請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65315完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊維(Chun-Wei Chen) | |
| dc.contributor.author | Yu Wang | en |
| dc.contributor.author | 王瑜 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:36:06Z | - |
| dc.date.available | 2015-08-01 | |
| dc.date.copyright | 2012-08-01 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-26 | |
| dc.identifier.citation | Chapter 1:
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306,666 (2004) [2] P. Avouris, Z. Chen, V. Perebeinos, Nat. Nanotechnol. 2,605 (2007). [3] W. Choi, I. Lahiri, R. Seelaboyina, Y. S. Kang, Critical Review in Solid State and Mat. Sci. 35, 52 (2010) [4] C.Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008) [5] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Nano Lett. 8, 902 (2008). [6] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, I. A. Aksay, J. Phys. Chem. B 110,8536 (2006) [7] A. Lerf, H. Y. He, M. Forster, J. Klinowski, J. Phys. Chem. B 102, 4477 (1998) [8] H. Y. He, J. Klinowski, M. Forster, A. Lerf, Chem. Phys. Lett. 287, 53 (1998) [9] K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2, 1015 (2010). [10] X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano Res. 1, 203 (2008). [11] Z. Liu, J. T. Robinson, X. Sun, H. Dai, J. Am. Chem. Soc. 130, 10876 (2008). [12] Luo, Z. T., Vora, P. M., Mele, E. J., Johnson, A. T. C. & Kikkawa, J. M., Appl. Phys. Lett. 94, 111909 (2009). [13] Eda, G. et al. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505–509 (2009). [14] Cuong, T. V. et al., Mater. Lett. 64, 399–401 (2010). [15] Subrahmanyam, K. S., Kumar, P., Nag, A. & Rao, C. N. R., Solid State Commun. 150, 1774–1777 (2010). [16] Chen, J.-L. & Yan, X.-P., J. Mater. Chem. 20, 4328–4332 (2010). [17] K. OKAMOTO, I. NIKI1, A. SHVARTSER, Y. NARUKAWA,T. MUKAI, A. SCHERER, Nat. Mater. 3, 601 (2004) [18] G. Hong, S. M. Tabakman, K. Welsher, H.Wang, X. Wang, H. Dai, J. Am. Chem. SOC, 132, 15920 (2010) [19] I. Kim, S. L. Bender, J. Hranisavljevic, L. M. Utschig, L. Huang, G. P. Wiederrecht, D. M. Tiede, Nano Lett, 11, 3091 (2011) Chapter 2: [1] Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183-191. [2] Nair, R.R. ; Blake, P. ;Grigorenko, A.N.; Novoselov,K.S.; Booth, T.J.; Stauber,T.; Peres, N.M.R.; Geim, A.K. Science 2008, 320, 1308 [3] Lui, C.H. ; Mak, K.F. ; Shan, J.; Heinz, T.F., Phys. Rev. Lett.,2010, 105, 127404 [4] Cai, W. W.; Piner, R. D.; Stadermann, F. J.; Park, S.; Shaibat, M. A.; Ishii, Y.; Yang, D. X.; Velamakanni, A.; An, S. J.; Stoller, M.; An, J. H.; Chen, D. M.; Ruoff, R. S. Science 2008, 321, 1815-1817 [5] Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A.; Ruoff, R. S. Carbon 2009, 47, 145-152 [6] Li, S. S.; Tu, K. H.; Lin, C. C.; Chen, C. W.; Chhowalla, M. ACS Nano 2010, 4, 3169– 3174 [7] G.Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, M. Chhowalla, Adv. Mater. 22, 505 (2009). [8] C. Galande, A. D. Mohite, A. V. Naumov, W. Gao, L.Ci, A. Ajayan, H. Gao, A. Srivastava, R. B. Weisman, P. M. Ajayan1, Scientific Report, 1, 85 (2011) [9] X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano Res, 1, 203 (2008) [10] Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, J. M. Kikkawa, Appl. Phys. Lett. 94, 111909 (2009) [11] C. T. Chien, S. S. Li, W. J. Lai, Y. C. Yeh, H. A. Chen, I. S. Chen, L. C. Chen, K. H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita,G. Eda, H. Yamaguchi, M.Chhowalla, C. W. Chen, Angew. Chemi. In press [12] K. P. Loh, Q. L. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2,1015 (2010) [13] C. G. Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S.Kurasch, M. Burghard, K. Kern, U. Kaiser, Nano Lett. 10,1144 (2010) [14] K. A. Mkhoyan, A.W. Contryman, J. Silcox, D. A. Stewart, G.Eda, C. Mattevi, S. Miller, M. Chhowalla, Nano Lett. 9,1058 (2009) [15] J. Yan, L. Xian, M. Y. Chou, Phys. Rev. Lett. 103, 086802 (2009) [16] S. A. Maier, Plasmonics: Fundamental and Applications, Springer (2007) [17] K. Joulain, R. Carminati, J. P. Mulet, J. J. Greffet, Phys. Rev. B, 68, 245405 (2003) [18] E. M. Purcell, Phys. Rev. 69, 681 (1946) [19] Geddes, C. D.; Lakowicz, J. R. J. Fluoresc., 12, 121 (2002) [20] Gersten, J.; Nitzan, A. J. Chem. Phys., 75, 1139 (1981) [21] Mertens, H., Koenderink, A. F., Polman, A. Phys. ReV. B, 76, 115123 (2007) Chapter 3: [1] M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, Carbon 42, 2929 (2004). [2] S. S. Li, K. H. Tu, C. C. Lin, C. W. Chen, M. Chhowalla, ACS Nano, 4, 3169 (2010) [3] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl, Solid state Comm. 143, 101 (2007). [4] C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Adv. Funct. Mater. 19, 2577 (2009). [5] J. Tauc, Mat. Res. Bull. 3, 37 (1968) [6] PicoHarp 300: User’s Manual and Technical Data, PicoQuant. Chapter 4: [1] K. Jasuja, V. Berry, ACS Nano, 3, 2358 (2008) [2] C. Xu, X. Wang, Small, 5, 2212 (2008) [3] K. Vinodgopal, B. Neppolian, I. V. Lightcap, F. Grieser, M. Ashokkumar, P. V. Kamat, JPCL, 1, 1987 (2010) [4] J. Chen, X. Zheng, H. Wang, W. Zheng, Thin Solid Films, 520, 179 (2011) [5] F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, ACS Nano, 4, 5617 (2010) Chapter 5: [1] K. Peng, Y. Wu, H. Fang, X. Zhong,Y. Xu, J. Zhu, Angew. Chem., 44, 2737 (2005) [2] K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. Lee, Jing Zhu, Adv. Funct. Mater.,16, 387 (2006) [3] G. Lu, H. Li, C. Liusman, Z. Yin, S. Wua, H. Zhang, Chem. Sci.,2, 1817 (2011) Chapter 6: [1] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 324, 1312 (2009). [2] J.-Y. Hwang, C.-C. Kuo, L.-C. Chen, K.-H. Chen, Nanotechnology 21, 465705 (2010) [3] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, S. Iijima, Nat. Nanotechol. 5, 574 (2010) [4] Liu, Z. Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang,W. Sun, Y. Chen, Adv. Mater. 20, 3924 (2008). [5] Wang, Y., Kurunthu, D., Scott, G. W., Bardeen, C. J., J. Phys. Chem. C, 114, 4153 (2010). [6] Kim, J., Cote, L. J., Kim, F., Huang, J., J. Am. Chem. Soc. 132, 260–267 (2010). [7] H.S.S. Ramakrishna Matte, K.S. Subrahmanyam, K. Venkata Rao, Subi J. George, C.N.R. Rao, Chem. Phys. Lett., 506, 260 (2011) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65315 | - |
| dc.description.abstract | 石墨烯具有高導電性、高機械強度、和高穿透度等性質,使之在光電應用上具有很大的潛力。然而由於石墨烯為一零能隙之材料,因此在眾多可應用的領域中,缺少了以石墨烯為發光材料之光學應用。石墨烯氧化物為石墨烯之衍生物,可視為在ㄧ石墨烯基面上接上許多含氧官能基,造成由sp2和sp3鍵結之碳原子所組成的混和式原子和電子結構。不同於石墨烯,此混和式電子結構使石墨烯氧化物具有能隙及本質發光。藉由調變石墨烯氧化物之電子結構和環境參數等,其本質發光表現可從藍光至近紅外光。石墨烯氧化物之本質發光特性以及其溶液製程上之相容性提供了石墨烯材料在光學應用上的潛力。然而石墨烯氧化物之發光效率與其他傳統發光材料相比相對較低 (小於0.1%),限制了其研究和實際應用上的發展。因此本研究主要致力於運用局域表面電漿子此物理方式增強石墨烯氧化物之發光效率,且利用此結果能成功觀測到單原子層之石墨烯氧化物的本質發光。最後一章則利用石墨烯電極之高穿透度和超薄特性,將局域表面電漿子運用在以石墨烯作為電極之有機高分子元件上,增進元件之光電流。另外,利用可調變波長之雷射光源,系統性的分析在元件結構中被局域表面電漿子影響之主動層材料的光學性質。 | zh_TW |
| dc.description.abstract | Graphene with its unique electrical, mechanical and thermal properties has attracted great research and technological interest. Beyond numerous possible optoelectronics applications, light emission from pristine graphene is hard to present due to the absence of band gap. In contrast, graphene oxide (GO) as a graphene derivative functionalized with oxygen-containing groups has demonstrated interesting steady-state photoluminescence (PL) emission ranged from near infrared (NIR) to blue fluorescence which can attributed to its heterogeneous atomic and electronic structures. However, the intrinsic PL quantum yield of GO which is less than ~0.1 % is relatively low, limiting its potential in technological applications and leaves the fluorescence of single-layer GO sheet remain unforeseen.
In this study, we utilizing Localized Surface Plasmons (LSP) technique as a physical fluorescence enhancing method without changing the atomic structure of GO. By presenting silver nanoparticles (Ag NPs) in the proximity of GO, the assisted absorption and radiative recombination of GO by incident light excited LSP resonance will lead to fluorescence enhancement of GO. The LSP enhanced fluorescent properties of GO thin film consist of only few-layers GO sheets are demonstrated. Moreover, with the advantage of LSP, we successfully obtained the fluorescence image of single-layer GO sheet which thickness corresponds to single atomic layer. In the last Chapter, we took the advantage of ultra-thin graphene transparent electrode to combine it with Ag NPs for demonstrating LSP enhanced photocurrent of the organic polymer photodetector. The optical properties of LSP affected active material under the device structure were also studied by utilizing supercontinnum laser system, which enabled the analysis with various excitation and emission wavelengths. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:36:06Z (GMT). No. of bitstreams: 1 ntu-101-R99527030-1.pdf: 20580511 bytes, checksum: 7cb97fce16ea1664e82b4ac37efa0b65 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 Prelude 2 1.1.1 Graphene 2 1.1.2 Graphene Oxide (GO) 4 1.2 Research Motivation and Objective 6 1.3 Reference 7 Chapter 2 Research Background 9 2.1 Optical properties of Graphene Oxide 9 2.1.1 Presence of band gap and fluorescent versatility of GO 9 2.1.2 Tunable PL and the emission mechanisms of GO and r-GO 11 2.2 Localized surface plasmon (LSP) 16 2.2.1 Origin of localized surface plasmon 17 2.2.2 Localized surface plasmon resonance 20 2.2.3 Mechanisms of LSP induced fluorescence enhancement 23 2.3 Reference 26 Chapter 3 Experimental Section 29 3.1 Material 29 3.1.1 Preparation of GO 29 3.1.2 Characterization of GO 32 3.1.3 Preparation and Characterization of Ag nanoparticles as the source of LSP 37 3.2 Analysis techniques for fluorescence properties 39 3.2.1 Photoluminescence (PL) spectroscopy 39 3.2.2 Time-resolved photoluminescence (TRPL) spectroscopy 41 3.2.3 Laser scanning confocal microscopy (LSCM) 43 3.3 Reference 44 Chapter 4 Localized Surface Plasmon Enhanced PL Intensity of Graphene Oxide Thin Film 45 4.1 Introduction 45 4.2 Sample preparation and characterization 45 4.3 The enhancement of GO PL intensity 47 4.3.1 Enhanced PL spectra 47 4.3.2 Increased radiative recombination rate 51 4.4 GO film thickness effect of PL enhancement ratio 53 4.5 Enhanced fluorescence image 56 4.6 Reference 58 Chapter 5 Applying Localized Surface Plasmon to Obtain the Fluorescence of Single Layered Graphene Oxide Sheet 59 5.1 Introduction 59 5.2 Fabrication of single-layered GO sheets 60 5.3 Chemical bath deposition of Ag NPs 61 5.4 Sample preparation and characterizations 63 5.5 LSP assisted fluorescence image of single-layered GO sheet 67 5.6 Reference 68 Chapter 6 Localized Surface Plasmon Enhanced Photocurrent of Organic Photodetector with Graphene Electrode 69 6.1 Introduction 69 6.2 Fabrication of device with graphene as transparent conducting electrode 70 6.2.1 The synthesis of graphene by CVD process 70 6.2.2 The preparation of graphene electrode 70 6.2.3 Device fabrication 73 6.3 Optical analysis with multi excitation wavelengths 73 6.3.1 Supercontinuum laser system 76 6.3.2 PL and fluorescence lifetime mapping of Ag NPs/Graphene/P3HT 78 6.4 LSP assisted photocurrent enhancement 82 6.5 Reference 85 Conclusions 86 Appendix A 87 Appendix B 89 Appendix C 90 | |
| dc.language.iso | en | |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 石墨烯氧化物 | zh_TW |
| dc.subject | 表面電漿子 | zh_TW |
| dc.subject | graphene | en |
| dc.subject | surface plasmon | en |
| dc.subject | graphene oxide | en |
| dc.title | 局域表面電漿子與石墨烯材料之交互作用 | zh_TW |
| dc.title | The Interaction of Localized Surface Plasmon
with Graphene Based Materials | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳學禮(Hsuen-Li Chen),張玉明(Yu-Ming Chang) | |
| dc.subject.keyword | 表面電漿子,石墨烯,石墨烯氧化物, | zh_TW |
| dc.subject.keyword | surface plasmon,graphene,graphene oxide, | en |
| dc.relation.page | 90 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 20.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
