請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66428完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝長富 | |
| dc.contributor.author | Chia-Wen Chen | en |
| dc.contributor.author | 陳佳雯 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:35:21Z | - |
| dc.date.available | 2013-02-16 | |
| dc.date.copyright | 2012-02-16 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-02-06 | |
| dc.identifier.citation | 王松永,2001,木材物理學。國立編譯館。p.601。
宋澤偉、唐建維,2008,西雙版納熱帶季節雨林的粗死木質殘體及其養份元素。生態學雜誌 27:2033-2941。 林國銓、杜清澤、馬復京、王相華,2003,福山闊葉林木質殘體累積量及其養分含量。臺灣林業科學 18:235-244。 唐旭利、周國逸,2005,南亞熱帶典型森林演替類型粗死木質殘體貯量及其對碳循環的潛在影響。植物生態學報 29:559-568。 莊宜家,2005,颱風對南仁山森林生態系樹冠干擾之探討。國立即屏東科技大學熱帶農業暨國際合作研究所碩士學位論文。 陳凱眉,2011,臺灣南部南仁山低地雨林樹木的更新:林隙與地被植物莎勒竹的影響。國立臺灣大學生命科學院生態學與演化生物學研究所碩士論文。 陳毓昀,1998,南仁山低地雨林凋落物分解之研究。臺灣大學植物學研究所碩士論文。 張正平,1998,南仁山低地雨林凋落物之研究。國立臺灣大學植物學研究所碩士論文。 張家豪,2001,南仁山低地雨林之凋落物分解及有效性養分之研究。國立臺灣大學植物學研究所碩士論文。 張修玉、管東生、張海東。2009。廣州三種森林粗死木質殘材(CWD)的儲量與分解特徵。生態學報 29:5227-5236。 楊嘉政,1994,南仁山區熱帶季節性森林的組成、結構及分佈類型。國立臺灣大學植物學研究所碩士論文。 聞恩榮、王希華、黃建軍,2005,森林粗死木質殘體的概念及其分類。生態學報 25:158-167。 趙國容,2001,南仁山低地雨林木本植物社會之短期動態。國立臺灣大學植物學研究所碩士論文。 趙國容、趙偉村、陳凱眉,2008,臺灣南仁山亞熱帶低地雨林森林動態與模式。行政院農業委員會委託研究計畫 97-00-2-02。 廖啟政,2003,臺灣鴛鴦湖保留區內臺灣扁柏小苗更新與殘材的關係。國立臺灣大學生態學與演化生物學研究所博士論文。 劉湘瑤,1994,南仁山亞熱帶雨林凋落物量及其養分含量的研究。國立臺灣大學植物學研究所碩士學位論文。 劉棠瑞、劉儒淵,1977,臺灣天然林之群落生態研究(三) 恆春半島南仁山區植群生態與植物區系研究。省立博物館科學年刊20:52-149。 蘇鴻傑、蘇中原,1988,墾丁國家公園植群之多變數分析。中華林學季刊21:17-32。 Baker, T. R., E. N. H. Coronado, O. L. Phillips, J. Martin, G. M. F. van der Heijden, M. Garcia, and J. S. Espejo. 2007. Low stocks of coarse woody debris in a southwest Amazonian forest. Oecologia 152:495-504. Baker, T. R., O. L. Phillips, Y. Malhi, S. Almeida, L. Arroyo, A. Di Fiore, T. Erwin, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, J. Lloyd, A. Monteagudo, D. A. Neill, S. Patino, N. C. A. Pitman, J. N. M. Silva, and R. V. Martinez. 2004. Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10:545-562. Barker, J. S. 2008. Decomposition of Douglas-fir coarse woody debris in response to differing moisture content and initial heterotrophic colonization. Forest Ecology and Management 255:598-604. Bongers, F., D. Engelen, H. Klinge. 1985. Phytomass structure of natural plant communities on spodosols in southern Venezuela: The Bana woodland. Vegetatio 63:13–34. Brown, S. and A. E. Lugo. 1982. The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica 14:161-187. Brown, S., J. M. Mo, J. K. McPherson, and D. T. Bell. 1996. Decomposition of woody debris in Western Australian forests. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 26:954-966. Bultman, J. D. and C. R. Southwell. 1976. Natural resistance of tropical American woods to terrestrial wood-destroying organisms. Biotropica 8:71-95. Butler, R., P. Angelstam, P. Ekelund, and R. Schlaeffer. 2004. Dead wood threshold values for the three-toed woodpecker presence in boreal and sub-Alpine forest. Biological Conservation 119:305-318. Butler, R., P. Angelstam, and R. Schlaepfer. 2004. Quantitative snag targets for the three-toed woodpecker Picoides tridactylus. Ecological Bulletins 51:219-232. Chambers, J. Q., J. dos Santos, R. J. Ribeiro, and N. Higuchi. 2001a. Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. Forest Ecology and Management 152:73-84. Chambers, J. Q., N. Higuchi, E. S. Tribuzy, and S. E. Trumbore. 2001b. Carbon sink for a century. Nature 410:429-429. Chambers, J. Q., N. Higuchi, J. P. Schimel, L. V. Ferreira, and J. M. Melack. 2000. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122:380-388. Chao, K. J., O. L. Phillips, A. Monteagudo, A. Torres-Lezama, and R. V. Martinez. 2009. How do trees die? Mode of death in northern Amazonia. Journal of Vegetation Science 20:260-268. Chao, K. J., O. L. Phillips, and T. R. Baker. 2008. Wood density and stocks of coarse woody debris in a northwestern Amazonian landscape. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 38:795-805. Chao, K.-J., W.-C. Chao, K.-M. Chen, C.-F. Hsieh. 2010. Vegetation dynamics of a lowland rainforest at the northern border of the Paleotropics at Nanjenshan, southern Taiwan. Taiwan Journal of Forest Science 25: 29-40. Chave, J., C. Andalo, S. Brown, M. A. Cairns, J. Q. Chambers, D. Eamus, H. Folster, F. Fromard, N. Higuchi, T. Kira, J. P. Lescure, B. W. Nelson, H. Ogawa, H. Puig, B. Riera, and T. Yamakura. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87-99. Clark, D. A., S. Brown, D. W. Kicklighter, J. Q. Chambers, J. R. Thomlinson, J. Ni, and E. A. Holland. 2001. Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecological Applications 11:371-384. Clark, D. B., D. A. Clark, S. Brown, S. F. Oberbauer, and E. Veldkamp. 2002. Stocks and flows of coarse woody debris across a tropical rain forest nutrient and topography gradient. Forest Ecology and Management 164:237-248. Cline, S. P., A. B. Berg, and H. M. Wight. 1980. Snag characteristics and dynamics in Douglas-Fir forests, Western Oregon. Journal of Wildlife Management 44:773-786. De Vries, P. G. 1986. Sampling theory for forest inventory. A teach-yourself course. Berlin, Springer-Verlag. Delaney, M., S. Brown, A.E. Lugo, A. Torres-Lezama, and N. Bello Quintero. 1997. The distribution of organic carbon in major components of forests located in five life zones of Venezuela. Journal of Tropical Ecology 13:397–708. Delaney, M., S. Brown, A. E. Lugo, A. Torres-Lezama, and N. Bello Quintero. 1998. The quantity and turnover of dead wood in permanent forest plots in six life zones of Venezuela. Biotropica 30:2-11. Dixon, R. K., S. Brown, R. A. Houghton, A. M. Solomon, M. C. Trexler, and J. Wisniewski. 1994. Carbon pools and flux of global forest ecosystems. Science 263:185-190. Edwards, P. J. and P. J. Grubb. 1977. Studies of mineral cycling in a montane rrain forest in New Guinea .1. Distribution of organic matter in vegetation and soil. Journal of Ecology 65:943-969. Frangi, J. L., A. E. Lugo. 1985. Ecosystem dynamics of a subtropical floodplain in forest. Ecological Monogragphs 55:351–369. Franklin, J. F., H. H. Shugart, and M. E. Harmon. 1987. Tree death as an ecological process. BioScience 37:550-556. Fraver, S., A. Ringvall, and B. G. Jonsson. 2007. Refining volume estimates of down woody debris. Canadian Journal of Forest Research 37:627-633. Gale, N. 2000. The aftermath of tree death: coarse woody debris and the topography in four tropical rain forests. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 30:1489-1493. Gale, N. and A. S. Barfod. 1999. Canopy tree mode of death in a Western Ecuadorian rain forest. Journal of Tropical Ecology 15:415-436. Gale, N. and P. Hall. 2001. Factors Determining the modes of tree death in three Bornean rain forests. Journal of Vagetation Science 12:337-346. Graham, R. L. and K. Cromack. 1982. Mass, Nutrient content, and decay rate of dead boles in rain forests of Olympic National Park. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 12:511-521. Gray, A. N. and T. A. Spies. 1998. Microsite controls on tree seedling establishment in conifer forest canopy gaps (vol 78, pg 2458, 1997). Ecology 79:2571-2571. Grove, S. J. 2001. Extent and composition of dead wood in Australian lowland tropical rainforest with different management histories. Forest Ecology and Management 154:35-53. Harmon, M.E. 2009.Woody detritus mass and its contribution to carbon dynamics of old-growth forests: the temporal context. In: Wirth C, Gleixner G, Heimann M, Eds. Old-growth forests: function, fate and value. Ecological studies. New York: Springer-Verlag. Harmon, M. E., J. F. Franklin, F. J. Swanson, P. Sollins, S. V. Gregory, J. D. Lattin, N. H. Anderson, S. P. Cline, N. G. Aumen, J. R. Sedell, G. W. Lienkaemper, K. Cromack, and K. W. Cummins. 1986. Ecology of Coarse Woody Debris in Temperate Ecosystems. Advances in Ecological Research 15:133-302. Harmon, M. E., O. N. Krankina, and J. Sexton. 2000. Decomposition vectors: a new approach to estimating woody detritus decomposition dynamics. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 30:76-84. Harmon, M. E. and J. Sexton. 1996. Guidelines for measurements of woody detritus in forest ecosystems. Publication No.20. U.S. Long-Term Ecological Research (LTER) Network Office, University of Washington, Seattle, Washington, USA. Harmon, M. E., D. F. Whigham, J. Sexton, and I. Olmsted. 1995. Decomposition and Mass of Woody Detritus in the Dry Tropical Forests of the Northeastern Yucatan Peninsula, Mexico. Biotropica 27:305-316. Houghton, R. A. 2005. Aboveground forest biomass and the global carbon balance. Global Change Biology 11:945-958. Johnson, E. A. and D. F. Greene. 1991. A Method for Studying Dead Bole Dynamics in Pinus-Contorta Var Latifolia - Picea-Engelmannii Forests. Journal of Vegetation Science 2:523-530. Kauffman, J. B., C. Uhl, and D. L. Cummings. 1988. Fire in the Venezuelan Amazon .1. Fuel Biomass and Fire Chemistry in the Evergreen Rainforest of Venezuela. Oikos 53:167-175. Keith, H., B. G. Mackey, and D. B. Lindenmayer. 2009. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests. PNAS 106:11635-11640. Keller, M., M. Palace, G. P. Asner, R. Pereira, and J. N. M. Silva. 2004. Coarse woody debris in undisturbed and logged forests in the eastern Brazilian Amazon. Global Change Biology 10:784-795. Keller, M., M. Palace, and H. Silva. 2008. Necromass production: Studies in undisturbed and logged Amazon forests. Ecological Applications 18:873-884. Klinge, H., and R. Herrera. 1983. Phytomass structure of natural plant communities on spodosols in southern Veneuela: The tall Amazon Caatinga forest. Vegetatio 53:65-84. Klinge, H., W. A. Rodrigues, E. Brunig, and E. J. Fittkau. 1975. Biomass and structure in a Central Amazonian rain forest. Tropical Ecological Systems (Ecological Studies 11), eds Golley FB, Medina E (Springer, Berlin), pp 115–122. Krauss, K. W. and T. W. Doyle. 2005. Woody Debris in the Mangrove Forests of South Florida. Biotropica 37:9-15. Laiho, R. and C. E. Prescott. 2004. Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 34:763-777. Lang, G. E. and D. H. Knight. 1979. Decay rates for boles of tropical trees in Panama. Biotropica 11:316-317. Larjaavara, M. and H. Muller-Landau. 2009. Woody debris research protocol: Long transects. CTFS Global Forest Carbon Research Initiative. Version January 2009. Mackensen, J., J. Bauhus, and E. Webber. 2003. Decomposition rates of coarse woody debris - A review with particular emphasis on Australian tree species. Australian Journal of Botany 51:27-37. Morrison, M. L. and M. G. Raphael. 1993. Modeling the Dynamics of Snags. Ecological Applications 3:322-330. Muller-Using, S. and N. Bartsch. 2009. Decay dynamic of coarse and fine woody debris of a beech (Fagus sylvatica L.) forest in Central Germany. European Journal of Forest Research 128:287-296. Nascimento, H. E. M. and W. F. Laurance. 2002. Total aboveground biomass in central Amazonian rainforests: a landscape-scale study. Forest Ecology and Management 168:311-321. OConnell, A. M. 1997. Decomposition of slash residues in thinned regrowth eucalypt forest in Western Australia. Journal of Applied Ecology 34:111-122. Ohmann, J. L., W. C. Mccomb, and A. A. Zumrawi. 1994. Snag Abundance for Primary Cavity-Nesting Birds on Nonfederal Forest Lands in Oregon and Washington. Wildlife Society Bulletin 22:607-620. Olson, J. S. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331. Palace, M., M. Keller, G. P. Asner, J. N. M. Silva, and C. Passos. 2007. Necromass in undisturbed and logged forests in the Brazilian Amazon. Forest Ecology and Management 238:309-318. Palace, M., M. Keller, and H. Silva. 2008. Necromass production: Studies in undisturbed and logged Amazon forests. Ecological Applications 18:873-884. Pautasso, M., D. Lonsdale, and O. Holdenrieder. 2008. Wood-decaying fungi in the forest: conservation needs and management options. European Journal of Forest Research 127:1-22. Phillips, O. L., Y. Malhi, N. Higuchi, W. F. Laurance, P. V. Nunez, R. M. Vasquez, S. G. Laurance, L. V. Ferreira, M. Stern, S. Brown, and J. Grace. 1998. Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science 282:439-442. Ranius, T. and L. Fahrig. 2006. Targets for maintenance of dead wood for biodiversity conservation based on extinction thresholds. Scandinavian Journal of Forest Research 21:201-208. Ringvall, A. and G. Stahl. 1999. Field aspects of line intersect sampling for assessing coarse woody debris. Forest Ecology and Management 119:163-170. Sato, T. 2010. Stocks of coarse woody debris in old-growth lucidophyllous forests in southwestern Japan. Journal of Forest Research 15:404-410. Saldarriaga, J. G., D. C. West, M. L. Tharp, C, Uhl. 1988. Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. Journal of Ecology 76:938–958. Schreiner, E. G., K. A. Krueger, P. J. Happe, and D. B. Houston. 1996. Understory patch dynamics and ungulate herbivory in old-growth forests of Olympic National Park, Washington. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 26:255-265. Sollins, P. 1982. Input and decay of coarse wooy debris in coniferous stands in western Oregon and Washington. Canadian Journal of Forest Research. 12:18-28. Sturtevant, B. R., J. A. Bissonette, J. N. Long, and D. W. Roberts. 1997. Coarse woody debris as a function of age, stand structure, and disturbance in boreal Newfoundland. Ecological Applications 7:702-712. Tan, Z., Y. Zhang, G. Yu, L. Sha, J. Tang, X. Deng, and Q. Song. 2010. Carbon balance of a primary tropical seasonal rain forest. Journal of Geophysical Research 115. Uhl, C. and J. B. Kauffman. 1990. Deforestation, Fire Susceptibility, and Potential Tree Responses to Fire in the Eastern Amazon. Ecology 71:437-449. Uhl, C., J. B. Kauffman, and D. L. Cummings. 1988. Fire in the Venezuelan Amazon .2. Environmental-Conditions Necessary for Forest Fires in the Evergreen Rainforest of Venezuela. Oikos 53:176-184. Van Wagner, C. E. 1968. The line intersect method in forest fuel sampling. Forest Science. 14: 20-26. Waddell, K. L. 2002. Sampling coarse woody debris for multiple attributes in extensive resource inventories. Ecological Indicators 1:139-153. Walter, S. T. and C. C. Maguire. 2005. Snags, cavity-nesting birds, and silvicultural treatments in Western Oregon. Journal of Wildlife Management 69:1578-1591. Williams, M. S., M. J. Ducey, and J. H. Gove. 2005. Assessing surface area of coarse woody debris with line intersect and perpendicular distance sampling. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 35:949-960. Woldendorp, G. 2004. Analysis of sampling methods for coarse woody debris. Forest Ecology and Management 198:133-148. Wu, J.-B., D.-X. Guan, S.-J. Han, M. Zhang, and C.-J. Jin. 2005. Ecological functions of coarse woody debris in forests ecosystem. Journal of Forestry Research 16:247-252. Yoneda, T. and T. Kira. 1978. Fall rate, accumulation and decomposition of wood litter. In: Kira T., Ono Y., Hosokaawa T. (eds) Biological production in a warm-temperate evergreen oak forest of Japan. JIBP Synthesis 18. University of Tokyo Press, Tokyo, pp.258–272. Yoneda, T., K. Yoda, T. Kira. 1977. Accumulation and decompositin of big wood litter in Pasoh forest, West Malaysia. Japanese Journal of Ecology. 27: 53-60. Yoneda, T., R. Tamin, K. Ogino. 1990. Dynamics of above-ground big woody organs in a foothill Dipterocarp forest, West Sumatra, Indonesia. Ecological Research. 5: 111-130. Zhang, D. Q., D. F. Hui, Y. Q. Luo, and G. Y. Zhou. 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology-Uk 1:85-93. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66428 | - |
| dc.description.abstract | 近年來,氣候變遷議題逐漸引起大眾關注,而碳循環更受到生態研究者的注目。森林在全球碳循環中扮演重要角色,其中,熱帶森林生物量佔全球陸域初級生產力的30–50 %,並蘊藏約40 %的碳量,故熱帶森林為碳循環研究之焦點。然而,過去熱帶森林碳循環研究僅專注於活體木本植物的生物量變動情形,很少針對枯木量(Coarse woody debris, CWD)的研究。枯木量意指森林內大型枯倒木、枯立木及枯枝條的質量,約佔森林地上部總生物量(即活體樹木生物量和枯木存量之總和)的三分之一,為森林碳循環研究中易被忽略的重要因子。
目前熱帶森林的枯木量研究主要集中在亞馬遜盆地,亞洲地區則相對稀少。臺灣位處熱帶邊緣且易受颱風干擾,至今仍無枯木存量及動態的完整研究。本研究選擇南仁山地區一具有碳循環研究潛力之低地雨林樣區,定量枯木存量以及進行為期一年的動態調查,期望了解南仁山地區之(1)枯木存量、(2)不同季節之輸入量、和(3)枯木之分解速率,以增進對南仁山地區森林碳循環的了解。 於2009年一月以穿越線測量現地枯木體積,並依枯木分級等級估算密度,兩者相乘得枯木存量。隨後每三個月複查穿越線枯木新增量,即得各季節枯木新增量。此外,亦設置分解樣方,複查標定的枯木質量變化,求得分解速率常數值。 以穿越線法測得枯木存量為10.48-12.68 Mg ha-1,其中89.60–99.18%由枯倒木所貢獻,枯立木僅佔0.82–10.40%。複查分解樣區的枯木體積及分解等級,求得分解商數為0.55–2.37 yr-1。季節新增量之年累積輸入量為6.37–8.09 Mg ha-1 yr-1,且高峰值出現於十月,推測可能為夏季颱風干擾造成枝條大量斷落或是樹幹傾倒,致使輸入量大增。與其它熱帶森林相比較,溪谷樣區的枯木存量較低,但年輸入量相似、分解速率較快,故存量較低可能受快速的分解作用所影響,進一步分析影響分解速率的因子後,發現南仁山溪谷樣區的枯木木材基質較不具抗腐性,此特性可能促成枯木快速分解。 | zh_TW |
| dc.description.abstract | Recently the climate change has attracted attentions of many ecologists. Forest plays a significant role in carbon cycle, especially those forests in tropical areas. Tropical forests account for up to 40% carbon stock and 30–50% productivity in the terrestrial ecosystem. Most of previous studies for tropical forests carbon balance only focused on living tree biomass, and few paid attention to coarse woody debris (CWD). Coarse woody debris (CWD), which includes fallen and standing dead wood, and fallen branches, comprised about one third of aboveground biomass. However, in the past, it was usually neglected, which might lead to misunderstanding of forest carbon balance. Thus, conducting studies for the stock and dynamics of CWD can give us a comprehensive view on forest carbon cycle.
In tropical areas, the role of CWD has been evaluated in several studies recently; however, most of CWD researches mainly focused on Amazon basin. There are few studies for CWD in Asian rainforests. Thus, I selected a lowland rainforest in the Nanjenshan Reserve Area, which had the research potential of forest carbon balance, to conduct the studies of CWD. The purposes of this study are to estimate the stock, the seasonal input pattern and the decomposition rate of CWD. The volume and decay levels of CWD were measured on transects (about 680 m in total length). Samples of CWD at each decay level were collected from the field to assess their volume and mass. Wood density of CWD at each decay level was then derived from the ratio of volume and mass. Finally, necromass was obtained from the product of the corresponding density in each CWD decay class and its volume. The seasonal input of CWD was estimated by resurveying the line transects every three months. Annual decomposition rate was acquired by comparing the differences of amount of CWD stocks. The results showed that the stock in this plot was 10.48–12.68 Mg ha-1 (89.60–99.18% for fallen dead wood and 0.82–10.40% for standing dead wood). The k-value (decay rate constant) was 0.55–2.37 yr-1. The maximum input necromass occurred in October, which might be caused by typhoon disturbances. Furthermore, the amount of necromass of seasonal input ranged from 6.37 to 8.09 Mg ha-1 yr-1.Comparing with other tropical forests, the necromass input was similar but the decomposition rate was higher in Nanjenshan. Thus, the major cause of low CWD stock was attributed to a higher decomposition rate. Furthermore, most of dead wood in Nanjenshan with non-decay-resistant characteristics might promote faster decomposition process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:35:21Z (GMT). No. of bitstreams: 1 ntu-101-R97b44016-1.pdf: 2093250 bytes, checksum: f0fa6e0d93add35ea5b729e33bf0e47a (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘 要 i
Abstract ii 圖目錄 vii 表目錄 viii 附圖目錄 ix 附表目錄 ix 壹、前言 1 貳、研究樣區概述 6 一、地理位置 6 二、 氣候 6 三、 土壤 9 四、 樣區植被概況 9 參、研究方法 10 一、 枯木定義 10 二、 枯木存量及季節輸入量 10 (一) 枯倒木體積 10 (二) 枯立木體積 12 (三) 季節性輸入 13 (四) 分解等級與密度 13 (五) 密度取樣及測量方式 14 三、 分解速率 14 (一) 取樣 14 (二) 調查方式 16 四、 方法比較 17 (一) 穿越線法與樣區法 17 (二) 全取樣與CTFS分層取樣法 17 五、 資料分析與計算公式 19 (一) 資料輸入 19 (二) 穿越線法 19 (三) 樣帶法—枯立木體積 20 (四) 枯木量計算 20 (五) 分解速率 21 (六) 分解等級密度 21 (七) 地上部活樹生物量 21 六、 森林碳循環 24 七、 研究架構 25 肆、研究結果 26 一、 枯木存量 26 (一) 兩年度之枯木存量及組成比較 26 (二) 四組徑級級距之枯倒木存量比較 27 (三) 四組分解等級間枯倒木存量比較 28 二、 分解等級與密度 30 三、 枯木量動態 32 (一) 季節性輸入量 32 (二) 分解速率 42 四、 方法比較 43 (一) 樣區法與穿越線法 43 (二) 全取樣與CTFS分層取樣 43 五、 活樹生物量及年平均生長量、死亡量 45 伍、討論 47 一、 枯木存量及影響存量多寡之因子 47 (一) 輸入量 47 (二) 分解速率 47 二、 分解等級與密度 55 三、 枯木型式 57 四、 枯木季節輸入量 59 五、 枯木分解速率 62 六、 方法比較:全取樣與CTFS分層取樣 64 七、 枯木量動態平衡與森林碳循環 65 (一) 分解速率常數值 65 (二) 森林碳循環 67 (三) 粗細枯木存量一年動態特徵 68 陸、結論 70 柒、參考文獻 71 捌、附錄 82 一、溪谷樣區內四型植物優勢社會環境之下的枯木分解速率 82 二、溪谷樣區Ⅱ之原繩長與颱風過後斷繩之存量估算比較 84 三、野外調查手冊 86 | |
| dc.language.iso | zh-TW | |
| dc.subject | 粗木質殘體 | zh_TW |
| dc.subject | 枯木量 | zh_TW |
| dc.subject | 分解速率 | zh_TW |
| dc.subject | 森林碳循環 | zh_TW |
| dc.subject | 枯木量 | zh_TW |
| dc.subject | 南仁山 | zh_TW |
| dc.subject | 粗木質殘體 | zh_TW |
| dc.subject | 南仁山 | zh_TW |
| dc.subject | 森林碳循環 | zh_TW |
| dc.subject | 分解速率 | zh_TW |
| dc.subject | Coarse woody debris | en |
| dc.subject | Necromass | en |
| dc.subject | Decomposition rate | en |
| dc.subject | Forest carbon cycle | en |
| dc.subject | Nanjenshan lowland rainforest | en |
| dc.subject | Necromass | en |
| dc.subject | Coarse woody debris | en |
| dc.subject | Decomposition rate | en |
| dc.subject | Forest carbon cycle | en |
| dc.subject | Nanjenshan lowland rainforest | en |
| dc.title | 南仁山溪谷樣區熱帶低地雨林枯木存量與動態 | zh_TW |
| dc.title | Stocks and Flows of Woody Debris in a Lowland Rainforest, Nanjenshan, Southern Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 趙國容 | |
| dc.contributor.oralexamcommittee | 陳子英 | |
| dc.subject.keyword | 枯木量,粗木質殘體,分解速率,森林碳循環,南仁山, | zh_TW |
| dc.subject.keyword | Necromass,Coarse woody debris,Decomposition rate,Forest carbon cycle,Nanjenshan lowland rainforest, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-02-06 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
