Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65614
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張鎮華
dc.contributor.authorHsiang-Chun Hsuen
dc.contributor.author徐祥峻zh_TW
dc.date.accessioned2021-06-16T23:54:00Z-
dc.date.available2012-07-27
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-18
dc.identifier.citation[1] N. Alon, Combinatorial nullstellensatz, Combin. Probab. Comput., 8 (1999), 7-29.
[2] M. Aouchiche and P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Applied Math., in press.
[3] M. Aste, F. Havet, C. Linhares-Sales, Grundy number and products of graphs, Discrete Math., 310 (2010), 1482-1490.
[4] M. Aste, F. Havet, C. Linhares-Sales, Grundy number and lexicographic product of graphs, in: Proceeding of International Conference on Relations, Orders and Graphs and Their Interaction with Computer Science, 2008.
[5] J. Balogh, S. G. Hartke, Q. Liu and G. Yu, On the first-fit chromatic number of graphs, SIAM J. Discrete Math., 22 (2008), 887-900.
[6] D. R. Bean, Effective coloration, J. Symbolic Logic, 41 (1976), 469-480.
[7] B. Bollobas and I. Leader, Sums in the grid, Discrete Math., 162 (1996), 31-48.
[8] G. R. Brightwell, H. A. Kierstead and W. T. Trotter, A Note on first-fit coloring of interval graphs, preprint, 2003.
[9] D. P. Bunde, K. Milans, D. B. West and H. Wu, Parity edge-coloring of graphs, arXiv:math/0602341v1.
[10] D. P. Bunde, K. Milans, D. B. West and H. Wu, Optimal strong parity edge-coloring of complete graphs, Combinatorica, 28 (2008), 625-632.
[11] D. P. Bunde, K. Milans, D. B. West and H. Wu, Parity and strong parity edge-coloring of graphs, Congressus Numer., 187 (2007), 193-213.
[12] G. J. Chang and H.-C. Hsu, First-fit chromatic numbers of d-degenerate graphs, Discrete Math., 312 (2012), 2088-2090.
[13] G. J. Chang and N. Narayanan, On a conjecture on the balanced decomposition number, submitted.
[14] V. Chvatal, Perfectly ordered graphs, Annals of Discrete Math., 21 (1984), 63-65.
[15] C. A. Christen and S. M. Selkow, Some perfect coloring properties of graphs, J. Combin. Theory, Ser. B, 27 (1979), 49-59.
[16] E. J. Cockayne, A. G. Thomason, Ordered colourings of graphs, J. Combin. Theory Ser. B, 32 (1982), 286-292.
[17] D. P. Dailey, Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete, Discrete Math., 30 (1980), 289-293.
[18] D. de Werra, M. Demange, B. Escoffier, J. Monnot and V. Th. Paschos, Weighted coloring on planar, bipartite and split graphs: complexity and approximation, Discrete Applied Math., 157 (2009), 819-832.
[19] D. de Werra, M. Demange, B. Escoffier, J. Monnot and V. Th. Paschos, Weighted coloring on planar, bipartite and split graphs: complexity and improved approximation, Lecture Notes in Comput. Sci., 3341 (2005), 859-862.
[20] M. Demange, D. de Werra, J. Monnot and V. Th. Paschos, Weighted node coloring: when stable sets are expensive, Lecture Notes in Comput. Sci., 2573 (2002), 114-125.
[21] S. Eliahou and M. Kervaire, Sumsets in vector spaces over finite fields, J. Number Theory, 71 (1998), 12-39.
[22] S. Eliahou and M. Kervaire, Old and new formulas for the Hopf-Stiefel and related functions, Expo. Math., 23 (2005), 127-145.
[23] L. Epstein and A. Levin, On the max coloring problem, Lecture Notes in Comput. Sci., 4927 (2008), 142-155.
[24] P. Erd˝ os, W. R. Hare, S. T. Hedetniemi and R. Laskar, On the equality of the Grundy and ochromatic numbers of a graph, J. Graph Theory, 11 (1987), 157-159.
[25] P. Erd˝ os, S. T. Hedetniemi, R. C. Laskar and G. C. E. Prins, On the equality of the partial Grundy and upper ochromatic numbers of graphs, Discrete Math., 272 (2003), 53-64.
[26] B. Escoffier, J. Monnot and V. Th. Paschos, Weighted coloring: further complexity and approximability results, Inform. Proc. Letters, 97 (2006), 98-103.
[27] S. Fujita and H. Liu, The balanced decomposition number and vertex connectivity, SIAM J. Discrete Math., 24 (2010), 1597-1616.
[28] S. Fujita and H. Liu, Further results on the balanced decomposition number, Congressus Numer., 202 (2010), 119-128.
[29] S. Fujita and H. Liu, The balanced decomposition number of TK4and series-parallel graphs, Discussiones Mathematicae Graph Theory, in press.
[30] S. Fujita and T. Nakamigawa, Balanced decomposition of a vertex-colored graph, Discrete Applied Math., 156 (2008), 3339-3344.
[31] Z. Furedi, A. Gyarfas, G. N. Sarkozy and S. Selkow, Inequalities for the first-fit chromatic number, J. Graph Theory, 59 (2008), 75-88.
[32] C. Germain and H. Kheddouci, Grundy coloring for power graphs, Electron. Notes Discrete Math., 15 (2003), 65-67.
[33] R. Govindarajan and S. Rengarajan, Buffer allocation in regular dataflow networks: an approach based on coloring circular-arc graphs, in: Proceedings of the 3rd International Conference on High-Performance Computing, 1996, 419-424.
[34] P. M. Grundy, Mathematics and games, Eureka, 2 (1939), 6-8.
[35] D. J. Guan and X. Zhu, A coloring problem for weighted graphs, Inform. Proc. Letters, 61 (1997), 77-81.
[36] H. Hopf, Ein topologischer Beitrag zur reellen Algebra, Comment. Math. Helv., 13 (1940/41), 219-239.
[37] H.-C. Hsu and G. J. Chang, Balanced k-decompositions of graphs, Discrete Applied Math., 160 (2012), 1639-1642.
[38] H.-C. Hsu and G. J. Chang, Graphs with small balanced decomposition numbers, submitted.
[39] H.-C. Hsu and G. J. Chang, Max-coloring of vertex-weighted graphs, submitted.
[40] H.-C. Hsu and G. J. Chang, Parity and strong parity edge-colorings of graphs, J. Comb. Optim., 2011, DOI: 10.1007/s10878-011-9398-y.
[41] I. Havel and J. Moravek, B-valuations of graphs, Czech. Math. J., 22 (1972), 338-351.
[42] S. Irani, Coloring inductive graphs on-line, Algorithmica, 11 (1994), 53-72.
[43] G. Karolyi, A note on the Hopf-Stiefel function, Europ. J. Combin., 27 (2006), 1135-1137.
[44] H. A. Kierstead, A polynomial time approximation algorithm for dynamic storage allocation, Discrete Math., 88 (1991), 231-237.
[45] H. A. Kierstead, The linearity of first-fit coloring of interval graphs, SIAM J. Discrete Math., 1 (1988), 526-530.
[46] H. A. Kierstead and J. Qin, Coloring interval graphs with first-fit, Discrete Math., 144 (1995), 47-57.
[47] D. W. Krumme, K. N. Venkataraman and G. Cybenko, Hypercube embedding is NP-complete, in: Proceedings of the 1st Conference Hypercube Multiprocessors, 1986, 148-157.
[48] N. S. Narayanaswamy and R. Subhash Babu, A Note on first-fit coloring of interval graphs, Order, 25(1)(2008), 49-53.
[49] E. A. Nordhaus and J. W. Gaddum, On complementary graphs, Amer. Math. Monthly, 63 (1956), 175-177.
[50] S. V. Pemmaraju, S. Penumatcha and R. Raman, Approximating interval coloring and max-coloring in chordal graphs, Lecture Notes in Comput. Sci., 3059 (2004), 399-416.
[51] S. V. Pemmaraju and R. Raman, Approximation algorithms for the max-coloring problem, Lecture Notes in Comput. Sci., 3580 (2005), 1064-1075.
[52] S. V. Pemmaraju, R. Raman and K. Varadarajan, Buffer minimization using max-coloring, in: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, 2004, 562-571.
[53] A. Plagne, Additive number theory sheds extra light on the Hopf-Stiefel ◦ function, L’Enseigenement Math., 49 (2003), 109-116.
[54] H. Shapiro, The embedding of graphs in cubes and the design of sequential relay circuits, Bell Telephone Laboratories Memorandum, July 1953.
[55] G. J. Simmons, On the ochromatic number of a graph, Congressus Numer., 40 (1983), 339-366.
[56] S. Smorodinsky, A note on the online first-fit algorithm for coloring k-inductive graphs, Inform. Proc. Letters, 109 (2008), 44-45.
[57] E. Stiefel,Uber Richtungsfelder in den projektiven Raumen und einen Satz aus der reellen Algebra, Comment. Math. Helv., 13 (1940/41), 201-218.
[58] A. Wagner and D. G. Corneil, Embedding trees in a hypercube is NP-complete, SIAM J. Computing, 19 (1990), 570-590.
[59] D. B. West, Introduction to Graph Theory, Prentice Hall, 2nd Ed., 2001.
[60] D. R. Woodall, Problem No. 4, Combinatorics, Proceedings of the British Combinatorial Conference 1973, London Math. Soc., Lecture Note Series 13, Cambridge University Press, 1974, 202.
[61] S. Yuzvinsky, Orthogonal pairings of Euclidean spaces, Michigan Math. J., 28 (1981), 131-145.
[62] M. Zaker, Inequalities for the Grundy chromatic number of graphs, Discrete Applied Math., 155 (2007), 2567-2572.
[63] M. Zaker, New bounds for the chromatic number of graphs, J. Graph Theory, 58 (2008), 110-122.
[64] M. Zaker, Results on the Grundy chromatic number of graphs, Discrete Math., 306 (2006), 3166-3173.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65614-
dc.description.abstractPartition problems of graphs are optimization problems about partitions of the vertex set V(G) or the edge set E(G) of a graph G under some additional restrictions. We begin this thesis by introducing some partition problems, basic definitions and notation in graph theory.
We study first-fit partitions and the first-fit chromatic numbers of graphs in Chapter 2. Given a family F of graphs satisfying that F is closed under taking induced subgraphs and e(G) ≤ dn(G) for any graph G ∈ F, where d is an arbitrary positive real number, we give an upper bound for the first-fit chromatic number of any graph in F. This result applies to d-degenerate graphs, planar graphs, and outerplanar graphs.
A vertex-weighted graph (G,c) is a graph G with a positive weight c(v) on each vertex v in G. In Chapter 3, we study the max-coloring problem of a vertex-weighted graph (G,c), which attempts to partition V(G) into independent sets such that the sum of the maximum weight in each independent set is minimum. This is a weighted version of the usual vertex coloring problem of a graph. We give an upper bound for the number of sets needed in an optimal vertex partition of a vertex-weighted r-partite graph. We then derive the Nordhaus-Gaddum inequality for vertex-weighted graphs. We also consider the properties of the perfection on vertex-weighted graphs.
A balanced coloring of a graph G is a partition {R,B,U} of V (G) with |R| = |B|, where R,B and U stand for the sets of red, blue and uncolored vertices in G, respectively. For a graph G with a balanced coloring {R,B,U}, an (R,B)-balanced
decomposition is a partition P of V(G) such that the induced subgraph G[S] is connected and |S ∩ R| = |S ∩ B| for any S in P. The balanced decomposition number f(G) of a graph G is the minimum integer l such that for any balanced coloring (R,B) of G there is an (R,B)-balanced decomposition P with |S| ≤ l for S ∈ P. In Chapter 4, we give a shorter proof of a known result that a graph G has balanced decomposition number 3 if and only if G is [n(G)/2]-connected and G is not a complete graph. We then extend the definition of a balanced coloring using two colors to k colors, and call the corresponding parameter the balanced k-decomposition number. We compute the balanced k-decomposition numbers of trees and complete multipartite graphs.
A parity edge-coloring of a graph G is an edge-coloring of G such that any path of positive length uses some color an odd number of times. A strong parity edge-coloring of a graph G is an edge-coloring of G such that any open walk uses some color an odd number of times. The parity (strong parity) edge-chromatic number of a graph G is the minimum number of colors used in a parity (strong parity) edge-coloring of G. In Chapter 5, we prove that, for 3 ≤ m ≤ n and n ≡ 0,−1,−2 (mod 2^{lceil lg m rceil}), the (strong) parity edge-chromatic number of the complete bipartite graph K_{m,n} is m◦n, the Hopf-Stiefel function, which is the least integer l such that C(l,k) is even for each k with l − n < k < m. We also consider the parity and the strong parity edge-chromatic numbers of the products of graphs.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:54:00Z (GMT). No. of bitstreams: 1
ntu-101-D96221004-1.pdf: 799650 bytes, checksum: fed9be58f511b5178f3c91d518358748 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsAcknowledgements . . . . . . . . . . i
Abstract (in Chinese) . . . . . . . . . . ii
Abstract (in English) . . . . . . . . . . iii
Contents . . . . . . . . . . v
List of Figures . . . . . . . . . . vii
1 Introduction . . . . . . . . . . 1
1.1 Partition problems of graphs . . . . . . . . . . 1
1.2 Terminologies and notation in graph theory . . . . . . . . . . 7
2 First-fit chromatic numbers . . . . . . . . . . 13
2.1 Introduction . . . . . . . . . . 13
2.2 Graphs with bounded maximum average degree . . . . . . . . . . 17
2.3 Open problems and further works . . . . . . . . . . 23
3 Max-coloring of vertex-weighted graphs . . . . . . . . . . 24
3.1 Introduction . . . . . . . . . . 24
3.2 An upper bound on #χ(G,c) for r-partite graphs . . . . . . . . . . 26
3.3 Nordhaus-Gaddum inequality for χ(G,c) . . . . . . . . . . 29
3.4 Perfection of vertex-weighted graphs . . . . . . . . . . 31
3.5 Open problems and further works . . . . . . . . . . 35
4 Balanced decompositions . . . . . . . . . . 36
4.1 Introduction . . . . . . . . . . 36
4.2 Graphs with small balanced decomposition numbers . . . . . . . . . . 37
4.3 Balanced k-decomposition numbers . . . . . . . . . . 43
4.4 Graphs with high connectivity . . . . . . . . . . 44
4.5 Trees . . . . . . . . . . 46
4.6 Complete multipartite graphs . . . . . . . . . . 49
4.7 Open problems and further works . . . . . . . . . . 52
5 Parity edge-colorings . . . . . . . . . . 54
5.1 Introduction . . . . . . . . . . 54
5.2 Complete bipartite graphs . . . . . . . . . . 57
5.3 Products of graphs . . . . . . . . . . 63
5.4 Open problems and further works . . . . . . . . . . 67
Bibliography . . . . . . . . . . 68
dc.language.isoen
dc.subject最先適配著色數zh_TW
dc.subject最大著色問題zh_TW
dc.subject平衡分解數zh_TW
dc.subject奇偶邊染色數zh_TW
dc.subjectfirst-fit chromatic numbersen
dc.subjectmax-coloring problemen
dc.subjectbalanced decomposition numbersen
dc.subjectparity edge-chromatic numbersen
dc.title圖的四類分解問題之研究zh_TW
dc.titleFour Partition Problems of Graphsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee李國偉,傅恆霖,林強,葉光清,顏經和
dc.subject.keyword最先適配著色數,最大著色問題,平衡分解數,奇偶邊染色數,zh_TW
dc.subject.keywordfirst-fit chromatic numbers,max-coloring problem,balanced decomposition numbers,parity edge-chromatic numbers,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2012-07-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
780.91 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved