請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65960
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 顏鴻威(Hung-Wei Yen) | |
dc.contributor.author | Yu-Chen Lin | en |
dc.contributor.author | 林昱辰 | zh_TW |
dc.date.accessioned | 2021-06-17T00:16:45Z | - |
dc.date.available | 2026-02-05 | |
dc.date.copyright | 2021-02-23 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-02-04 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65960 | - |
dc.description.abstract | 這份工作目標為發展可以使用於海上結構材之抗氫脆低碳麻田散鐵鋼。麻田散鐵鋼焠火回火製程產生之奈米析出物具備二次硬化效果,並且奈米析出物具備作為氫陷阱的潛力。這份工作始於銅顆粒之在麻田散鐵鋼中的吸氫能力與抗氫脆的表現。使用掃描式顯微鏡,穿透式顯微鏡與原子探針分析檢查微結構,利用電化學方式充氫與自主設計之熱脫分析儀進行氫含量的量測,並使用慢速率拉伸研究鋼鐵抗氫脆的能力。研究中發現回火產生之銅顆粒具備吸氫的能力,使用克森爵方法訂出其氫陷阱活化能為30-35千焦/莫耳,慢速率拉伸試驗結果顯示具備銅顆粒吸出之鋼種具備抗氫脆的能力,並以此驗證了引入氫陷阱可使材料抗氫脆的概念。延伸此概念研究同時具備兩種析出物的鋼鐵材料。發現使用階段性析出的材料,銅顆粒為主要的氫陷阱,其較大的碳化物在常溫下並不具備吸氫能力,因此吸氫效果有限,而銅顆粒與合金碳化物共析出鋼中發現銅顆粒與碳化物間之局部晶格扭曲可以使材料具備強大的吸氫能力,達1.5 重量百萬分比。因此將共析出概念引入產線有利之直接焠火與回火製程,並發展具業界生產潛力之共析出直接焠火回火低碳麻田散鐵鋼。 | zh_TW |
dc.description.abstract | This work aims to develop offshore low carbon martensitic steel with hydrogen embrittlement resistance. Nano-precipitation, that trigger secondary hardening effect in quenched-and-tempered (Q T) martensitic steel, act as hydrogen trapping sites in steels that deters hydrogen diffusion. The first work aims to characterize hydrogen desorption capability and resistance to hydrogen embrittlement in copper contained Q T martensitic steels. Microstructure was investigated by scanning electron microscope, transmission electron microscope, and atom probe tomography. Hydrogen was electrochemically charged and hydrogen desorption was measured by the house-constructed thermal desorption analyzer. Resistance to hydrogen embrittlement was finally tested via the notched slow strain rate tensile test (SSRT). It’s found that copper precipitation can enhance the hydrogen trapping in Q T steel. The activation energy of ε-copper as hydrogen trapping site was estimated as 30-35 kJ mol-1 by Kissinger formula and Choo Lee method. In SSRT tests, ε-copper contained steel shows better resistance to hydrogen embrittlement. The result validates ε-copper can act as benign hydrogen trapping site that deters hydrogen embrittlement in steels. By inheriting the idea that nano-precipitation can act as benign hydrogen trapping site, steels with two kinds of nano-precipitation was manufactured and introduced by designed heat treatment. In sequence precipitation, oval TiC carbide was the legacy of austenization process, while ε-copper was introduced by tempering. It is found that ε-copper was the major hydrogen trapping site and oval TiC does not show strong hydrogen trapping capability under room temperature. On the other hand, in co-precipitation heat treatment, ε-copper and TiC carbide was both introduced by tempering. Co-precipitated copper precipitate and platelet TiC carbides shows a strong hydrogen trapping capability with a series of hydrogen trapping activation energy. The excess hydrogen content was purposed to be introduced by size limitation by each precipitates, and lattice imperfection by tetragonality between precipitates. The idea of co-precipitation was accepted and adopted into modern industrialized manufacturing process by implementing direct quenching and tempering process with proper alloying composition. This work finally developed industrial favored co-precipitated DQ T martensitic steel with hydrogen embrittlement resistance. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:16:45Z (GMT). No. of bitstreams: 1 U0001-0202202114525700.pdf: 21109071 bytes, checksum: c6f26c5555f22d0b4c2b8d9745fbdbc4 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 口試委員會審定書 ii 誌謝 1 中文摘要 2 ABSTRACT 3 CONTENTS 5 LIST OF FIGURES 9 LIST OF TABLES 23 Chapter 1 Introduction 24 Chapter 2 General Literature Review 28 2.1 Martensite Tempered Martensite 28 2.1.1 Introduction of Martensite 28 2.1.2 Displace Mechanism Microstructure of Martensitic Steel 29 2.1.3 Tempered Martensite Secondary Hardening Mechanism 37 2.1.4 Strength Toughness of Martensitic Steel 45 2.1.5 Development of HSLA Steelsin Industry 52 2.2 Hydrogen Embrittlement Hydrogen Trapping 58 2.2.1 Hydrogen Embrittlement Hydrogen Attack 58 2.2.2 Introduction of Hydrogen Trapping 68 2.2.3 Hydrogen Detection Method 69 2.3 Theory of Hydrogen Trapping Model 81 2.3.1 Introduction of HydrogenTrapping Model 81 2.3.2 Kissinger Formula Choo and Lee Method 82 2.3.3 MacNabb and Foster’s Model 85 2.3.4 Oriani Model 89 2.3.5 Kinetic Model 90 2.3.6 Detected Hydrogen Trapping Site in Steels 91 Chapter 3 Experimental Procedures 93 3.1 Designation Purpose and Alloy Manufacture Process 93 3.2 Microstructure Characterization 96 3.2.1 Hardness Test 96 3.2.2 X-Ray Diffractometer (XRD) Observation 96 3.2.3 Scanning Electron Microscope (SEM) 96 3.2.4 Electron Back Scattered Diffraction Observation (EBSD) 97 3.2.5 Transmission Electron Microscope (TEM) 97 3.2.6 Atom Probe Tomography (APT) 98 3.3 Hydrogen Detection Method 99 3.3.1 Thermal Desorption Analysis (TDA) 99 3.3.2 Hydrogen Permeation Experiment 100 3.3.3 Polarization Curve Measurement 103 3.4 Mechanical Test 104 3.4.1 Tensile Test Low TemperatureImpact Test 104 3.4.2 Slow Strain Rate Test 104 Chapter 4 Experiment Results and Discussions 106 4.1 Hydrogen trapping and resistance to hydrogen embrittlement in traditionally utilized low-carbon tempered martensitic steel 106 4.1.1 Abstract 106 4.1.2 Heat Treatment Process 107 4.1.3 Experiment Results 108 4.1.4 Conclusion 111 4.2 Hydrogen trapping and resistance to hydrogen embrittlement in copper contained low-carbon tempered martensitic steel 112 4.2.1 Abstract 112 4.2.2 Heat Treatment Process 113 4.2.3 Experiment Results 114 4.2.4 Discussion 127 4.2.5 Conclusion 130 4.3 Hydrogen Trapping Capability of Copper Cluster Contained Martensitic Steel 131 4.3.1 Abstract 131 4.3.2 Heat Treatment Process 132 4.3.3 Experiment Results 134 4.3.4 Discussion 146 4.3.5 Conclusion 150 4.4 Hydrogen Trapping Capability of Dual Precipitates in Tempered Low-Carbon Martensitic Steel 151 4.4.1 Abstract 151 4.4.2 Heat Treatment Process 152 4.4.3 Experiment Results 154 4.4.4 Discussion 169 4.4.5 Conclusion 171 4.5 Hydrogen Trapping Capability of Co-precipitation in Tempered Low-Carbon Martensitic Steel 172 4.5.1 Abstract 172 4.5.2 Heat Treatment Process 173 4.5.3 Experiment Results 175 4.5.4 Discussion 190 4.5.5 Conclusion 200 4.6 Resistance to Hydrogen Embrittlement in DQ T Co-Precipitated Tempered Martensitic steel 201 4.6.1 Abstract 201 4.6.2 Heat Treatment Process 202 4.6.3 Experiment Results 203 4.6.4 Discussion 220 4.6.5 Conclusion 222 Chapter 5 Conclusion 223 Chapter 6 Appendix 225 6.1 Hydrogen Diffusion and Hydrogen Charging in Current Studied Steel 225 6.1.1 Heat Treatment Process 225 6.1.2 Experiment Results 226 6.1.3 Conclusion 230 6.2 New Protocol in Analyzing Hydrogen Thermal Desorption in Ferritic and Martensitic Steels. 231 6.2.1 Abstract 231 6.2.2 Heat Treatment Process 232 6.2.3 Experiment Results 232 6.2.4 Discussion 242 6.2.5 Conclusion 246 REFERENCE 247 | |
dc.language.iso | en | |
dc.title | 回火型含銅低碳麻田散鐵鋼之抗氫脆研究 | zh_TW |
dc.title | Resistance to hydrogen embrittlement in copper contained tempered low carbon martensitic steel | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林新智(Hsin-Chih Lin),吳宗峯(Tsung-Feng Wu),李岳聯(Yueh-Lien Lee),羅友杰(Yu-Chieh Lo) | |
dc.subject.keyword | 氫脆現象,銅顆粒析出,熱脫分析儀,回火型麻田散鐵鋼,慢速率拉伸試驗, | zh_TW |
dc.subject.keyword | hydrogen embrittlement,copper precipitates,thermal desorption spectroscopy,tempered martensite,slow strain rate test, | en |
dc.relation.page | 262 | |
dc.identifier.doi | 10.6342/NTU202100382 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2021-02-05 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0202202114525700.pdf 目前未授權公開取用 | 20.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。