Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65927
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂廷璋(Ting-Jang Lu)
dc.contributor.authorYu-Hsuan Chuangen
dc.contributor.author莊予瑄zh_TW
dc.date.accessioned2021-06-17T00:15:34Z-
dc.date.available2025-02-17
dc.date.copyright2020-02-17
dc.date.issued2020
dc.date.submitted2020-02-13
dc.identifier.citation郭巧妤. 糙米化學組成及其非消化水溶性多醣結構特徵. 臺灣大學, 2017.
Thermo Electron Corporation, Finnigan LXQ Hardware Manual 97055-97043 Revision B 2006, 41-44
Additives, E. P. o. F.; Food, N. S. a. t.; Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Frutos, M. J.; Galtier, P.; Gott, D.; Gundert‐Remy, U.; Lambré, C., Re‐evaluation of konjac gum (E 425 i) and konjac glucomannan (E 425 ii) as food additives. EFSA Journal 2017, 15, e04864.
Al‐Ghazzewi, F. H.; Khanna, S.; Tester, R. F.; Piggott, J., The potential use of hydrolysed konjac glucomannan as a prebiotic. Journal of the Science of Food and Agriculture 2007, 87, 1758-1766.
Al‐Ghazzewi, F. H.; Tester, R. F., Efficacy of cellulase and mannanase hydrolysates of konjac glucomannan to promote the growth of lactic acid bacteria. Journal of the Science of Food and Agriculture 2012, 92, 2394-2396.
Aspinall, G., Structural chemistry of the hemicelluloses. In Advances in carbohydrate chemistry, Elsevier: 1959; Vol. 14, pp 429-468.
Biermann, C. J.; McGinnis, G. D., Analysis of Carbohydrates by GLC and MS. CRC Press: 1988.
Blibech, M.; Chaari, F.; Bhiri, F.; Dammak, I.; Ghorbel, R. E.; Chaabouni, S. E., Production of manno-oligosaccharides from locust bean gum using immobilized Penicillium occitanis mannanase. Journal of Molecular Catalysis B: Enzymatic 2011, 73, 111-115.
Bååth, J. A.; Martínez-Abad, A.; Berglund, J.; Larsbrink, J.; Vilaplana, F.; Olsson, L., Mannanase hydrolysis of spruce galactoglucomannan focusing on the influence of acetylation on enzymatic mannan degradation. Biotechnology for biofuels 2018, 11, 114.
Brokl, M.; Hernández-Hernández, O.; Soria, A. C.; Sanz, M. L., Evaluation of different operation modes of high performance liquid chromatography for the analysis of complex mixtures of neutral oligosaccharides. Journal of Chromatography A 2011, 1218, 7697-7703.
Burton, R. A.; Fincher, G. B., Evolution and development of cell walls in cereal grains. Frontiers in plant science 2014, 5, 456.
Chauve, M.; Mathis, H.; Huc, D.; Casanave, D.; Monot, F.; Ferreira, N. L., Comparative kinetic analysis of two fungal β-glucosidases. Biotechnology for Biofuels 2010, 3, 3.
Cheng, J.-J.; Chao, C.-H.; Chang, P.-C.; Lu, M.-K., Studies on anti-inflammatory activity of sulfated polysaccharides from cultivated fungi Antrodia cinnamomea. Food Hydrocolloids 2016, 53, 37-45.
Chow, J. T.-N.; Williamson, D. A.; Yates, K. M.; Goux, W. J., Chemical characterization of the immunomodulating polysaccharide of Aloe vera L. Carbohydr. Res. 2005, 340, 1131-1142.
Dakia, P. A.; Blecker, C.; Robert, C.; Wathelet, B.; Paquot, M., Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocolloids 2008, 22, 807-818.
Davies, G. J.; Wilson, K. S.; Henrissat, B., Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochemical Journal 1997, 321, 557.
Dea, I. C.; Morrison, A., Chemistry and interactions of seed galactomannans. In Advances in carbohydrate chemistry and biochemistry, Elsevier: 1975; Vol. 31, pp 241-312.
Dey, P. M., Biochemistry of plant galactomannans. In Advances in Carbohydrate Chemistry and Biochemistry, Elsevier: 1978; Vol. 35, pp 341-376.
Dias, F. M.; Vincent, F.; Pell, G.; Prates, J. A.; Centeno, S.; Tailford, L. E.; Ferreira, L. M.; Fontes, C. M.; Davies, G. J.; Gilbert, H. J., Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A. Journal of Biological Chemistry 2004.
Domon, B.; Costello, C. E., A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate journal 1988, 5, 397-409.
Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P.; Smith, F., Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350-356.
Fernández, P. V.; Estevez, J. M.; Cerezo, A. S.; Ciancia, M., Sulfated β-d-mannan from green seaweed Codium vermilara. Carbohydrate Polymers 2012, 87, 916-919.
Ferreira, S. S.; Passos, C. P.; Madureira, P.; Vilanova, M.; Coimbra, M. A., Structure–function relationships of immunostimulatory polysaccharides: A review. Carbohydrate polymers 2015, 132, 378-396.
Gübitz, G.; Hayn, M.; Sommerauer, M.; Steiner, W., Mannan-degrading enzymes from Sclerotium rolfsii: characterisation and synergism of two endo β-mannanases and a β-mannosidase. Bioresource technology 1996, 58, 127-135.
Garozzo, D.; Giuffrida, M.; Impallomeni, G.; Ballistreri, A.; Montaudo, G., Determination of linkage position and identification of the reducing end in linear oligosaccharides by negative ion fast atom bombardment mass spectrometry. Anal. Chem. 1990, 62, 279-286.
Goycoolea, F.; Morris, E.; Gidley, M., Viscosity of galactomannans at alkaline and neutral pH: evidence of ‘hyperentanglement’in solution. Carbohydrate Polymers 1995, 27, 69-71.
Gu, J.; Hiraga, T.; Wada, Y., Electrospray ionization mass spectrometry of pyridylaminated oligosaccharide derivatives: Sensitivity and in‐source fragmentation. Biological mass spectrometry 1994, 23, 212-217.
Haltiwanger, R. S., Symbol Nomenclature for Glycans (SNFG). Glycobiology 2016, 26, 217-217.
Hamman, J., Composition and applications of Aloe vera leaf gel. Molecules 2008, 13, 1599-1616.
Hardman, M.; Makarov, A. A., Interfacing the orbitrap mass analyzer to an electrospray ion source. Anal. Chem. 2003, 75, 1699-1705.
Harvey, D. J.; Bateman, R. H.; Green, M. R., High‐energy collision‐induced fragmentation of complex oligosaccharides ionized by matrix‐assisted laser desorption/ionization mass spectrometry. Journal of mass spectrometry 1997, 32, 167-187.
Hsu, H. C.; Liew, C. Y.; Huang, S.-P.; Tsai, S.-T.; Ni, C.-K., Simple approach for de novo structural identification of mannose trisaccharides. Journal of The American Society for Mass Spectrometry 2018a, 29, 470-480.
Hsu, H. C.; Liew, C. Y.; Huang, S.-P.; Tsai, S.-T.; Ni, C.-K., Simple method for de novo structural determination of underivatised glucose oligosaccharides. Scientific reports 2018b, 8, 5562.
Ikonomou, M. G.; Blades, A. T.; Kebarle, P., Electrospray-ion spray: a comparison of mechanisms and performance. Anal. Chem. 1991a, 63, 1989-1998.
Ikonomou, M. G.; Blades, A. T.; Kebarle, P., Electrospray-ion spray: a comparison of mechanisms and performance. Anal. Chem. Insights 1991b, 63, 1989-1998.
Jindou, S.; Karita, S.; Fujino, E.; Fujino, T.; Hayashi, H.; Kimura, T.; Sakka, K.; Ohmiya, K., α-Galactosidase Aga27A, an enzymatic component of the Clostridium josui cellulosome. Journal of bacteriology 2002, 184, 600-604.
Katsuraya, K.; Okuyama, K.; Hatanaka, K.; Oshima, R.; Sato, T.; Matsuzaki, K., Constitution of konjac glucomannan: chemical analysis and 13C NMR spectroscopy. Carbohydrate polymers 2003, 53, 183-189.
Kwon, H.; Kim, J., High performance liquid chromatography of mono-and oligosaccharides derivatized with p-aminobenzoic ethyl ester on a C18-bonded silica column. Journal of Liquid Chromatography & Related Technologies 1995, 18, 1437-1449.
Lazaridou, A.; Biliaderis, C. G.; Izydorczyk, M. S., Structural characteristics and rheological properties of locust bean galactomannans: a comparison of samples from different carob tree populations. Journal of the Science of Food and Agriculture 2001, 81, 68-75.
Lee, J. S.; Kwon, J. S.; Yun, J. S.; Pahk, J. W.; Shin, W. C.; Lee, S. Y.; Hong, E. K., Structural characterization of immunostimulating polysaccharide from cultured mycelia of Cordyceps militaris. Carbohydrate Polymers 2010, 80, 1011-1017.
Leung, M.; Liu, C.; Zhu, L.; Hui, Y.; Yu, B.; Fung, K., Chemical and biological characterization of a polysaccharide biological response modifier from Aloe vera L. var. chinensis (Haw.) Berg. Glycobiology 2004, 14, 501-510.
Leung, M.; Liu, C.; Koon, J.; Fung, K., Polysaccharide biological response modifiers. Immunology letters 2006, 105, 101-114.
Liepman, A. H.; Nairn, C. J.; Willats, W. G.; Sørensen, I.; Roberts, A. W.; Keegstra, K., Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants. Plant Physiol. 2007, 143, 1881-1893.
Maeda, M.; Shimahara, H.; Sugiyama, N., Detailed examination of the branched structure of konjac glucomannan. Agricultural and Biological Chemistry 1980, 44, 245-252.
Mod, R. R.; Conkerton, E. J.; Ory, R. L.; Normand, F. L., Hemicellulose composition of dietary fiber of milled rice and rice bran. Journal of agricultural and food chemistry 1978, 26, 1031-1035.
Moreira, L., An overview of mannan structure and mannan-degrading enzyme systems. Applied microbiology and biotechnology 2008, 79, 165.
Ni, Y.; Turner, D.; Yates, K.; Tizard, I., Isolation and characterization of structural components of Aloe vera L. leaf pulp. International immunopharmacology 2004, 4, 1745-1755.
Nishinari, K., Konjac glucomannan. In Developments in food science, Elsevier: 2000; Vol. 41, pp 309-330.
Onishi, N.; Kawamoto, S.; Nishimura, M.; Nakano, T.; Aki, T.; Shigeta, S.; Shimizu, H.; Hashimoto, K.; Ono, K., A new immunomodulatory function of low-viscous konjac glucomannan with a small particle size: its oral intake suppresses spontaneously occurring dermatitis in NC/Nga mice. International archives of allergy and immunology 2005, 136, 258-265.
Page, J. S.; Kelly, R. T.; Tang, K.; Smith, R. D., Ionization and transmission efficiency in an electrospray ionization–mass spectrometry interface. J. Am. Soc. Mass Spectrom. 2007, 18, 1582-1590.
Perera, N.; Yang, F. L.; Chang, C. M.; Lu, Y. T.; Zhan, S. H.; Tsai, Y. T.; Hsieh, J. F.; Li, L. H.; Hua, K. F.; Wu, S. H., Galactomannan from Antrodia cinnamomea Enhances the Phagocytic Activity of Macrophages. Org. Lett. 2017, 19, 3486-3489.
Pettolino, F. A.; Walsh, C.; Fincher, G. B.; Bacic, A., Determining the polysaccharide composition of plant cell walls. Nat. Protoc. 2012, 7, 1590-1607.
Popa, V. I.; Spiridon, I., Hemicelluloses: Structure. Polysaccharides: structural diversity and functional versatility 1998, 297.
Puls, J., Chemistry of hemicelluloses: relationship between hemicellulose structure and enzymes required for hydrolysis. Hemicellulose and hemicellulase 1993.
Qian, W.-J.; Jacobs, J. M.; Liu, T.; Camp, D. G.; Smith, R. D., Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications. Mol. Cell. Proteomics 2006, 5, 1727-1744.
Ramesh, H.; Yamaki, K.; Ono, H.; Tsushida, T., Two-dimensional NMR spectroscopic studies of fenugreek (Trigonella foenum-graecum L.) galactomannan without chemical fragmentation. Carbohydrate polymers 2001, 45, 69-77.
Ramesh, H.; Yamaki, K.; Tsushida, T., Effect of fenugreek (Trigonella foenum-graecum L.) galactomannan fractions on phagocytosis in rat macrophages and on proliferation and IgM secretion in HB4C5 cells. Carbohydrate polymers 2002, 50, 79-83.
Rocklin, R. D.; Pohl, C. A., Determination of carbohydrates by anion exchange chromatography with pulsed amperometric detection. J. Liq. Chromatogr. 1983, 6, 1577-1590.
Rodríguez-Gacio, M. d. C.; Iglesias-Fernández, R.; Carbonero, P.; Matilla, Á. J., Softening-up mannan-rich cell walls. Journal of experimental botany 2012, 63, 3976-3988.
Ruhaak, L. R.; Deelder, A. M.; Wuhrer, M., Oligosaccharide analysis by graphitized carbon liquid chromatography–mass spectrometry. Analytical and bioanalytical chemistry 2009, 394, 163-174.
Saunders, R., Rice bran: composition and potential food uses. Food Reviews International 1985, 1, 465-495.
Schepetkin, I. A.; Quinn, M. T., Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. International immunopharmacology 2006, 6, 317-333.
Shallom, D.; Shoham, Y., Microbial hemicellulases. Current opinion in microbiology 2003, 6, 219-228.
Shao, Y.; Lin, A. H.-M., Improvement in the quantification of reducing sugars by miniaturizing the Somogyi-Nelson assay using a microtiter plate. Food Chem. 2018, 240, 898-903.
Shi, X.-D.; Nie, S.-P.; Yin, J.-Y.; Que, Z.-Q.; Zhang, L.-J.; Huang, X.-J., Polysaccharide from leaf skin of Aloe barbadensis Miller: Part I. Extraction, fractionation, physicochemical properties and structural characterization. Food Hydrocolloids 2017, 73, 176-183.
Shibuya, N.; Iwasaki, T., Polysaccharides and glycoproteins in the rice endosperm cell wall. Agricultural and Biological Chemistry 1978, 42, 2259-2266.
Shimahara, H.; Suzuki, H.; Sugiyama, N.; Nisizawa, K., Isolation and characterization of oligosaccharides from an enzymic hydrolysate of konjac glucomannan. Agricultural and Biological Chemistry 1975, 39, 293-299.
Simões, J.; Madureira, P.; Nunes, F. M.; do Rosário Domingues, M.; Vilanova, M.; Coimbra, M. A., Immunostimulatory properties of coffee mannans. Molecular nutrition & food research 2009, 53, 1036-1043.
Simões, J.; Nunes, F. M.; Maria do Rosário, M. D.; Coimbra, M. A., Structural features of partially acetylated coffee galactomannans presenting immunostimulatory activity. Carbohydrate polymers 2010, 79, 397-402.
Simões, J.; Nunes, F. M.; Domingues, M. R.; Coimbra, M. A., Demonstration of the presence of acetylation and arabinose branching as structural features of locust bean gum galactomannans. Carbohydrate polymers 2011, 86, 1476-1483.
Simões, J.; Nunes, F. M.; Domingues, P.; Coimbra, M. A.; Domingues, M. R., Mass spectrometry characterization of an Aloe vera mannan presenting immunostimulatory activity. Carbohydrate polymers 2012, 90, 229-236.
Sims, I. M.; Carnachan, S. M.; Bell, T. J.; Hinkley, S. F., Methylation analysis of polysaccharides: Technical Advice. Carbohydrate Polymers 2018.
Smith, F., The constitution of carob gum. Journal of the American Chemical Society 1948, 70, 3249-3253.
Somogyi, M., A new reagent for the determination of sugars. Journal of Biological Chemistry 1945, 160, 61-68.
Srivastava, P. K.; Kapoor, M., Metal-dependent thermal stability of recombinant endo-mannanase (ManB-1601) belonging to family GH 26 from Bacillus sp. CFR1601. Enzyme and microbial technology 2016, 84, 41-49.
Srivastava, P. K.; Kapoor, M., Production, properties, and applications of endo-β-mannanases. Biotechnology advances 2017, 35, 1-19.
Srivastava, P. K.; Panwar, D.; Prashanth, K. H.; Kapoor, M., Structural characterization and in vitro fermentation of β-mannooligosaccharides produced from locust bean gum by GH-26 endo-β-1, 4-mannanase (ManB-1601). Journal of agricultural and food chemistry 2017, 65, 2827-2838.
Syage, J.; Short, L.; Cai, S., Atmospheric pressure photoionization—the second source for LC-MS. LCGC North America 2008, 26, 286-296.
Tailford, L. E.; Ducros, V. M.-A.; Flint, J. E.; Roberts, S. M.; Morland, C.; Zechel, D. L.; Smith, N.; Bjornvad, M. E.; Borchert, T. V.; Wilson, K. S., Understanding how diverse β-mannanases recognize heterogeneous substrates. Biochemistry 2009, 48, 7009-7018.
Takahashi, R.; Kusakabe, I.; Kusama, S.; Sakurai, Y.; Murakami, K.; Maekawa, A.; Suzuki, T., Structures of glucomanno-oligosaccharides from the hydrolytic products of konjac glucomannan produced by a β-mannanase from Streptomyces sp. Agricultural and biological chemistry 1984, 48, 2943-2950.
Timell, T., Wood hemicelluloses: part II. In Advances in carbohydrate chemistry, Elsevier: 1965; Vol. 20, pp 409-483.
Timell, T., Recent progress in the chemistry of wood hemicelluloses. Wood Science and Technology 1967, 1, 45-70.
Verhertbruggen, Y.; Falourd, X.; Sterner, M.; Guillon, F.; Girousse, C.; Foucat, L.; Le Gall, S.; Chateigner-Boutin, A.-L.; Saulnier, L., Challenging the putative structure of mannan in wheat (Triticum aestivum) endosperm. Carbohydrate Polymers 2019, 224, 115063.
Wang, H.; Luo, H.; Li, J.; Bai, Y.; Huang, H.; Shi, P.; Fan, Y.; Yao, B., An α-galactosidase from an acidophilic Bispora sp. MEY-1 strain acts synergistically with β-mannanase. Bioresource technology 2010, 101, 8376-8382.
Wang, J.; Nie, S.; Chen, S.; Phillips, A. O.; Phillips, G. O.; Li, Y.; Xie, M.; Cui, S. W., Structural characterization of an α-1, 6-linked galactomannan from natural Cordyceps sinensis. Food Hydrocolloids 2018, 78, 77-91.
Westphal, Y.; Schols, H.; Voragen, A.; Gruppen, H., Introducing porous graphitized carbon liquid chromatography with evaporative light scattering and mass spectrometry detection into cell wall oligosaccharide analysis. Journal of Chromatography A 2010, 1217, 689-695.
Wrigley, C. W.; Corke, H.; Seetharaman, K.; Faubion, J., Encyclopedia of food grains. Academic Press: 2015.
Xiao, Z.; Zhang, X.; Gregg, D. J.; Saddler, J. N. In Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates, Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO, 2004; Springer: 2004; pp 1115-1126.
Yamabhai, M.; Sak-Ubol, S.; Srila, W.; Haltrich, D., Mannan biotechnology: from biofuels to health. Critical reviews in biotechnology 2016, 36, 32-42.
Yu, X.; Li, Z.; Yu, M.; Yao, J.; Zhang, Y., Method for preparing glucan and mannan, glucan preparation and mannan preparation produced thereby and use thereof. In Google Patents: 2014.
Zhang, M.; Chen, X.-L.; Zhang, Z.-H.; Sun, C.-Y.; Chen, L.-L.; He, H.-L.; Zhou, B.-C.; Zhang, Y.-Z., Purification and functional characterization of endo-β-mannanase MAN5 and its application in oligosaccharide production from konjac flour. Applied microbiology and biotechnology 2009, 83, 865-873.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65927-
dc.description.abstract甘露聚醣依其醣結構骨幹可分為四大類群,包含直線型甘露聚糖、葡萄甘露聚糖及分支型半乳甘露聚糖、半乳葡萄甘露聚糖。由於甘露聚醣具有醣組成與大分子量的結構複雜性,為了鑑別其骨幹的類型,需建立一個β-(1,4)鍵結甘露聚醣的結構重建模型。本研究利用三類骨幹特徵的直線型甘露聚糖、半乳甘露聚糖及葡萄甘露聚糖,以Endo-β-(1,4)-mannanase酵素將其轉換為保留骨幹特徵的甘露寡醣,再以高效能石墨化碳液相層析串聯質譜法將寡糖分子的異構物分離,及高能碰撞誘導解離後的二次質譜斷片模式進行特徵鍵結組成的結構解析,推導出3種直線型(1→4)鍵結同質的甘露寡醣、4種直線型(1→4)鍵結異質的葡萄甘露寡醣、及5種具有(1→6)鍵結分支的異質甘露寡醣,並輔以酵素轉換率進行分支型甘露聚醣骨幹特徵的推論。本研究所發展之重建模型可用於分支型骨幹的甘露聚醣結構特徵鑑別。zh_TW
dc.description.abstractMannans are classified into four subfamilies, namely, linear mannan, glucomannan, galactomannan and galactoglucomannan. Because of complexity in sugar composition and high molecular weight, it is harder to identify backbone structure in mannans. Linear mannan, galactomannan and glucomannan were conducted for this study so as to identify backbone structure in mannans. Endo-β-(1,4)-mannanase was used to convert β-(1,4)-linkage backbone mannan into characteristic mannooligosaccharides, and then high performance porous graphitic carbon chromatography tandem mass spectrometry (PGC HPLC-MS/MS) was used to analyze oligosaccharide isomers and linkage fragmentation pattern. 3 kinds of linear homo-mannooligosaccharides, 4 kinds of linear hetero-mannooligosaccharides, and 5 kinds of branching hetero-mannooligosaccharides were determined in this study. The results showed that backbone of galactomannan can be identified by branching percentage. This approach can be used as backbone structure analysis in galactomannan.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:15:34Z (GMT). No. of bitstreams: 1
ntu-109-R06641014-1.pdf: 8984768 bytes, checksum: ff57f9aae8ccd0041ab8eb91b0620d8e (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 i
Abstract iii
目錄 v
圖目錄 ix
表目錄 xviii
第一章、 前言 1
第二章、 文獻回顧 2
2.1 甘露聚醣 (Mannans) 2
2.1.1 直線型甘露聚糖 (Linear mannan) 3
2.1.2 葡萄甘露聚糖 (Glucomannan) 4
2.1.3 半乳甘露聚糖 (Galactomannan) 4
2.1.4 半乳葡萄甘露聚糖 (Galactoglucomannan) 4
2.2 甘露聚醣水解酵素 5
2.2.1 內切甘露糖苷酶 (Endo-β-mannanase) 7
2.2.2 葡萄糖苷酶 (β-Glucosidase) 8
2.2.3 半乳醣酶 (α-Galactosidase) 9
2.2.4 外切甘露糖苷酶 (Exo-β-mannosidase) 9
2.2.5 乙醯甘露糖酯酶 (Acetyl mannan esterases) 9
2.3 各式來源之甘露聚醣 10
2.3.1 植物來源之甘露聚醣 10
2.3.1.1 蒟蒻膠 (Konjac gum) 10
2.3.1.2 刺槐豆膠 (Locust bean gum) 11
2.3.1.3 蘆薈 (Aloe vera) 12
2.3.1.4 咖啡 (Coffee) 14
2.3.1.5 葫蘆巴 (Fenugreek) 14
2.3.2 真菌來源之甘露聚醣 15
2.3.2.1 蛹蟲草 (Cordyceps militaris) 15
2.3.2.2 牛樟芝 (Antrodia cinnamomea) 16
2.3.3 穀類來源之甘露聚醣 17
2.3.3.1 稻米 17
2.3.3.2 小麥 21
2.4 多醣結構解析 22
2.4.1 氣相層析串聯質譜儀 22
2.4.2 甲基化分析 22
2.5 寡醣結構解析 23
2.5.1 高效能液相層析法 23
2.5.2 適用醣分子化合物分析的層析系統 23
2.5.2.1 親水作用液相層析 24
2.5.2.2 逆相層析 24
2.5.2.3 石墨化碳液相層析 25
2.5.3 質譜應用於醣類結構解析 26
2.6 寡醣質譜斷片離子分析系統 32
2.6.1 寡醣碎片離子命名方式 32
2.6.2 寡醣碎片離子分析方法 34
第三章、 實驗目的與研究架構 40
第四章、 材料與方法 41
4.1實驗材料 41
4.2試藥與儀器設備 42
4.2.1 化學藥劑與試劑 42
4.2.2 標準品 43
4.2.3 酵素 44
4.2.4 儀器設備 44
4.3樣品製備方法 47
4.3.1 糙米粉末製備 47
4.3.2 糙米不可消化水可溶多醣製備 47
4.3.3 酵素水解 48
4.3.4.1 酵素水解反應曲線測定 48
4.3.4.2 酵素水解轉換 48
4.4分析方法 49
4.4.1 總醣含量分析(Phenol-sulfuric acid method) 49
4.4.2 還原醣含量分析(Somogyi-Nelson method in microplate) 49
4.4.3 葡萄糖當量計算(Dextrose equivalent) 50
4.4.4 以高效能液相陰離子交換層析進行單醣組成分析 51
4.4.5 以高效能分子篩層析進行分子量分布分析 52
4.4.6 以氣相層析串聯質譜儀進行甲基化單醣組成與醣苷鍵結分析 52
4.4.7 使用液相石墨化碳管柱層析串聯質譜儀分析甘露寡醣 54
第五章、 結果與討論 59
5.1 蒟蒻多醣之醣組成 59
5.1.1 蒟蒻多醣之單醣組成分析 59
5.1.2 蒟蒻多醣之醣苷鍵結分析 59
5.2 刺槐豆膠多醣之醣組成 61
5.2.1 刺槐豆膠多醣之單醣組成分析 61
5.2.2 刺槐豆膠多醣之醣苷鍵結分析 61
5.3 蘆薈多醣之醣組成 63
5.3.1 蘆薈多醣之單醣組成分析 63
5.3.2 蘆薈多醣之醣苷鍵結分析 63
5.4 各式甘露聚醣經Endo-β-(1,4)-mannanase之酵素轉換率 65
5.4.1 半乳甘露聚糖 (刺槐豆膠)經Endo-β-mannanase之酵素轉換 65
5.4.2 葡萄甘露聚糖 (蒟蒻膠)經Endo-β-mannanase之酵素轉換 66
5.5 酵素轉換各式來源甘露寡醣之分子量分布 68
5.6 預測可經Endo-β-(1,4)-mannanase酵素轉換所得之甘露寡醣型態 70
5.7 各式來源甘露寡醣之結構組成比較 74
5.7.1 比較各式甘露寡醣二糖異構物的結構輪廓 74
5.7.2 比較各式甘露寡醣三醣異構物的結構輪廓 80
5.7.3 比較各式甘露寡醣四醣異構物的結構輪廓 84
5.7.4 比較各式甘露寡醣五醣異構物的結構輪廓 91
第六章、 結論 99
第七章、 參考文獻 100
第八章、 附錄 108
8.1各式甘露聚醣之二次質譜圖與結構斷裂碎片離子示意圖 108
8.1.1 商業化蒟蒻來源甘露寡醣 (ManOS-KGc) 108
8.1.1.1 ManOS-KGc之二醣異構物結構解析 109
8.1.1.2 ManOS-KGc之三醣異構物結構解析 114
8.1.1.3 ManOS-KGc之四醣異構物結構解析 116
8.1.1.4 ManOS-KGc之五醣異構物結構解析 122
8.1.2 蒟蒻膠來源甘露寡醣 (ManOS-KGl) 129
8.1.2.1 ManOS-KGl之二醣異構物結構解析 129
8.1.2.2 ManOS-KGl之三醣異構物結構解析 137
8.1.2.3 ManOS-KGl之四醣異構物結構解析 142
8.1.2.4 ManOS-KGl之五醣異構物結構解析 152
8.1.3 刺槐豆膠來源甘露寡醣 (ManOS-LBG) 155
8.1.3.1 ManOS-LBG之二醣異構物結構解析 155
8.1.3.2 ManOS-LBG之三醣異構物結構解析 157
8.1.3.3 ManOS-LBG之四醣異構物結構解析 160
8.1.3.4 ManOS-LBG之五醣異構物結構解析 164
8.1.4 蘆薈來源甘露寡醣 (ManOS-AV) 168
8.1.4.1 ManOS-AV之二醣異構物結構解析 168
8.1.4.2 ManOS-AV之三醣異構物結構解析 171
8.1.4.3 ManOS-AV之四醣異構物結構解析 176
8.2 甘露寡醣分析平台之品質管制 183
8.3 糙米中不可消化水可溶多醣之醣組成 188
8.3.1 糙米不可消化水可溶多醣之單醣組成分析 188
8.3.2 糙米不可消化水可溶多醣之醣苷鍵結分析 190
dc.language.isozh-TW
dc.subject酵素轉換zh_TW
dc.subject石墨化碳液相層析串聯質譜zh_TW
dc.subject甘露聚醣zh_TW
dc.subject結構組成分析zh_TW
dc.subject甘露寡糖zh_TW
dc.subjectPGC HPLC-MS/MSen
dc.subjectMannansen
dc.subjectMannooligosaccharidesen
dc.subjectEnzymatic conversionen
dc.subjectStructural composition analysisen
dc.title以酵素轉換結合高效能液相層析串聯質譜法建立甘露聚醣之特徵結構分析平台zh_TW
dc.titleCharacterization of mannans structure by
enzymatic-HPLC-MS method
en
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張永和,劉?睿,魏國晉,楊麗嬋
dc.subject.keyword甘露聚醣,甘露寡糖,酵素轉換,結構組成分析,石墨化碳液相層析串聯質譜,zh_TW
dc.subject.keywordMannans,Mannooligosaccharides,Enzymatic conversion,Structural composition analysis,PGC HPLC-MS/MS,en
dc.relation.page221
dc.identifier.doi10.6342/NTU202000413
dc.rights.note有償授權
dc.date.accepted2020-02-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
8.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved