfer,nanoparticle solutions,en
dc.relation.page69
dc.identifier.doi10.6342/NTU202000343
dc.rights.note有償授權
dc.date.accepted2020-02-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
15.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved