請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65998| 標題: | 在收斂冪級數環上的有限生成投影模 Finitely Generated Projective Module over the Tate Algebra |
| 作者: | Ching-Heng Chiu 邱敬恒 |
| 指導教授: | 于靖 |
| 關鍵字: | 有限生成投影模, Finitely Generated Projective Module, |
| 出版年 : | 2012 |
| 學位: | 碩士 |
| 摘要: | Serre’s conjecture 所探討的是在多項式環上的有限生成投影模。在這篇論文中我們要先探討在一般冪級數環上的有限生成投影模,再探討在收斂冪級數環上的行為,把兩者做個比較。 'Serre's Conjecture', referred to the famous statement made by J.-P. Serre in 1955, to the e ect that one did not know if nitely generated modules were free over a polynomial ring k[t1; : : : ; td], where k is a eld. Serre made some progress towards a solution in 1957 when he proved that every nitely generated projective module over a polynomial ring over a eld was stably free. The problem remained open until 1976, when Daniel Quillen and Andrei Suslin independently proved that the answer was a rmative. Kiran S. Kedlaya have proved the case in Tn, the Tate algebra. Lindel-Lutkebohmert and Mohan Kumar did the case of k[[X]][T], polynomial ring over formal power series ring. In this paper, we try to use the similar method to solve the case that the polynomial ring is replaced by Tn[T], polynomial ring over Tate algebra. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65998 |
| 全文授權: | 有償授權 |
| 顯示於系所單位: | 數學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 489.11 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
