請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65998完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于靖 | |
| dc.contributor.author | Ching-Heng Chiu | en |
| dc.contributor.author | 邱敬恒 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:18:24Z | - |
| dc.date.available | 2012-07-16 | |
| dc.date.copyright | 2012-07-16 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-06-28 | |
| dc.identifier.citation | [1] Jean Fresnel; Marius van der Put, Rigid Analytic Geometry and Its Applica-
tions. Progress in Mathematics, 218. Birkhuser Boston, Inc., Boston, MA, 2004. xii+296 pp. ISBN: 0-8176-4206-4 (Reviewer: Lorenzo Ramero), 14G22 (30G06 30H05 32P05) [2] Kiran S. Kedlaya, Full faithfulness for overconvergent F-isocrystals. Geometric aspects of Dwork theory. Vol. I, II, 819835, Walter de Gruyter, Berlin, 2004. (Reviewer: Elmar Grosse-Klnne), 14F30 [3] Kiran S. Kedlaya, p-adic di erential equations. Cambridge Studies in Advanced Mathematics, 125. Cambridge University Press, Cambridge, 2010. xviii+380 pp. ISBN: 978-0-521-76879-5 (Reviewer: Nobuo Tsuzuki), 12H25 (14G22) [4] Kiran S. Kedlaya, 18.727, Topics in Algebraic Geometry (rigid an- alytic geometry), fall 2004 Tate algebra, preprint, http://www- math.mit.edu/ kedlaya/18.727/tate-algebras.pdf [5] Serge Lang, Algebra, revised third edition, Springer, 2002 [6] T.Y.Lam, Serre's Problem on Projective Modules, Springer Monographs in Math- ematics. Springer-Verlag, Berlin, 2006. xxii+401 pp. ISBN: 978-3-540-23317-6; 3-540-23317-2 13C10 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65998 | - |
| dc.description.abstract | Serre’s conjecture 所探討的是在多項式環上的有限生成投影模。在這篇論文中我們要先探討在一般冪級數環上的有限生成投影模,再探討在收斂冪級數環上的行為,把兩者做個比較。 | zh_TW |
| dc.description.abstract | 'Serre's Conjecture', referred to the famous statement made by J.-P. Serre in 1955, to the e ect that one did not know if nitely generated modules were free over a polynomial ring k[t1; : : : ; td], where k is a eld. Serre made some
progress towards a solution in 1957 when he proved that every nitely generated projective module over a polynomial ring over a eld was stably free. The problem remained open until 1976, when Daniel Quillen and Andrei Suslin independently proved that the answer was a rmative. Kiran S. Kedlaya have proved the case in Tn, the Tate algebra. Lindel-Lutkebohmert and Mohan Kumar did the case of k[[X]][T], polynomial ring over formal power series ring. In this paper, we try to use the similar method to solve the case that the polynomial ring is replaced by Tn[T], polynomial ring over Tate algebra. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:18:24Z (GMT). No. of bitstreams: 1 ntu-101-R99221006-1.pdf: 500848 bytes, checksum: 992b7f9ebe845845c590161b04dd1fe5 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………… i
誌謝………………………………………………………………………………. ii 中文摘要………………………………………………………………………… iii 第一節 ……………………………………………………………………….. 1 第二節 ……………………………………………………………………………2 第三節 ……………………………………………………………………………6 第四節 …………………………………………………………………………13 參考文獻…………………………………………………………………….…… 15 | |
| dc.language.iso | en | |
| dc.subject | 有限生成投影模 | zh_TW |
| dc.subject | Finitely Generated Projective Module | en |
| dc.title | 在收斂冪級數環上的有限生成投影模 | zh_TW |
| dc.title | Finitely Generated Projective Module over the Tate Algebra | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王姿月,夏良忠 | |
| dc.subject.keyword | 有限生成投影模, | zh_TW |
| dc.subject.keyword | Finitely Generated Projective Module, | en |
| dc.relation.page | 16 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-06-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 489.11 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
