請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66388完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝長富(Chang-Fu Hsieh) | |
| dc.contributor.author | Ping-Shan Wu | en |
| dc.contributor.author | 吳秉珊 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:33:23Z | - |
| dc.date.available | 2013-03-19 | |
| dc.date.copyright | 2012-03-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-02-09 | |
| dc.identifier.citation | Aiba, S., Kitayama, K. & Takyu, M. (2004) Habitat associations with topography and canopy structure of tree species in a tropical montane forest on Mount Kinabalu, Borneo. Plant Ecology, 174, 147-161.
Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. pp. 267-281. Springer Verlag. Alves, L.F., Vieira, S.A., Scaranello, M.A., Camargo, P.B., Santos, F.A.M., Joly, C.A. & Martinelli, L.A. (2010) Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecology and Management, 260, 679-691. Anderson, J.E. & McNaughton, S. (1973) Effects of low soil temperature on transpiration, photosynthesis, leaf relative water content, and growth among elevationally diverse plant populations. Ecology, 1220-1233. Asner, G.P., Hughes, R.F., Varga, T.A., Knapp, D.E. & Kennedy-Bowdoin, T. (2009) Environmental and Biotic Controls over Aboveground Biomass Throughout a Tropical Rain Forest. Ecosystems, 12, 261-278. Beard, K.H., Vogt, K.A., Vogt, D.J., Scatena, F.N., Covich, A.P., Sigurdardottir, R., Siccama, T.G. & Crowl, T.A. (2005) Structural and functional responses of a subtropical forest to 10 years of hurricanes and droughts. Ecological Monographs, 75, 345-361. Bellingham, P. (1991) Landforms influence patterns of hurricane damage: evidence from Jamaican montane forests. Biotropica, 427-433. Bjorkman, O. & Demming-Adams, B. (1994) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. Ecological studies: analysis and synthesis, 100. Boose, E.R., Chamberlin, K.E. & Foster, D.R. (2001) Landscape and regional impacts of hurricanes in New England. Ecological Monographs, 71, 27-48. Boose, E.R., Serrano, M.I. & Foster, D.R. (2004) Landscape and regional impacts of hurricanes in Puerto Rico. Ecological Monographs, 74, 335-352. Brown, S. & Lugo, A.E. (1982) The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica, 14, 161-187. Brown, S. & Lugo, A.E. (1992) Aboveground biomass estimates for tropical moist forests of the Brazilian. Interciencia, 17, 8-18. Brown, S., Schroeder, P. & Birdsey, R. (1997) Aboveground biomass distribution of US eastern hardwood forests and the use of large trees as an indicator of forest development. Forest Ecology and Management, 96, 37-47. Chao, K.J., Phillips, O.L., Gloor, E., Monteagudo, A., Torres-Lezama, A. & Martinez, R.V. (2008) Growth and wood density predict tree mortality in Amazon forests. Journal of Ecology, 96, 281-292. Chao, W.-C., Song, G.-Z., Chao, K.-J., Liao, C.-C., Fan, S.-W., Wu, S.-H., Hsieh, T.-H., Sun, I.F., Kuo, Y.-L. & Hsieh, C.-F. (2010) Lowland rainforests in southern Taiwan and Lanyu, at the northern border of Paleotropics and under the influence of monsoon wind. Plant Ecology, 210, 1-17. Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Folster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.P., Nelson, B.W., Ogawa, H., Puig, H., Riera, B. & Yamakura, T. (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87-99. Chave, J., Condit, R., Lao, S., Caspersen, J.P., Foster, R.B. & Hubbell, S.P. (2003) Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. Journal of Ecology, 91, 240-252. Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G. & Zanne, A.E. (2009) Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366. Chave, J., Riera, B. & Dubois, M.A. (2001) Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. Journal of Tropical Ecology, 17, 79-96. Chaves, M., Pereira, J., Maroco, J., Rodrigues, M., Ricardo, C., Osorio, M., Carvalho, I., Faria, T. & Pinheiro, C. (2002) How plants cope with water stress in the field? Photosynthesis and growth. Annals of Botany, 89, 907. Chien, J.-H. (2010) Determinants of woody plant species richness in Taiwan. Master thesis, National Taiwan University, Taipei. Chiou, C.R., Hsieh, C.F., Wang, J.C., Chen, M.Y., Liu, H.Y., Yeh, C.L., Yang, S.Z., Chen, T.Y., Hsia, Y.J. & Song, G.Z.M. (2009) The first national vegetation inventory in Taiwan. Taiwan Journal of Forest Science, 24, 295-302. Chiou, C.R., Song, G.Z.M., Chien, J.H., Hsieh, C.F., Wang, J.C., Chen, M.Y., Liu, H.Y., Yeh, C.L., Hsia, Y.J. & Chen, T.Y. (2010) Altitudinal distribution patterns of plant species in Taiwan are mainly determined by the northeast monsoon rather than the heat retention mechanism of Massenerhebung. Botanical Studies, 51, 89-97. Clark, D.B. & Clark, D.A. (2000) Landscape-scale variation in forest structure and biomass in a tropical rain forest. Forest Ecology and Management, 137, 185-198. Coomes, D.A. & Allen, R.B. (2007) Effects of size, competition and altitude on tree growth. Journal of Ecology, 95, 1084-1097. Crawley, M.J. (2007) The R book. Wiley. Cummings, D., Boone Kauffman, J., Perry, D.A. & Flint Hughes, R. (2002) Aboveground biomass and structure of rainforests in the southwestern Brazilian Amazon. Forest Ecology and Management, 163, 293-307. de Castilho, C.V., Magnusson, W.E., de Araujo, R.N.O., Luizao, R.C.C., Lima, A.P. & Higuchi, N. (2006) Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. Forest Ecology and Management, 234, 85-96. Dixon, R.K., Solomon, A., Brown, S., Houghton, R., Trexier, M. & Wisniewski, J. (1994) Carbon pools and flux of global forest ecosystems. Science, 263, 185. Faria, T., Silverio, D., Breia, E., Cabral, R., Abadia, A., Abadia, J., Pereira, J. & Chaves, M. (1998) Differences in the response of carbon assimilation to summer stress (water deficits, high light and temperature) in four Mediterranean tree species. Physiologia Plantarum, 102, 419-428. Forsyth, E. (2006) Patterns of Typhoon Damage in Two Subtropical Forests. Brown University. Frolking, S., Palace, M.W., Clark, D.B., Chambers, J.Q., Shugart, H.H. & Hurtt, G.C. (2009) Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. Journal of Geophysical Research-Biogeosciences, 114, 27. Gale, J. (1972) Availability of carbon dioxide for photosynthesis at high altitudes: theoretical considerations. Ecology, 53, 494-497. Gholz, H.L. (1982) Environmental limits on aboveground net primary production, leaf area, and biomass in vegetation zones of the Pacific Northwest. Ecology, 63, 469-481. Gourlet Fleury, S., Rossi, V., Rejou Mechain, M., Freycon, V., Fayolle, A., Saint Andre, L., Cornu, G., Gerard, J., Sarrailh, J.M. & Flores, O. (2011) Environmental filtering of dense wooded species controls above ground biomass stored in African moist forests. Journal of Ecology. Grace, J. (1977) Plant response to wind. New York.: Academic Press. Haripriya, G.S. (2000) Estimates of biomass in Indian forests. Biomass & Bioenergy, 19, 245-258. Hoch, G. & Korner, C. (2009) Growth and carbon relations of tree line forming conifers at constant vs. variable low temperatures. Journal of Ecology, 97, 57-66. Horne, R. & Gwalter, J. (1983) The recovery of rainforest overstorey following logging. I. Subtropical rainforest. Australian Forest Research, 13, 29-44. Houghton, R. (2005) Aboveground forest biomass and the global carbon balance. Global Change Biology, 11, 945-958. Huang, S.G. (1958) The real specific gravity of wood. The Experimental forest, College of Bioresources and Agriculture, National Taiwan University. Jenkins, J.C., Chojnacky, D.C., Heath, L.S. & Birdsey, R.A. (2003) National-scale biomass estimators for United States tree species. Forest Science, 49, 12-35. Keeling, H.C. & Phillips, O.L. (2007) The global relationship between forest productivity and biomass. Global Ecology and Biogeography, 16, 618-631. Keith, H., Mackey, B.G. & Lindenmayer, D.B. (2009) Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests. Proceedings of the National Academy of Sciences of the United States of America, 106, 11635-11640. Ketterings, Q.M., Coe, R., van Noordwijk, M., Ambagau, Y. & Palm, C.A. (2001) Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 146, 199-209. Korner, C. (2006) Significance of temperature in plant life. Plant growth and climate change, 16, 48. Kramer, P.J. (1937) The relation between rate of transpiration and rate of absorption of water in plants. American Journal of Botany, 10-15. Lai, Y.-J. (2003) The study on estimating temporal-spatial distribution of solar irradiance in watershed. PhD thesis, National Taiwan University, Taipei. Lassen, L. & Okkonen, E. (1969) Effect of rainfall and elevation on specific gravity of coast Douglas-fir. Wood and Fiber Science, 1, 227-235. Lawton, R.O. (1982) Wind stress and elfin stature in a montane rain forest tree: an adaptive explanation. American Journal of Botany, 1224-1230. Lawton, R.O. (1984) Ecological constraints on wood density in a tropical montane rain forest. American Journal of Botany, 261-267. Lee, H.-T. & Feng, F.-L. (2008) A Forest Carbon Sequestration Inventory System :An Example of Camphor Trees in Taiwan. Taiwan Journal of Forest Science, 23(Supplement), S11-22. Lee, P.-F., Liao, C.-Y., Lee, Y.-C., Pan, Y.-H., Fu, W.-H. & Chen, H.-W. (1997) An Ecological and Environmental GIS database for Taiwan. Council of Agriculture, Taipei Levitt, J. (1980a) Responses of plants to environmental stresses. Volume I. Chilling, Freezing, and High Temperature Stresses. Academic Press. Levitt, J. (1980b) Responses of plants to environmental stresses. Volume II. Water, radiation, salt, and other stresses. Academic Press. Lin, K.-C., Ma, F.-C. & Tang, S.-L. (2001) Allometric Equations for Predicting the Aboveground Biomass of Tree Species in the Fushan Forest. Taiwan Journal of Forest Science, 16(3), 143-151. Lin, S.-T., Chung, C.-H., Chiou, C.-R. & Lin, C.-C. (2008) Estimating aboveground biomass and carbon sequestration of Taiwan red pine plantation in Lishan area. Quarterly Journal of Chinese Forestry, 41(4), 521-535. Lin, Y.-J., Liu, C.-P. & Lin, J.-C. (2002) Measurement of Specific Gravity and Carbon Content of Important Timber Species in Taiwan. Taiwan Journal of Forest Science, 17(3). Lugo, A.E. (2008) Visible and invisible effects of hurricanes on forest ecosystems: an international review. pp. 368-398. Blackwell Publishing Asia. Ma, T.-P. (1971) Physical experiments for wood properties of wood product in Taiwan. Taiwan Forestry Research Institute. Mabry, C.M., Hamburg, S.P., Lin, T.C., Horng, F.W., King, H.B. & Hsia, Y.J. (1998) Typhoon disturbance and stand-level damage patterns at a subtropical forest in Taiwan. Biotropica, 238-250. Malhi, Y., Baldocchi, D. & Jarvis, P. (1999) The carbon balance of tropical, temperate and boreal forests. Plant, Cell & Environment, 22, 715-740. Mascaro, J., Perfecto, I., Barros, O., Boucher, D.H., de la Cerda, I.G., Ruiz, J. & Vandermeer, J. (2005) Aboveground biomass accumulation in a tropical wet forest in Nicaragua following a catastrophic hurricane disturbance. Biotropica, 37, 600-608. McEwan, R.W., Lin, Y.-C., Sun, I.F., Hsieh, C.-F., Su, S.-H., Chang, L.-W., Song, G.-Z.M., Wang, H.-H., Hwong, J.-L., Lin, K.-C., Yang, K.-C. & Chiang, J.-M. (2011) Topographic and biotic regulation of aboveground carbon storage in subtropical broad-leaved forests of Taiwan. Forest Ecology and Management, 262, 1817-1825. Midgley, J.J. & Niklas, K.J. (2004) Does disturbance prevent total basal area and biomass in indigenous forests from being at equilibrium with the local environment? Journal of Tropical Ecology, 20, 595-597. Mooney, H.A., Winner, W.E. & Pell, E.J. (1991) Response of plants to multiple stresses. Academic Press. Pastor, J. & Post, W. (1986) Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry, 2, 3-27. Pregitzer, K.S. & Euskirchen, E.S. (2004) Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biology, 10, 2052-2077. Raich, J.W., Russell, A.E., Kitayama, K., Parton, W.J. & Vitousek, P.M. (2006) Temperature influences carbon accumulation in moist tropical forests. Ecology, 87, 76-87. Running, S.W. (2008) Ecosystem disturbance, carbon, and climate. Science, 321, 652-653. Satoo, T. & Madgwick, H. (1982) Forest biomass. Martinus Nijhoff/Dr. W. Junk Publishers. Slik, J.W.F., Aiba, S.I., Brearley, F.Q., Cannon, C.H., Forshed, O., Kitayama, K., Nagamasu, H., Nilus, R., Payne, J., Paoli, G., Poulsen, A.D., Raes, N., Sheil, D., Sidiyasa, K., Suzuki, E. & van Valkenburg, J. (2010) Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo's tropical forests. Global Ecology and Biogeography, 19, 50-60. Song, G.-Z.M. (2007) Patterns of development of regeneration of tree species in a subtropical rainforest PhD Thesis, School of Integrative Biology, The University of Queensland. Stegen, J.C., Swenson, N.G., Enquist, B.J., White, E.P., Phillips, O.L., Jorgensen, P.M., Weiser, M.D., Mendoza, A.M. & Vargas, P.N. (2011) Variation in above ground forest biomass across broad climatic gradients. Global Ecology and Biogeography, 20, 744 - 754. Su, H. (1984) Studies on the climate and vegetation types of the natural forests in Taiwan (I): analysis of the variations on climatic factors. Quarterly Journal of Chinese Forestry, 17, 1-14. Su, X. & Tsai, C.L. (2011) Outlier detection. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. Takyu, M., Aiba, S.I. & Kitayama, K. (2003) Changes in biomass, productivity and decomposition along topographical gradients under different geological conditions in tropical lower montane forests on Mount Kinabalu, Borneo. Oecologia, 134, 397-404. Tanner, E. (1980) Studies on the biomass and productivity in a series of montane rain forests in Jamaica. The Journal of Ecology, 573-588. Toledo, M., Poorter, L., Pena Claros, M., Alarcon, A., Balcazar, J., Leano, C., Licona, J.C., Llanque, O., Vroomans, V. & Zuidema, P. (2011) Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology, 99, 254 - 264. Tsai, F., Hwang, J.H., Chen, L.C. & Lin, T.H. (2010) Post-disaster assessment of landslides in southern Taiwan after 2009 Typhoon Morakot using remote sensing and spatial analysis. Natural Hazards and Earth System Sciences, 10, 2179-2190. Tu, J.-Y., Chou, C. & Chu, P.-S. (2009) The Abrupt Shift of Typhoon Activity in the Vicinity of Taiwan and Its Association with Western North Pacific-East Asian Climate Change. Journal of Climate, 22, 3617-3628. Urquiza-Haas, T., Dolman, P.M. & Peres, C.A. (2007) Regional scale variation in forest structure and biomass in the Yucatan Peninsula, Mexico: Effects of forest disturbance. Forest Ecology and Management, 247, 80-90. Valencia, R., Condit, R., Muller-Landau, H.C., Hernandez, C. & Navarrete, H. (2009) Dissecting biomass dynamics in a large Amazonian forest plot. Journal of Tropical Ecology, 25, 473-482. Valencia, R., Foster, R.B., Villa, G., Condit, R., Svenning, J.C., Hernandez, C., Romoleroux, K., Losos, E., Magard, E. & Balslev, H. (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. Journal of Ecology, 92, 214-229. Van Bloem, S.J., Murphy, P.G., Lugo, A.E., Ostertag, R., Costa, M.R., Bernard, I.R., Colon, S.M. & Mora, M.C. (2005) The Influence of Hurricane Winds on Caribbean Dry Forest Structure and Nutrient Pools1. Biotropica, 37, 571-583. Venables, W.N. & Ripley, B.D. (2002) Modern applied statistics with S. Springer. Vieira, S., de Camargo, P.B., Selhorst, D., da Silva, R., Hutyra, L., Chambers, J.Q., Brown, I.F., Higuchi, N., dos Santos, J., Wofsy, S.C., Trumbore, S.E. & Martinelli, L.A. (2004) Forest structure and carbon dynamics in Amazonian tropical rain forests. Oecologia, 140, 468-479. Wang, C. (2004) Features of monsoon, typhoon and sea waves in the Taiwan Strait. Marine Georesources and Geotechnology, 22, 133-150. Wang, Y.-C. (2002) The Woody Biomass Estimation of a Subtropical Rain Forest in Nanjengshan. Master thesis, National Taiwan University, Taipei. Weaver, P.L. (1986) Hurricane damage and recovery in the montane forests of the Luquillo Mountains of Puerto Rico. Caribbean Journal of Science, 22, 53-70. Webb, L. (1958) Cyclones as an ecological factor in tropical lowland rain-forest, North Queensland. Australian Journal of Botany, 6, 220-228. Whittaker, R. & Niering, W. (1975) Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient. Ecology, 56, 771-790. Williams, J.F. & Chang, C.D. (2008) Taiwan's environmental struggle: toward a green silicon island. Routledge. Yabuki, K. & Miyagawa, H. (1970) Studies on the effect of wind speed on photosynthesis. Japan. J. Agric. Met, 26, 137-142. Yen, M.C. & Chen, T.C. (2000) Seasonal variation of the rainfall over Taiwan. International journal of climatology, 20, 803-809. Yu, F.C., Chen, T.C., Lin, M.L., Chen, C.Y. & Yu, W.H. (2006) Landslides and rainfall characteristics analysis in Taipei City during the Typhoon Nari Event. Natural Hazards, 37, 153-167. Zhang, Y., Duan, B. & Xian, J. (2011) Links between plant diversity, carbon stocks and environmental factors along a successional gradient in a subalpine coniferous forest in Southwest China. Forest Ecology and Management, 262, 361-369. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66388 | - |
| dc.description.abstract | 自過去半世紀以來,氣候變遷及全球暖化等環境議題備受關注。為瞭解全球碳循環的運作機制及過程,估算森林生物量成為瞭解森林生態系碳含量多寡的重要方式。而森林生物量的空間模式是環境因子綜合影響下的結果。由於臺灣全島海拔變化大,加上中央山脈與兩大氣候系統(季風及颱風)交互作用,造就許多環境因子的高空間異質性。本研究目的為探討臺灣重要環境因子(氣候、地形、人為干擾)與全島天然林地上部生物量之間的關係。以「國家植群多樣性調查及製圖計畫」中共計2,813個樣區之木本植物調查資料為基礎,估算各樣區的森林地上部生物量。並透過廣義線性模式(Generalized Linear Models),找出環境因子與生物量相關性。研究結果顯示,各因子依影響生物量空間變化的強弱程度,依序為年均溫、冬季降雨量、乾季時間長度、實際蒸發散量、地形凸出程度、距離主要道路最短距離、東北季風迎風指數,以及坡度。其中,實際蒸發散量、地形凸出程度、距離主要道路最短距離及東北季風迎風指數,皆與生物量正相關;而年均溫(平方項)、冬季降雨量、缺水月份數與坡度,則和生物量負相關。生物量隨溫度降低而增加的可能原因,溫度上升不僅提高植物生長速率,也加強個體間的競爭而提高了死亡率。實際蒸發散量較少與缺水月份數較多,皆使生物量減少,表示水分多寡及降雨的時空分布均勻度為影響生物量空間分布的重要因子。人為干擾越嚴重的森林,生物量越小。在越凸出或坡度越陡的地形上累積的生物量越高,則顯示了土石流為颱風影響臺灣森林生物量空間變化的可能機制。東北季風對帶來充沛的雨量,將使森林生物量減少;但整體而言,東北季風對臺灣生物量空間變化的影響,仍可能因各地受季風影響的程度不同而有差異。 | zh_TW |
| dc.description.abstract | In recent years, since the growing concerns of climate change and global warming, estimation on forest biomass has become one of the main methods to understand the carbon cycle. Due to the large range of variation in elevations, and the interactions between the Central Mountain Range and two major climate systems (monsoon and typhoon), Taiwan is an island with high spatial heterogeneity of environment factors. As an overall realization of AGB and its relationship between environmental factors were still unavailable in Taiwan, the aim of this study was to identify the relationships between above-ground biomass (AGB) and different types of environmental factors (such as climatic, topographic, and human disturbance factors) in Taiwan. A total of 2,813 plots in the database of The National Vegetation Diversity Inventory and Mapping Project (2003 – 2008) were analyzed by generalized linear models (GLMs). The most influential factor was mean annual temperature, followed by winter precipitation, length of dry season, actual evaportranspiration, convexity, distances to major roads, the windwardness index. Among the eight influential factors, mean annual temperature (as quadratic term), winter precipitation, length of dry season and slope were negatively related to AGB, whereas actual evaportranspiration, convexity, distances to major roads and the windwarness index were positive correlated with AGB. For climatic factors, higher stem turnover rate appeared to limit AGB accumulation in warmer forests, while both adequate water balance and temporal evenness of precipitation distribution contributed to enhance AGB accumulation. The island-wide spatial patterns of AGB showed the mechanism related to convexity and slope might regulate the quantity of AGB reduction. Both human- and natural-induced disturbances would result in decreasing AGB. Considering with the interactions of typhoons and topographic factors, landslides followed with intensive rainfall were the potential impact of typhoons on AGB in Taiwan. The intensity of the winter monsoons were not evenly distributed at island-widei, which might be one reason of unexpected relationships between AGB and the windwardness index and winter precipitation which both were used to evaluate the impacts of the northeast monsoons in winter. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:33:23Z (GMT). No. of bitstreams: 1 ntu-101-R98b44004-1.pdf: 9647192 bytes, checksum: bd8075200393ffd7c928ecb0136a686b (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii Abbreviation list iv Contents v List of figures vi List of tables vi List of appendices vi 1. Introduction 1 2. Material and Method 7 2.1 Study site description 7 2.2 Estimating of forest above-ground biomass (AGB) 8 2.3 Dataset of Environmental factors 10 2.4 Fitting generalized linear models (GLMs) 14 3. Result 18 3.1 Estimation of AGB 18 3.2 GLM fitting 22 4. Discussion 26 4.1 Effects of climatic factors 27 4.1.1 Temperature 27 4.1.2 Water availability and precipitation distribution 28 4.2 Effects of topographic factors 30 4.2.1 Slope 30 4.2.2 Convexity and the windwardness index 31 4.3 Effects of human disturbance 33 4.4 Impacts of the northeast monsoons and typhoons 34 4.3.1 Typhoons 34 4.3.2 The northeast monsoons in winter 36 5. Conclusion 38 References 40 Appendices 50 | |
| dc.language.iso | en | |
| dc.subject | 東北季風 | zh_TW |
| dc.subject | 森林地上部生物量 | zh_TW |
| dc.subject | 環境因子 | zh_TW |
| dc.subject | 人為干擾 | zh_TW |
| dc.subject | 颱風 | zh_TW |
| dc.subject | typhoon | en |
| dc.subject | the northeast monsoon in winter | en |
| dc.subject | above-ground biomass (AGB) | en |
| dc.subject | environmental factor | en |
| dc.subject | human disturbance | en |
| dc.title | 臺灣森林地上部生物量與環境因子的關係 | zh_TW |
| dc.title | The Relationships between Forest Above-ground Biomass and Environmental Factors in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 趙國容(Kuo-Jung Chao),江智民(Jyh-Min Chiang) | |
| dc.subject.keyword | 森林地上部生物量,環境因子,人為干擾,颱風,東北季風, | zh_TW |
| dc.subject.keyword | above-ground biomass (AGB),environmental factor,human disturbance,typhoon,the northeast monsoon in winter, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-02-09 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 9.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
