請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65614完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張鎮華 | |
| dc.contributor.author | Hsiang-Chun Hsu | en |
| dc.contributor.author | 徐祥峻 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:54:00Z | - |
| dc.date.available | 2012-07-27 | |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-18 | |
| dc.identifier.citation | [1] N. Alon, Combinatorial nullstellensatz, Combin. Probab. Comput., 8 (1999), 7-29.
[2] M. Aouchiche and P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Applied Math., in press. [3] M. Aste, F. Havet, C. Linhares-Sales, Grundy number and products of graphs, Discrete Math., 310 (2010), 1482-1490. [4] M. Aste, F. Havet, C. Linhares-Sales, Grundy number and lexicographic product of graphs, in: Proceeding of International Conference on Relations, Orders and Graphs and Their Interaction with Computer Science, 2008. [5] J. Balogh, S. G. Hartke, Q. Liu and G. Yu, On the first-fit chromatic number of graphs, SIAM J. Discrete Math., 22 (2008), 887-900. [6] D. R. Bean, Effective coloration, J. Symbolic Logic, 41 (1976), 469-480. [7] B. Bollobas and I. Leader, Sums in the grid, Discrete Math., 162 (1996), 31-48. [8] G. R. Brightwell, H. A. Kierstead and W. T. Trotter, A Note on first-fit coloring of interval graphs, preprint, 2003. [9] D. P. Bunde, K. Milans, D. B. West and H. Wu, Parity edge-coloring of graphs, arXiv:math/0602341v1. [10] D. P. Bunde, K. Milans, D. B. West and H. Wu, Optimal strong parity edge-coloring of complete graphs, Combinatorica, 28 (2008), 625-632. [11] D. P. Bunde, K. Milans, D. B. West and H. Wu, Parity and strong parity edge-coloring of graphs, Congressus Numer., 187 (2007), 193-213. [12] G. J. Chang and H.-C. Hsu, First-fit chromatic numbers of d-degenerate graphs, Discrete Math., 312 (2012), 2088-2090. [13] G. J. Chang and N. Narayanan, On a conjecture on the balanced decomposition number, submitted. [14] V. Chvatal, Perfectly ordered graphs, Annals of Discrete Math., 21 (1984), 63-65. [15] C. A. Christen and S. M. Selkow, Some perfect coloring properties of graphs, J. Combin. Theory, Ser. B, 27 (1979), 49-59. [16] E. J. Cockayne, A. G. Thomason, Ordered colourings of graphs, J. Combin. Theory Ser. B, 32 (1982), 286-292. [17] D. P. Dailey, Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete, Discrete Math., 30 (1980), 289-293. [18] D. de Werra, M. Demange, B. Escoffier, J. Monnot and V. Th. Paschos, Weighted coloring on planar, bipartite and split graphs: complexity and approximation, Discrete Applied Math., 157 (2009), 819-832. [19] D. de Werra, M. Demange, B. Escoffier, J. Monnot and V. Th. Paschos, Weighted coloring on planar, bipartite and split graphs: complexity and improved approximation, Lecture Notes in Comput. Sci., 3341 (2005), 859-862. [20] M. Demange, D. de Werra, J. Monnot and V. Th. Paschos, Weighted node coloring: when stable sets are expensive, Lecture Notes in Comput. Sci., 2573 (2002), 114-125. [21] S. Eliahou and M. Kervaire, Sumsets in vector spaces over finite fields, J. Number Theory, 71 (1998), 12-39. [22] S. Eliahou and M. Kervaire, Old and new formulas for the Hopf-Stiefel and related functions, Expo. Math., 23 (2005), 127-145. [23] L. Epstein and A. Levin, On the max coloring problem, Lecture Notes in Comput. Sci., 4927 (2008), 142-155. [24] P. Erd˝ os, W. R. Hare, S. T. Hedetniemi and R. Laskar, On the equality of the Grundy and ochromatic numbers of a graph, J. Graph Theory, 11 (1987), 157-159. [25] P. Erd˝ os, S. T. Hedetniemi, R. C. Laskar and G. C. E. Prins, On the equality of the partial Grundy and upper ochromatic numbers of graphs, Discrete Math., 272 (2003), 53-64. [26] B. Escoffier, J. Monnot and V. Th. Paschos, Weighted coloring: further complexity and approximability results, Inform. Proc. Letters, 97 (2006), 98-103. [27] S. Fujita and H. Liu, The balanced decomposition number and vertex connectivity, SIAM J. Discrete Math., 24 (2010), 1597-1616. [28] S. Fujita and H. Liu, Further results on the balanced decomposition number, Congressus Numer., 202 (2010), 119-128. [29] S. Fujita and H. Liu, The balanced decomposition number of TK4and series-parallel graphs, Discussiones Mathematicae Graph Theory, in press. [30] S. Fujita and T. Nakamigawa, Balanced decomposition of a vertex-colored graph, Discrete Applied Math., 156 (2008), 3339-3344. [31] Z. Furedi, A. Gyarfas, G. N. Sarkozy and S. Selkow, Inequalities for the first-fit chromatic number, J. Graph Theory, 59 (2008), 75-88. [32] C. Germain and H. Kheddouci, Grundy coloring for power graphs, Electron. Notes Discrete Math., 15 (2003), 65-67. [33] R. Govindarajan and S. Rengarajan, Buffer allocation in regular dataflow networks: an approach based on coloring circular-arc graphs, in: Proceedings of the 3rd International Conference on High-Performance Computing, 1996, 419-424. [34] P. M. Grundy, Mathematics and games, Eureka, 2 (1939), 6-8. [35] D. J. Guan and X. Zhu, A coloring problem for weighted graphs, Inform. Proc. Letters, 61 (1997), 77-81. [36] H. Hopf, Ein topologischer Beitrag zur reellen Algebra, Comment. Math. Helv., 13 (1940/41), 219-239. [37] H.-C. Hsu and G. J. Chang, Balanced k-decompositions of graphs, Discrete Applied Math., 160 (2012), 1639-1642. [38] H.-C. Hsu and G. J. Chang, Graphs with small balanced decomposition numbers, submitted. [39] H.-C. Hsu and G. J. Chang, Max-coloring of vertex-weighted graphs, submitted. [40] H.-C. Hsu and G. J. Chang, Parity and strong parity edge-colorings of graphs, J. Comb. Optim., 2011, DOI: 10.1007/s10878-011-9398-y. [41] I. Havel and J. Moravek, B-valuations of graphs, Czech. Math. J., 22 (1972), 338-351. [42] S. Irani, Coloring inductive graphs on-line, Algorithmica, 11 (1994), 53-72. [43] G. Karolyi, A note on the Hopf-Stiefel function, Europ. J. Combin., 27 (2006), 1135-1137. [44] H. A. Kierstead, A polynomial time approximation algorithm for dynamic storage allocation, Discrete Math., 88 (1991), 231-237. [45] H. A. Kierstead, The linearity of first-fit coloring of interval graphs, SIAM J. Discrete Math., 1 (1988), 526-530. [46] H. A. Kierstead and J. Qin, Coloring interval graphs with first-fit, Discrete Math., 144 (1995), 47-57. [47] D. W. Krumme, K. N. Venkataraman and G. Cybenko, Hypercube embedding is NP-complete, in: Proceedings of the 1st Conference Hypercube Multiprocessors, 1986, 148-157. [48] N. S. Narayanaswamy and R. Subhash Babu, A Note on first-fit coloring of interval graphs, Order, 25(1)(2008), 49-53. [49] E. A. Nordhaus and J. W. Gaddum, On complementary graphs, Amer. Math. Monthly, 63 (1956), 175-177. [50] S. V. Pemmaraju, S. Penumatcha and R. Raman, Approximating interval coloring and max-coloring in chordal graphs, Lecture Notes in Comput. Sci., 3059 (2004), 399-416. [51] S. V. Pemmaraju and R. Raman, Approximation algorithms for the max-coloring problem, Lecture Notes in Comput. Sci., 3580 (2005), 1064-1075. [52] S. V. Pemmaraju, R. Raman and K. Varadarajan, Buffer minimization using max-coloring, in: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, 2004, 562-571. [53] A. Plagne, Additive number theory sheds extra light on the Hopf-Stiefel ◦ function, L’Enseigenement Math., 49 (2003), 109-116. [54] H. Shapiro, The embedding of graphs in cubes and the design of sequential relay circuits, Bell Telephone Laboratories Memorandum, July 1953. [55] G. J. Simmons, On the ochromatic number of a graph, Congressus Numer., 40 (1983), 339-366. [56] S. Smorodinsky, A note on the online first-fit algorithm for coloring k-inductive graphs, Inform. Proc. Letters, 109 (2008), 44-45. [57] E. Stiefel,Uber Richtungsfelder in den projektiven Raumen und einen Satz aus der reellen Algebra, Comment. Math. Helv., 13 (1940/41), 201-218. [58] A. Wagner and D. G. Corneil, Embedding trees in a hypercube is NP-complete, SIAM J. Computing, 19 (1990), 570-590. [59] D. B. West, Introduction to Graph Theory, Prentice Hall, 2nd Ed., 2001. [60] D. R. Woodall, Problem No. 4, Combinatorics, Proceedings of the British Combinatorial Conference 1973, London Math. Soc., Lecture Note Series 13, Cambridge University Press, 1974, 202. [61] S. Yuzvinsky, Orthogonal pairings of Euclidean spaces, Michigan Math. J., 28 (1981), 131-145. [62] M. Zaker, Inequalities for the Grundy chromatic number of graphs, Discrete Applied Math., 155 (2007), 2567-2572. [63] M. Zaker, New bounds for the chromatic number of graphs, J. Graph Theory, 58 (2008), 110-122. [64] M. Zaker, Results on the Grundy chromatic number of graphs, Discrete Math., 306 (2006), 3166-3173. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65614 | - |
| dc.description.abstract | Partition problems of graphs are optimization problems about partitions of the vertex set V(G) or the edge set E(G) of a graph G under some additional restrictions. We begin this thesis by introducing some partition problems, basic definitions and notation in graph theory.
We study first-fit partitions and the first-fit chromatic numbers of graphs in Chapter 2. Given a family F of graphs satisfying that F is closed under taking induced subgraphs and e(G) ≤ dn(G) for any graph G ∈ F, where d is an arbitrary positive real number, we give an upper bound for the first-fit chromatic number of any graph in F. This result applies to d-degenerate graphs, planar graphs, and outerplanar graphs. A vertex-weighted graph (G,c) is a graph G with a positive weight c(v) on each vertex v in G. In Chapter 3, we study the max-coloring problem of a vertex-weighted graph (G,c), which attempts to partition V(G) into independent sets such that the sum of the maximum weight in each independent set is minimum. This is a weighted version of the usual vertex coloring problem of a graph. We give an upper bound for the number of sets needed in an optimal vertex partition of a vertex-weighted r-partite graph. We then derive the Nordhaus-Gaddum inequality for vertex-weighted graphs. We also consider the properties of the perfection on vertex-weighted graphs. A balanced coloring of a graph G is a partition {R,B,U} of V (G) with |R| = |B|, where R,B and U stand for the sets of red, blue and uncolored vertices in G, respectively. For a graph G with a balanced coloring {R,B,U}, an (R,B)-balanced decomposition is a partition P of V(G) such that the induced subgraph G[S] is connected and |S ∩ R| = |S ∩ B| for any S in P. The balanced decomposition number f(G) of a graph G is the minimum integer l such that for any balanced coloring (R,B) of G there is an (R,B)-balanced decomposition P with |S| ≤ l for S ∈ P. In Chapter 4, we give a shorter proof of a known result that a graph G has balanced decomposition number 3 if and only if G is [n(G)/2]-connected and G is not a complete graph. We then extend the definition of a balanced coloring using two colors to k colors, and call the corresponding parameter the balanced k-decomposition number. We compute the balanced k-decomposition numbers of trees and complete multipartite graphs. A parity edge-coloring of a graph G is an edge-coloring of G such that any path of positive length uses some color an odd number of times. A strong parity edge-coloring of a graph G is an edge-coloring of G such that any open walk uses some color an odd number of times. The parity (strong parity) edge-chromatic number of a graph G is the minimum number of colors used in a parity (strong parity) edge-coloring of G. In Chapter 5, we prove that, for 3 ≤ m ≤ n and n ≡ 0,−1,−2 (mod 2^{lceil lg m rceil}), the (strong) parity edge-chromatic number of the complete bipartite graph K_{m,n} is m◦n, the Hopf-Stiefel function, which is the least integer l such that C(l,k) is even for each k with l − n < k < m. We also consider the parity and the strong parity edge-chromatic numbers of the products of graphs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:54:00Z (GMT). No. of bitstreams: 1 ntu-101-D96221004-1.pdf: 799650 bytes, checksum: fed9be58f511b5178f3c91d518358748 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Acknowledgements . . . . . . . . . . i
Abstract (in Chinese) . . . . . . . . . . ii Abstract (in English) . . . . . . . . . . iii Contents . . . . . . . . . . v List of Figures . . . . . . . . . . vii 1 Introduction . . . . . . . . . . 1 1.1 Partition problems of graphs . . . . . . . . . . 1 1.2 Terminologies and notation in graph theory . . . . . . . . . . 7 2 First-fit chromatic numbers . . . . . . . . . . 13 2.1 Introduction . . . . . . . . . . 13 2.2 Graphs with bounded maximum average degree . . . . . . . . . . 17 2.3 Open problems and further works . . . . . . . . . . 23 3 Max-coloring of vertex-weighted graphs . . . . . . . . . . 24 3.1 Introduction . . . . . . . . . . 24 3.2 An upper bound on #χ(G,c) for r-partite graphs . . . . . . . . . . 26 3.3 Nordhaus-Gaddum inequality for χ(G,c) . . . . . . . . . . 29 3.4 Perfection of vertex-weighted graphs . . . . . . . . . . 31 3.5 Open problems and further works . . . . . . . . . . 35 4 Balanced decompositions . . . . . . . . . . 36 4.1 Introduction . . . . . . . . . . 36 4.2 Graphs with small balanced decomposition numbers . . . . . . . . . . 37 4.3 Balanced k-decomposition numbers . . . . . . . . . . 43 4.4 Graphs with high connectivity . . . . . . . . . . 44 4.5 Trees . . . . . . . . . . 46 4.6 Complete multipartite graphs . . . . . . . . . . 49 4.7 Open problems and further works . . . . . . . . . . 52 5 Parity edge-colorings . . . . . . . . . . 54 5.1 Introduction . . . . . . . . . . 54 5.2 Complete bipartite graphs . . . . . . . . . . 57 5.3 Products of graphs . . . . . . . . . . 63 5.4 Open problems and further works . . . . . . . . . . 67 Bibliography . . . . . . . . . . 68 | |
| dc.language.iso | en | |
| dc.subject | 最先適配著色數 | zh_TW |
| dc.subject | 最大著色問題 | zh_TW |
| dc.subject | 平衡分解數 | zh_TW |
| dc.subject | 奇偶邊染色數 | zh_TW |
| dc.subject | first-fit chromatic numbers | en |
| dc.subject | max-coloring problem | en |
| dc.subject | balanced decomposition numbers | en |
| dc.subject | parity edge-chromatic numbers | en |
| dc.title | 圖的四類分解問題之研究 | zh_TW |
| dc.title | Four Partition Problems of Graphs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李國偉,傅恆霖,林強,葉光清,顏經和 | |
| dc.subject.keyword | 最先適配著色數,最大著色問題,平衡分解數,奇偶邊染色數, | zh_TW |
| dc.subject.keyword | first-fit chromatic numbers,max-coloring problem,balanced decomposition numbers,parity edge-chromatic numbers, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-19 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 780.91 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
