Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65614
標題: 圖的四類分解問題之研究
Four Partition Problems of Graphs
作者: Hsiang-Chun Hsu
徐祥峻
指導教授: 張鎮華
關鍵字: 最先適配著色數,最大著色問題,平衡分解數,奇偶邊染色數,
first-fit chromatic numbers,max-coloring problem,balanced decomposition numbers,parity edge-chromatic numbers,
出版年 : 2012
學位: 博士
摘要: Partition problems of graphs are optimization problems about partitions of the vertex set V(G) or the edge set E(G) of a graph G under some additional restrictions. We begin this thesis by introducing some partition problems, basic definitions and notation in graph theory.
We study first-fit partitions and the first-fit chromatic numbers of graphs in Chapter 2. Given a family F of graphs satisfying that F is closed under taking induced subgraphs and e(G) ≤ dn(G) for any graph G ∈ F, where d is an arbitrary positive real number, we give an upper bound for the first-fit chromatic number of any graph in F. This result applies to d-degenerate graphs, planar graphs, and outerplanar graphs.
A vertex-weighted graph (G,c) is a graph G with a positive weight c(v) on each vertex v in G. In Chapter 3, we study the max-coloring problem of a vertex-weighted graph (G,c), which attempts to partition V(G) into independent sets such that the sum of the maximum weight in each independent set is minimum. This is a weighted version of the usual vertex coloring problem of a graph. We give an upper bound for the number of sets needed in an optimal vertex partition of a vertex-weighted r-partite graph. We then derive the Nordhaus-Gaddum inequality for vertex-weighted graphs. We also consider the properties of the perfection on vertex-weighted graphs.
A balanced coloring of a graph G is a partition {R,B,U} of V (G) with |R| = |B|, where R,B and U stand for the sets of red, blue and uncolored vertices in G, respectively. For a graph G with a balanced coloring {R,B,U}, an (R,B)-balanced
decomposition is a partition P of V(G) such that the induced subgraph G[S] is connected and |S ∩ R| = |S ∩ B| for any S in P. The balanced decomposition number f(G) of a graph G is the minimum integer l such that for any balanced coloring (R,B) of G there is an (R,B)-balanced decomposition P with |S| ≤ l for S ∈ P. In Chapter 4, we give a shorter proof of a known result that a graph G has balanced decomposition number 3 if and only if G is [n(G)/2]-connected and G is not a complete graph. We then extend the definition of a balanced coloring using two colors to k colors, and call the corresponding parameter the balanced k-decomposition number. We compute the balanced k-decomposition numbers of trees and complete multipartite graphs.
A parity edge-coloring of a graph G is an edge-coloring of G such that any path of positive length uses some color an odd number of times. A strong parity edge-coloring of a graph G is an edge-coloring of G such that any open walk uses some color an odd number of times. The parity (strong parity) edge-chromatic number of a graph G is the minimum number of colors used in a parity (strong parity) edge-coloring of G. In Chapter 5, we prove that, for 3 ≤ m ≤ n and n ≡ 0,−1,−2 (mod 2^{lceil lg m rceil}), the (strong) parity edge-chromatic number of the complete bipartite graph K_{m,n} is m◦n, the Hopf-Stiefel function, which is the least integer l such that C(l,k) is even for each k with l − n < k < m. We also consider the parity and the strong parity edge-chromatic numbers of the products of graphs.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65614
全文授權: 有償授權
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
780.91 kBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved