請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65814
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林唯芳 | |
dc.contributor.author | Che-Pu Hsu | en |
dc.contributor.author | 許哲溥 | zh_TW |
dc.date.accessioned | 2021-06-17T00:12:42Z | - |
dc.date.available | 2016-07-20 | |
dc.date.copyright | 2012-07-20 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-11 | |
dc.identifier.citation | [1] H. F. Lu, F. Li, G. Liu, Z. G. Chen, D. W. Wang, H. T. Fang, G. Q. Lu, Z. H. Jiang, H. M. Cheng, “Amorphous TiO2 Nanotube Arrays for Low-Temperature Oxygen Sensors,” 2008, Nanotechnology, 19, 405504.
[2] W. Gopel, G. Rocker, “Intrinsic Defects of TiO2(110): Interaction with Chemisorbed O2, H2, CO, and CO2,” 1983, Physical Review B, 28, 3427. [3] W. J. Fleming, “Physical Principles Governing Nonideal Behavior of the Zirconia Oxygen Sensor,” 1977, J. Electrochem. Soc., 124, 21. [4] L. Gao, Q. Li, Z. Song, J. Wang, “Preparation of Nano-Scale Titania Thick Film and its Oxygen Sensitivity,” 2000, Sensors and Actuators B, 71, 179. [5] M. S. A. Abdou, F. P. Orfino, Z. W. Xie, M. J. Deen, S. Holdcroft, “Reversible Charge Transfer Complexes Between Molecular Oxygen and Poly(3-alkylthiophene)s,” 1994, Adv. Mater., 6, 838. [6] J. Riegel, H. Neumann, H. M. Wiedenmann, “Exhaust Gas Sensors for Automotive Emission Control,” 2002, Solid State Ionics, 152, 783. [7] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, “Enhanced Photocleavage of Water Using Titania Nanotube Arrays,” 2005, Nano Lett., 5, 191. [8] S. K. Mohapatra, M. Misra, V. K. Mahajan, K. S. Raja, “Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode, ” 2007, J. Phys. Chem. C, 111, 8677. [9] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells,” 2006, Nano Lett., 6, 215. [10] M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, B. Hardin, C. A. Grimes, “Backside Illuminated Dye-Sensitized Solar Cells Based on Titania Nanotube Array Electrodes,” 2006, Nanotechnology, 17, 1446. [11] C. A. Grimes, “Synthesis and Application of Highly Ordered Arrays of TiO2 Nanotubes,” 2007, J. Mater. Chem., 17, 1451. [12] M. Miyauchi, H. Tokudome, Y. Toda, T. Kamiya, H. Hosono, “Electron Field Emission from TiO2 Nanotube Arrays Synthesized by Hydrothermal Reaction,” 2006, Appl. Phys. Lett., 89, 043114. [13] H. Zhang, G. R. Li, L. P. An, T. Y. Yan, X. P. Gao, H. Y. Zhu, “Electrochemical Lithium Storage of Titanate and Titania Nanotubes and Nanorods,” 2007, J. Phys. Chem. C, 111, 6143. [14] O. K. Varghese, G. K. Mor, C. A. Grimes, M. Paulose, N. Mukherjee, “A Titania Nanotube-Array Room-Temperature Sensor for Selective Detection of Hydrogen at Low Concentrations,” 2004, J. Nanosci. Nanotechnol., 4, 733. [15] G. Liu, F. Li, D. W. Wang, D. M. Tang, C. Liu, X. L. Ma, G. Q. Lu, H. M. Cheng, “Electron Field Emission of a Nitrogen-Doped TiO2 Nanotube Array,” 2008, Nanotechnology, 19, 025606. [16] L. Gao, Q. Li, Z. Song, J. Wang, “Preparation of Nano-Scale Titania Thick Film and its Oxygen Sensitivity,” 2000, Sensors and Actuators B, 71, 179. [17] O. K. Varghese, D. W. Gong, M. Paulose, K. G. Ong, C. A. Grimes, “Hydrogen Sensing Using Titania Nanotubes,” 2003, Sensors and Actuators B, 93, 338. [18] V. Saxena, D. K. Aswal, M. Kaur, S. P. Koiry, S. K. Gupta, J. V. Yakhmi, “Enhanced NO2 Selectivity of Hybrid Poly(3-hexylthiophene): ZnO-Nanowire Thin Films,” 2007, Applied Physics Letters, 90, 043516. [19] I. V. Krivoshei, V. M. Skorobogatov, “Polyacetylene and Polyarylenes,” 1991, 8. [20] A. Weller, “The Exciplex,” 1975, Academic. [21] D. Rehm, A. Weller, “Bond Status and Fluorescent Spectra of Hetero-Excimers,” 1970, Z. Phys. Chem., 69, 183. [22] D. Rehm, “Spectroscopic Study of Heteroexcimers with Heterocyclic Aromatic Hydrocarbons as Electron Acceptors,” 1970, Z. Naturforsch, 25a, 1442. [23] H. T. Nagle, S. S. Schiffman, “The How and Why of Electronic Noses,” 1998, IEEE SPECTRUM, 22. [24] D.S. Lee, J. K. Jung, J. W. Lim, J. S. Huh, D. D. Lee, “Recognition of Volatile Organic Compounds Using SnO2 Sensor Array and Pattern Recognition Analysis,” 2001, Sensors and Actuators B, 77, 228. [25] N. I. Sax, R. J. Lewis, “Dangerous Properties of Industrial Materials,” 1989, Van Nostrand Reinhold, 7th. [26] K. Cammann, “Continuous Pollution Control by Chemical Sensors,” 1992, Sensors and Actuators B, 6, 19. [27] K. Persaud, G. Dodd, “Analysis of Discrimination Mechanisms in the Mammalian Olfactory System Using a Model Nose,” 1982, Nature, 299, 352. [28] D. R. Walt, “Electronic Noses Wake Up and Smell the Coffee,” 2005, Anal. Chem., 77, 45a. [29] J. Halova, O. Strouf, P. Zak, A. Sochozova, N. Uchida, T. Yuzuri, K. Sakakibara, M. Hirota, “QSAR of Catechol Analogs against Malignant Melanoma Using Fingerprint Descriptors,” 1998, Quant. Struct.-Act. Relat., 17, 37. [30] H. Autrum, V. Zwehl, “Die Spektrale Empfindlichkeit Einzelner Sehzellendes Bienenauges,” 1964, Zeitschrift fur Vergleichende Physiologie, 48, 357. [31] H. Ulmer, J. Mitrovics, G. Noetzel, U. Weimar, W. Gopel, “Odours and Flavours Identified with Hybrid Modular Sensor Systems,” 1997, Sensors and Actuators B, 43, 24. [32] M. Pardo, L. G. Kwong, G. Sberveglieri, K. Brubaker, J. F. Schneider, W. R. Penrose, J. R. Stetter, “Data Analysis for a Hybrid Sensor Array,” 2005, Sensors and Actuators B, 106, 136. [33] T. A. Dickinson, J. White, J. S. Kauer, D. R. Walt, “A Chemical-Detecting System Based on a Cross-Reactive Optical Sensor Array,” 1996, Nature, 382, 697. [34] K. S. Suslick, N. A. Rakow, A. Sen, “Colorimetric Sensor Arrays for Molecular Recognition,” 2004, Tetrahedron, 60, 11133. [35] K. S. Suslick, “An Optoelectronic Nose: 'Seeing' Smells by Means of Colorimetric Sensor Arrays,” 2004, MRS Bull., 29, 720. [36] C. S. Creaser, J. R. Griffiths, C. J. Bramwell, S. Noreen, C. A. Hill, C. L. P. Thomas, “Ion Mobility Spectrometry: A Review. Part 1. Structural Analysis by Mobility Measurement,” 2004, Analyst, 129, 984. [37] P. Mielle, F. Marquis, “An Alternative Way to Improve the Sensitivity of Electronic Olfactometers (Electronic Noses),” 1998, Semin. Food Anal., 3, 93. [38] E. J. Staples, “First Quantitatively Validated Electronic Nose for Environmental Testing of Air, Water, and Soil,” 2000, Abstr. Pap.-Am. Chem. Soc., 219, 236. [39] S. Zampolli, I. Elmi, J. Strurmann, S. Nicoletti, L. Dori, J. M. Nichols, “Selectivity Enhancement of Metal Oxide Gas Sensors Using a Micromachined Gas Chromatographic Column,” 2005, Sensors and Actuators B, 105, 400. [40] C. J. Lu, W. H. Steinecker, W. C. Tian, M. C. Oborny, J. M. Nichols, M. Agah, J. A. Potkay, H. K. L. Chan, J. Driscoll, R. D. Sacks, K. D. Wise, S. W. Pang, E. T. Zellers, “First-Generation Hybrid MEMS Gas Chromatograph,” 2005, Lab Chip, 5, 1123. [41] H. Kim, W. H. Steinecker, S. Reidy, G. R. Lambertus, A. A. Astle, K. Najafi, E. T. Zellers, L. P. Bernal, P. D. Washabaugh, K. D. Wise, “An Integrated Micro-Analytical System for Complex Vapor Mixtures,” 2007, Transducers IEEE, 1505. [42] T. A. T. G. van Kempen, W. J. Powers, A. L. Sutton, “Technical Note: Fourier Transform Infrared (FTIR) Spectroscopy as an Optical Nose for Predicting Odor Sensation,” 2002, J. Anim. Sci., 80, 1524. [43] D. Cozzolino, H. E. Smyth, M. Gishen, “Feasibility Study on the Use of Visible and Near-Infrared Spectroscopy Together with Chemometrics to Discriminate between Commercial White Wines of Different Varietal Origins,” 2003, J. Agric. Food Chem., 51, 7703. [44] S. Armenta, N. M. M. Coelho, R. Roda, S. Garrigues, A. de la Guardia, “Spectrofluorimetric Studies on the Binding of Salicylic Acid to Bovine Serum Albumin Using Warfarin and Ibuprofen as Site Markers with the Aid of Parallel Factor Analysisoriginal Research Article,” 2006, Anal. Chim. Acta, 580, 216. [45] W. Ma, C. Yang, X.Gong, K. Lee, A. J. Heeger, “Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology,” 2005, Adv. Funct. Mater., 15, 1617. [46] G. Li, V. Shrotruya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends,” 2005, Nature Material, 4, 864. [47] Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, J. R. Durrant, “Device Annealing Effect in Organic Solar Cells with Blends of Regioregular Poly(3-Hexylthiophene) and Soluble Fullerene,” 2005, Appl. Phys. Lett., 86, 063502. [48] V. D. Mihailetchi, H. Xie, B. de Boer, L. M. Popescu, J. C. Hummelen, P. W. M. Blom, L. J. A. Koster, “Origin of the Enhanced Performance in Poly(3-Hexylthiophene): [6,6]-Phenyl C61-Butyric Acid Methyl Ester Solar Cells upon Slow Drying of the Active Layer,” 2006, Appl. Phys. Lett., 89, 012107. [49] J. H. Park, J. S. Kim, J. H. Lee, W. H. Lee, K. Cho, “Annealing Solvent Solubility on the Performance of Poly(3-hexylthiophene)/Methanofullerene Solar Cells,” 2009, J. Phys. Chem. C, 113, 17579. [50] P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, R. H. Friend, “Effect of Interchain Interactions on the Absorption and Emission of Poly(3-Hexylthiophene),” 2003, Physical Review B, 67, 064203. [51] P. D. Cozzoli, A. Kornowski, H. Weller, “Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods,” 2003, J. Am. Chem. Soc., 125, 14539. [52] T. W. Zeng, Y. Y. Lin, C. W. Chen, W. F. Su, C. H. Chen, S. C. Liou, H. Y. Huang, “A Large Interconnecting Network within Hybrid MEH-PPV/TiO2 Nanorod Photovoltaic Devices,” 2006, Nanotechnology, 17, 5387. [53] R. S. Ruoff, D. S. Tse, R. Malhotra, D. C. Lorents, “Solubility of C60 in a Variety of Solvents,” 1993, J. Phys. Chem., 97, 3379. [54] United States Department of Labor. http://www.osha.gov/ | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65814 | - |
dc.description.abstract | 以共軛高分子為基底之混摻材料具備製程簡單、低價格以及可在室溫下操作等優點,所以我們嘗試將其應用在氣體感測之領域,希望可以達到高感應度、準確、快速反應、感測範圍廣與低成本等特性。於本論文第一部分之研究,主要是探討將二氧化鈦奈米桿(TiO2 nanorods)加入聚三己基噻吩中(poly(3-hexylthiophene), P3HT),並且調控此混摻材料之電性與表面形態以改善混摻材料的氧氣感測靈敏度。我們的結果呈現當聚三己基噻吩混摻二氧化鈦奈米桿時,其氧氣感應度相較於純的聚三己基噻吩為佳,所以我們針對聚三己基噻吩與二氧化鈦奈米桿混摻比例做最佳化,因為不同的混摻比例有可能改變表面形態、相分離行為以及表面電位等特性,最後我們發現最佳的混摻比例為:WP3HT/WTiO2 nanorods = 1/1時會有最高感應度,相較於純的聚三己基噻吩,得到的感應度約可增加2倍(感應度由1.2變為2.4)。此結果顯示聚三己基噻吩混摻二氧化鈦奈米桿於室溫氧氣感測具備相當大的潛力。
另一方面,在本研究的第二部分主要是針對揮發性有機化合物(volatile organic compounds, VOCs)感測器之探討。揮發性有機化合物大多具有毒性、易揮發及造成環境污染等特質,且在現今社會中大量用於工業製程中,使用量十分驚人。所以能夠準確並即時地監控這些揮發性有機物的儲存、運送與反應過程是一個很重要的課題,這將可以避免人員、財物以及環境受於揮發性有機物外洩的威脅。而在此我們利用聚三己基噻吩與碳六十衍生物[6,6]-phenyl-C61-butyric acid methyl ester(PC61BM)混和製作揮發性有機物感測器,它具備準確、快速反應、感測範圍廣與極低成本等特性,同時感測晶片安裝極為容易,可應用於管線接口、儲存槽或工廠等有潛在外洩危險之區域;另一個優點是由於它的反應時間快,可以在短時間內即時偵測到異常外洩,然後發出警告。本論文中主要研究此感測器之基礎特性以及將製程參數最佳化,製程參數的部分針對聚三己基噻吩分子量、旋鍍轉速以及混摻比例等參數進行調校,而從結果發現在分子量60 kD、轉速5000 r.p.m.以及混摻比例為:WP3HT/WPCBM = 1/1時之感應效果最好;之後我們利用最佳參數分別針對各種有機物做感應度、感應曲線與感應極限等測試,在感應度與感應曲線的部分,每種揮發性有機物都有它不同的感應特性,我們可從感應曲線得到擬合公式,往後實際上在感測應用時可以藉由我們建立起來的資料庫內尋找相似的化合物;而另一方面,感測器不會對水以及醇類產生反應,代表感測器在使用時訊號不會被水氣干擾,不須經過額外除水步驟。感應極限的部分,有8種揮發性有機物(n-Hexane、n-Octane、Toluene、o-Xylene、Chlorobenzene、Dichlorobenzene、Tetrachloroethylene以及Acetone)可以藉由我們的感測器在10分鐘內檢測到比美國勞工部之職業安全衛生署訂立的揮發物允許曝露濃度還低的濃度。在實體揮發物感測器製作部分,我們將此揮發性有機物感測器的構想於以實現,其可安裝於存放揮發性有機物的儲存槽和管線接縫處,可即時偵測是否有有機物洩漏,也有實際上進行測試,功能相當正常,且成本極為低廉。 | zh_TW |
dc.description.abstract | Conjugated polymers based materials are investigated as materials for gas sensing due to they offer the advantages of easy processing, low cost and room temperature operation. The incorporation of inorganic nanoparticles into conjugated polymers also enables tuning the properties of conjugated polymer based materials to improve the sensitivity as it is served as active material for oxygen sensor. We demonstrate by using the hybrid materials based on poly(3-hexyl thiophene)(P3HT) in combination with TiO2 nanorods, significant improvement in oxygen sensing properties is obtained as compared to pristine P3HT. Composition studies reveal that the oxygen sensor sensitivity is significantly increased with the increase of TiO2. The obtained improvement in oxygen sensing sensitivity is attributed to the change of surface properties, electronic properties and morphology of the hybrid materials with TiO2. The results suggest the hybrid P3HT:TiO2 nanorods is promising for resistive oxygen sensing at room temperature.
On the other hand, the present research demonstrates a proposed methodology for sensing volatile organic compounds (VOCs). Numerous VOCs which are typically toxic, volatile and environmental hazard are nowadays widely used in industrial production. To real-time and accurately monitoring the storage or transporting of VOCs is extremely important which protects human, property and environment from damage of VOCs leakage. The present work utilizes the poly(3-hexylthiophene) (P3HT)/ [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend to sensing various VOCs. The sensor is found to feature high sensitivity, high accuracy, quick response, broad sensing range, and very low cost. The developed sensor is ease of fabricating into a sensing chip and can be placed anywhere such as pipe joints and tank switches that are potential in VOCs leakage. Real-time sensing is achievable based on the instant response and thus alarm can be activated within few minutes for in time remedies. The research starts from investigation of fundamental knowledge, processing tuning, performance testing and finally extends to sensor device fabrication that can practically perform the sensing capability. The demonstrated results significantly advance the current sensor technology and are promising in commercial validity in near future for human and environmental safety concerns. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:12:42Z (GMT). No. of bitstreams: 1 ntu-101-R99527051-1.pdf: 2363372 bytes, checksum: 3d6628a94b012e3f2f4131d1aa49ed12 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
摘要 I Abstract III 目錄 V 圖目錄 VII 表目錄 IX 第一章 前言 1 1. 1 研究背景 1 1. 2 研究動機 2 1. 3 文獻回顧與基礎理論 4 1. 3. 1 氧氣感測器 4 1. 3. 1. 1 氧氣感測器基本原理 4 1. 3. 1. 2 高分子混摻無機奈米材料後的半導體性質變化 6 1. 3. 2 揮發性有機化合物感測器(volatile organic compounds sensor (VOCs sensor)) 9 第二章 實驗設備與方法 17 2. 1 實驗藥品 17 2. 2 使用儀器 18 2. 3 氧氣感測器之實驗步驟 19 2. 3. 1 P3HT/TiO2混摻材料 19 2. 3. 1. 1 高分子-P3HT 19 2. 3. 1. 2 無機奈米桿-TiO2 19 2. 3. 2 P3HT/TiO2混摻薄膜製程 20 2. 3. 3 電性觀察 21 2. 3. 3. 1 電阻量測 22 2. 3. 3. 2 表面電位量測 22 2. 3. 4 表面形態與微結構觀察 23 2. 4 揮發性有機化合物感測器之實驗步驟 23 2. 4. 1 P3HT與奈米粒子混摻材料 23 2. 4. 1. 1 高分子-P3HT 23 2. 4. 1. 2 奈米粒子-PCBM 24 2. 4. 2 P3HT與奈米粒子混合薄膜製程 25 2. 4. 3 光學量測(UV-Vis吸收量測) 26 2. 4. 4 膜厚量測 28 2. 4. 5 溶解度量測 28 第三章 結果與討論 32 3. 1 氧氣感測器 32 3. 1. 1 TiO2奈米桿合成與鑑定 32 3. 1. 2 TiO2混摻P3HT對氧氣感測器之效應 33 3. 1. 3 P3HT/TiO2混摻比例對氧氣感測器之影響 34 3. 1. 3. 1 元件氧氣靈敏度及回復性 34 3. 1. 3. 2 元件表面形態與電位 35 3. 1. 4 膜厚效應 37 3. 2 揮發性有機化合物感測器 37 3. 2. 1 不同高分子與數種奈米粒子混摻對揮發性有機物感測器之影響 38 3. 2. 2 P3HT分子量及感應層厚度對揮發性有機物感測器之影響 40 3. 2. 2. 1 分子量效應 40 3. 2. 2. 2 感應層膜厚效應 41 3. 2. 3 P3HT/PCBM混摻比例對揮發性有機化合物感測器之影響 43 3. 2. 4 揮發性有機物感測器對於不同有機物之感應度與感應時間曲線 45 3. 2. 5 揮發性有機物感測器對於低濃度有機物之感應極限 56 3. 2. 6 實體可攜式揮發性有機物感測器的設計、製作及效能 59 第四章 結論 63 4. 1 高分子-奈米粒子混摻材料在氧氣感測器之應用 63 4. 2 高分子-奈米粒子混摻材料在揮發性有機化合物感測器之應用 63 第五章 建議事項 65 第六章 參考文獻 66 | |
dc.language.iso | zh-TW | |
dc.title | 高分子-奈米粒子混摻材料製作之感測器 | zh_TW |
dc.title | Polymer – Nanoparticle Hybrid Materials for Sensors | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳學禮,薛景中,樊汝麗,吳明忠 | |
dc.subject.keyword | 感應器,揮發性有機物,高分子, | zh_TW |
dc.subject.keyword | sensor,polymer,hybrid,VOCs, | en |
dc.relation.page | 73 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-11 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 2.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。