請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66200
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 趙基揚(Chi-Yang Chao) | |
dc.contributor.author | Chun-Han Shih | en |
dc.contributor.author | 施淳瀚 | zh_TW |
dc.date.accessioned | 2021-06-17T00:25:22Z | - |
dc.date.available | 2017-05-14 | |
dc.date.copyright | 2012-05-14 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-03-29 | |
dc.identifier.citation | 1. Lipomi, D.J., et al., Stretchable Organic Solar Cells. Advanced Materials, 2011. 23(15): p. 1771-1775.
2. Green, M.A., et al., Solar Cell Efficiency Tables (Version 38). Progress in Photovoltaics: Research and Applications, 2011. 19(5): p. 565-572. 3. Shoaee, S., et al., Acceptor Energy Level Control of Charge Photogeneration in Organic Donor/Acceptor Blends. Journal of the American Chemical Society, 2010. 132(37): p. 12919-12926. 4. Chen, H.-Y., et al., Polymer Solar Cells with Enhanced Open-Circuit Voltage and Efficiency. Nature Photonics, 2009. 3(11): p. 649-653. 5. Blouin, N.M., A. Leclerc, M., A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells. Advanced Materials, 2007. 19(17): p. 2295-2300. 6. Park, S.H., et al., Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photonics, 2009. 3(5): p. 297-302. 7. Liang, Y., et al., For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. Advanced Materials, 2010. 22(20): p. E135-E138. 8. Mor, G.K., et al., High Efficiency Double Heterojunction Polymer Photovoltaic Cells Using Highly Ordered TiO[sub 2] Nanotube Arrays. Applied Physics Letters, 2007. 91(15): p. 152111. 9. Shao, Y. and Y. Yang, Efficient Organic Heterojunction Photovoltaic Cells Based on Triplet Materials. Advanced Materials, 2005. 17(23): p. 2841-2844. 10. Dennler, G., M.C. Scharber, and C.J. Brabec, Polymer-Fullerene Bulk-Heterojunction Solar Cells. Advanced Materials, 2009. 21(13): p. 1323-1338. 11. Lin, L., Y. Morisaki, and Y. Chujo, New Type of Donor-Acceptor Through-Space Conjugated Polymer. International Journal of Polymer Science, 2010. 2010: p. 1-9. 12. Palma, C.-A. and P. Samori, Blueprinting Macromolecular Electronics. Nature Chemistry, 2011. 3(6): p. 431-436. 13. van Mullekom, H.A.M., et al., Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers. Materials Science and Engineering: R: Reports, 2001. 32(1): p. 1-40. 14. Bundgaard, E. and F. Krebs, Low band gap polymers for organic photovoltaics. Solar Energy Materials and Solar Cells, 2007. 91(11): p. 954-985. 15. Kroon, R., et al., Small Bandgap Polymers for Organic Solar Cells(Polymer Material Development in the Last 5 Years). Polymer Reviews, 2008. 48(3): p. 531-582. 16. Winder, C. and N.S. Sariciftci, Low Bandgap Polymers for Photon Harvesting in Bulk Heterojunction Solar Cells. Journal of Materials Chemistry, 2004. 14(7): p. 1077-1086. 17. Kushmerick, J.G., et al., Effect of Bond-Length Alternation in Molecular Wires. Journal of the American Chemical Society, 2002. 124(36): p. 10654-10655. 18. Ohshimizu, K., et al., Synthesis and Characterization of Polythiophenes Bearing Aromatic Groups at the 3-Position. Macromolecules, 2011. 44(4): p. 719-727. 19. Havinga, E.E., W. Hoeve, and H. Wynberg, A New Class of Small Band Gap Organic Polymer Conductors. Polymer Bulletin, 1992. 29(1): p. 119-126. 20. Blouin, N., et al., Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells. Journal of the American Chemical Society, 2007. 130(2): p. 732-742. 21. Ahmed, E., et al., Benzobisthiazole-Based Donor–Acceptor Copolymer Semiconductors for Photovoltaic Cells and Highly Stable Field-Effect Transistors. Macromolecules, 2011: p. 7207–7219. 22. Huo, L., et al., Bandgap and Molecular Level Control of the Low-Bandgap Polymers Based on 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione toward Highly Efficient Polymer Solar Cells. Macromolecules, 2009. 42(17): p. 6564-6571. 23. Chochos, C.L., et al., Synthesis of a Soluble n-Type Cyano Substituted Polythiophene Derivative:-A Potential Electron Acceptor in Polymeric Solar Cells. The Journal of Physical Chemistry C, 2007. 111(28): p. 10732-10740 24. Carsten, B., et al., Examining the Effect of the Dipole Moment on Charge Separation in Donor–Acceptor Polymers for Organic Photovoltaic Applications. Journal of the American Chemical Society, 2011: p. 20468–20475. 25. Shi, Q., et al., Side Chain Engineering of Copolymers Based on Bithiazole and Benzodithiophene for Enhanced Photovoltaic Performance. Macromolecules, 2011. 44(11): p. 4230-4240. 26. Chao, C.-Y., et al., Band Structure Engineering for Low Band Gap Polymers Containing Thienopyrazine. Journal of Materials Chemistry accepted, 2012. 27. Chen, C.-H., et al., Donor–Acceptor Random Copolymers Based on a Ladder-Type Nonacyclic Unit: Synthesis, Characterization, and Photovoltaic Applications. Macromolecules, 2011. 44(21): p. 8415-8424. 28. Scharber, M.C., et al., Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency. Advanced Materials, 2006. 18(6): p. 789-794. 29. Cheng, K.-F., C.-L. Liu, and W.-C. Chen, Small Band Gap Conjugated Polymers Based on Thiophene-Thienopyrazine Copolymers. Journal of Polymer Science Part A: Polymer Chemistry, 2007. 45(24): p. 5872-5883. 30. Lee, W.-Y., et al., High Hole Mobility from Thiophene-Thienopyrazine Copolymer Based Thin Film Transistors. Journal of Polymer Research, 2008. 16(3): p. 239-244. 31. Zhang, F., et al., Low-Bandgap Alternating Fluorene Copolymer/Methanofullerene Heterojunctions in Efficient Near-Infrared Polymer Solar Cells. Advanced Materials, 2006. 18(16): p. 2169-2173. 32. Chen, C.-H., et al., Synthesis and Characterization of Bridged Bithiophene-Based Conjugated Polymers for Photovoltaic Applications: Acceptor Strength and Ternary Blends. Macromolecules, 2010. 43(2): p. 697-708. 33. Manceau, M., et al., Photochemical Stability of [small pi]-Conjugated Polymers for Polymer Solar Cells: a Rule of Thumb. Journal of Materials Chemistry, 2011. 21(12): p. 4132-4141. 34. Kulkarni, A.P., Y. Zhu, and S.A. Jenekhe, Photodegradation of Emissive Conjugated Copolymers and Oligomers Containing Thienopyrazine. Macromolecules, 2007. 41(2): p. 339-345. 35. Freeman, A.W.U., Marie Criswell, Megan E. , Triphenylphosphine-Mediated Reductive Cyclization of 2-Nitrobiphenyls: A Practical and Convenient Synthesis of Carbazoles. Journal of Organic Chemistry, 2005. 70: p. 5014-5019. 36. Karsten, B.P. and R.A.J. Janssen, Small Band Gap Oligothieno[3,4-b]pyrazines. Organic letters, 2008. 10(16): p. 3513-3516. 37. Pal, B., et al., Substituent Effect on the Optoelectronic Properties of Alternating Fluorene-Cyclopentadithiophene Copolymers. Macromolecules, 2008. 41(18): p. 6664-6671. 38. Takahashi, M., et al., Palladium-Catalyzed C-Homocoupling of Bromothiophene Derivatives and Synthetic Application to Well-Defined Oligothiophenes. Journal of the American Chemical Society, 2006. 128(33): p. 10930-10933 39. Nielsen, T.E., et al., Cu-Mediated Stille Reactions of Sterically Congested Fragments: Towards the Total Synthesis of Zoanthamine. Tetrahedron, 2005. 61(33): p. 8013-8024. 40. Getmanenko, Y.A., et al., Base-Catalyzed Halogen Dance Reaction and Oxidative Coupling Sequence as a Convenient Method for the Preparation of Dihalo-bisheteroarenes. Organic Letters, 2010. 12(9): p. 2136-2139 41. Nielsen, C.B. and T. Bjornholm, New Regiosymmetrical Dioxopyrrolo- and Dihydropyrrolo-Functionalized Polythiophenes. Organic letters, 2004. 6(19): p. 3381-3384. 42. Mondal, R., et al., Synthesis of Acenaphthyl and Phenanthrene Based Fused-Aromatic Thienopyrazine Co-Polymers for Photovoltaic and Thin Film Transistor Applications. Chemistry of Materials, 2009. 21(15): p. 3618-3628. 43. Zagorska, M. and B. Krische, Chemical Synthesis and Characterization of Soluble Poly(4,4′-dialkyl-2,2′-bithiophenes). Polymer, 1990. 31(7): p. 1379-1383. 44. Bundgaard, E. and F.C. Krebs, Low-Band-Gap Conjugated Polymers Based on Thiophene, Benzothiadiazole, and Benzobis(thiadiazole). Macromolecules, 2006. 39(8): p. 2823-2831 45. Parrish, J.P., et al., Mild and Efficient Formation of Symmetric Biaryls via Pd(II) Catalysts and Cu(II) Oxidants. Tetrahedron Letters, 2001. 42: p. 7729-7731. 46. Balandier, J.-Y., et al., Synthesis of Soluble Oligothiophenes Bearing Cyano Groups, Their Optical and Electrochemical Properties. Tetrahedron, 2010. 66(49): p. 9560-9572. 47. Mammo, W., et al., New Low Band Gap Alternating Polyfluorene Copolymer-Based Photovoltaic Cells. Solar Energy Materials and Solar Cells, 2007. 91(11): p. 1010-1018. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66200 | - |
dc.description.abstract | 本論文以thienopyrazine衍生物為受體,利用suzuki coupling 及stille coupling設計並合成了6種不同結構的予體-受體(D-A)共聚高分子。而在予體的部分,利用fluorene衍生物及thiophene衍生物兩個系統及不同的化學結構以研究高分子主鏈的共平面性、橋接原子、強拉電子基對於高分子光學吸收、電子能帶結構及光化學穩定性的影響。
所有高分子皆具有雙峰光學吸收光譜且能隙低於2eV,予體為thiophene系統的高分子相較於fluorene系統來說具有較紅的光學吸收、較小的能隙及較好的光學穩定性。其原因是thiophene為基礎的高分子具有較好的共平面性,所以能夠在對應到intra-charge transfer之長波長光譜有較強的吸收且具有較好的穩定性。利用cyclopentadithiophene的稠環結構能夠更進一步的減低能隙。所有高分子的最低未填滿分子軌域(LUMO)皆由TP受體決定,因此變化不大;而最高已填滿分子軌域(HOMO)則隨著共平面性的加強而有顯著的提升。在thiophene環上加上強拉電子的氰基能夠在維持低光學能隙的同時,使高分子HOMO有明顯的下降。 | zh_TW |
dc.description.abstract | In this thesis, six donor-acceptor low band gap conjugated copolymers containing thienopyrazine derivative as acceptor unit were designed and synthesized via Suzuki coupling and Stille coupling. Various donors, based on fluorene and thiophene derivatives, with different chemical structures were employed to investigate the effects of coplanarity, bridging atom and strong electron withdrawing group on the optical absorptions, the electronic band structures and the stability of the copolymers.
All the copolymers synthesized showed bimodal absorption spectra with small band gap (< 2 eV). Comparing to the counterparts containing fluorene derivatives, the copolymers with thiophene based donors exhibited relative reddish optical absorptions, smaller band gaps and better photochemical stability. Considering the thiophene based copolymers, the better coplanarity led to stronger optical absorption at long wavelengths corresponding to enhanced intra-charge transfer as well as better stability. The introduction of cyclopentadithiophene with fused ring structures would further lower the band gap. The lowest unoccupied molecular orbital (LUMO) was similar for all the copolymers, which should be determined by the thienopyrazine unit. The highest occupied molecular orbital (HOMO) would be significantly elevated by improving the coplanarity. The introduction of strong electron withdrawing cyano group on thiophene could significantly lower the HOMO while retaining low optical band gap. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:25:22Z (GMT). No. of bitstreams: 1 ntu-101-R99527014-1.pdf: 10400523 bytes, checksum: adc72b8f5c98ce61de17d7ff0a2b771f (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目 錄
摘要 I Abstract II 誌 謝 III 目 錄 IV 圖索引 VII 合成路徑圖索引 X 附錄圖索引 XII 表索引 XIV 第一章 緒論 1 第二章 研究動機與論文架構 6 第三章 文獻回顧 8 3.1 共軛高分子簡介及能階調控方式 8 3.1.1 予體-受體系統 (Donor-acceptor system) 14 3.1.2 拉電子基效果 19 3.1.3 共平面性影響 20 3.2 thienopyrazine系統高分子 22 3.3 共軛高分子光化學穩定性 25 第四章 實驗方法 29 4.1 實驗藥品 29 4.2 實驗儀器 35 4.3 實驗方法 36 4.3.1 單體合成 36 4.3.1.1 2,7-dibromo-9-(tridecan-7-yl)-9H-carbazole(CBZ) 36 4.3.1.2 2,3-bis(2’-ethylhexyl)-5,7-bis(3-hexylthiophen-2-yl)thieno[3,4-b]pyrazine (A) 39 4.3.1.3 4,4-Dihexylcyclopenta[2,1-b:3,4-b']dithiophene(CPDT) 44 4.3.1.4 4,4'-dihexyl-2,2'-bithiophene (ttBT) 47 4.3.1.5 4,4'-dihexyl-2,2'-bithiophene-3,3'-dicarbonitrile(CNBT) 50 4.3.2 聚合方式 53 4.3.2.1 以Suzuki coupling 製備高分子 53 4.3.2.2 以Stille coupling 製備高分子 54 4.3.3 高分子性質量測 55 第五章 結果與討論 57 5.1 單體合成與鑑定 57 5.1.1 2,7-Dibromo-9-(tridecan-7-yl)-9H-carbazole (CBZ)之合成 57 5.1.2 2,3-Bis(2’-ethylhexyl)-5,7-bis(3-hexylthiophen-2-yl)thieno[3,4-b]pyrazine (A)之合成 58 5.1.3 4,4-Dihexylcyclopenta[2,1-b:3,4-b']dithiophene (CPDT)之合成 59 5.1.4 4,4'-dihexyl-2,2'-bithiophene (ttBT)之合成 60 5.1.5 4,4'-dihexyl-2,2'-bithiophene-3,3'-dicarbonitrile (CNBT)的合成 63 5.2 高分子物性測量 65 5.2.1 高分子分子量及熱穩定性 66 5.2.2 高分子光物理特性 70 5.2.3 高分子的電化學特性 74 5.3 高分子光化學穩定性分析 79 第六章 結論及未來展望 81 參考文獻 82 附錄 (Appendix) 86 | |
dc.language.iso | zh-TW | |
dc.title | "調控含2,3-diethylhexylthieno[3,4-b]pyrazine之低能隙共軛高分子的能階結構" | zh_TW |
dc.title | Tuning the energy levels of low band gap conjugated polymers containing 2,3-diethylhexylthieno[3,4-b]pyrazine | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林唯芳(Wei-Fang Su),林祥泰(Shiang-Tai Lin),陳錦地(Chin-Ti Chen),陳銘洲(Ming-Chou Chen) | |
dc.subject.keyword | thienopyrazine (TP),低能隙高分子,電子能帶結構工程,光化學穩定性, | zh_TW |
dc.subject.keyword | thienopyrazine,low band gap polymer,band structure engineering,photochemical stability, | en |
dc.relation.page | 98 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-03-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 10.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。