請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64698
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 韋文誠(Wen-Cheng Wei) | |
dc.contributor.author | Yi-Chang Hu | en |
dc.contributor.author | 胡宜昌 | zh_TW |
dc.date.accessioned | 2021-06-16T22:57:37Z | - |
dc.date.available | 2013-08-28 | |
dc.date.copyright | 2012-08-28 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-09 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64698 | - |
dc.description.abstract | 具有莫來石結構的鋁酸鉍(Bi2Al4O9)材料具有應用於固態氧化物燃料電池陰極之潛力。傳統的固態反應法由於混合不易均勻,
不容易得到高純度的Bi2Al4O9相;再者,前莊士岳論文使用液相反應燒結,鋁酸鉍材料依舊難以燒結緻密。有鑑於此,本研究 改以利用濕式化學法,以PVA溶膠凝膠製程,穩定多成份陽離子,並達到分子級均勻混合之效果,得到高純度與比表面積、細緻的 粉末。本研究重點有四: (一)比較固相反應法與溶膠凝膠法所得到的粉體性質、燒結性及導電度之差異; (二)比較掺雜的鈣含量在鋁酸鉍相(Bi2Al4O9)與富鉍相(Bi24Al2O39)之差異; (三)分析不同鈣掺雜含量之鋁酸鉍的離子傳遞係數(ti)與離子導電度行為(σion),並討論其導電之機制; (四)將鈣掺雜之鋁酸鉍與常用之镧鍶鈷鐵((La,Sr)(Co,Fe)O3)製成複合陰極與全電池,並探討不同複合比例對於極化阻抗、功率輸出之差異。 | zh_TW |
dc.description.abstract | The compounds of the composition Bi2M4O9 (M=Al3+, Ga3+, Fe3+) possessing mullite-type crystal structures have attracted considerable interests as potential candidate for the applications as cathode of SOFC due to their mixed ionic/electronic conductivity. In this study,
high purity, high specific surface area and fine Ca-doped Bi2Al4O9 powders can be obtained by PVA sol-gel route, and comparing to that prepared by conventional solid-state route which often shows the disadvantage of inhomogeneous mixing and lower purity. The properties, including the powder characteristics, sintering density and electrical conductivity of Ca-doped Bi-mullite derived from two processings (solid-state and sol-gel routes) were studied. Besides, the discrepancies of Ca-distribution within Bi2Al4O9 and Bi24Al2O39 phases were also investigated. Further, the ionic transference number and ionic conductivity of Ca-doped Bi2Al4O9 were measured by an electromotive force (EMF) method. Finally, Ca-doped Bi2Al4O9 composited with La0.6Sr0.4Co0.2Fe0.8O3-δas a composite cathode in various ratio will be applied for intermediate-temperature solid oxide fuel cells (IT-SOFCs) and the electrochemically performance, including interfacial polarization resistance and power densities, were studied in detail. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T22:57:37Z (GMT). No. of bitstreams: 1 ntu-101-R99527043-1.pdf: 9346236 bytes, checksum: f8db782fdfa828c0488226a8961b41b8 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 摘要---------------------------------------------------------------------------------------------------I
Abstract----------------------------------------------------------------------------------------------II Abbreviations and Symbols----------------------------------------------------------------------V List of Figures-------------------------------------------------------------------------------------VI List of Tables---------------------------------------------------------------------------------------X Chapter 1 Introduction-----------------------------------------------------------------------------1 Chapter 2 Literature Review----------------------------------------------------------------------5 2.1 Ionic Transference Phenomena------------------------------------------------------5 2.2 PVA Sol-Gel Synthesis---------------------------------------------------------------8 2.3 Mixed Ionic-Electronic Conductivity---------------------------------------------12 2.4 Composite Cathode Materials------------------------------------------------------15 2.4.1 Optimal Mixing Ratio--------------------------------------------------------17 2.4.2 Composite Cathode Processing---------------------------------------------20 Chapter 3 Experimental procedure-------------------------------------------------------------42 3.1 Powder Preparation-----------------------------------------------------------------42 3.1.1 Materials-----------------------------------------------------------------------42 3.1.2 PVA Sol-Gel Route (5-20CM)----------------------------------------------42 3.1.3 EDTA-Citrate Complexing Process (LSCF and GDC)------------------43 3.2 Powder Characterizations----------------------------------------------------------45 3.2.1 X-ray Powder Diffractometry-----------------------------------------------45 3.2.2 Thermal Analysis-------------------------------------------------------------45 3.2.3 Microstructure Observation-------------------------------------------------46 3.2.4 Sedimentation Test of SG-CM Powder------------------------------------46 3.2.5 Particle Size Measurement--------------------------------------------------47 3.2.6 Specific Surface Area Measurement (BET)-------------------------------48 3.2.7 Sintered Density Measurement---------------------------------------------48 3.2.8 Thermal Expansion Test (TMA)--------------------------------------------49 3.2.9 Electrical Conductivity Measurement--------------------------------------50 3.2.10 Electromotive Force (EMF) Test------------------------------------------50 3.2.11 TEM and EDX Analysis----------------------------------------------------51 3.2.12 Chemical Compatibility----------------------------------------------------51 3.3 Cell Assembly and Test-------------------------------------------------------------52 3.3.1 Symmetrical Cell--------------------------------------------------------------52 3.3.2 Single Cell---------------------------------------------------------------------54 Chapter 4 Experimental Results-----------------------------------------------------------------63 4.1 Power Properties---------------------------------------------------------------------63 4.1.1 XRD Diffraction Analysis------------------------------------------------------63 4.1.2 Thermal Analysis----------------------------------------------------------------64 4.1.3 Microstructure Observation----------------------------------------------------65 4.1.4 Particle Size Determination----------------------------------------------------66 4.1.5 Specific Surface Area-----------------------------------------------------------67 4.2 Sintering Analysis-------------------------------------------------------------------79 4.2.1 Reactive Liquid-phase sintering (RLS)------------------------------------79 4.2.2 Sintered Samples by PVA Sol-gel Route----------------------------------79 4.2.3 Hot-Pressing Process---------------------------------------------------------81 4.2.4 Thermal Expansion Tests----------------------------------------------------81 4.2.5 Dispersion of SG-CM Powder----------------------------------------------82 4.2.6 Chemical Compatibility Tests-----------------------------------------------83 4.2.7 Ca-distribution in Mullite-type Phase--------------------------------------99 4.3 Ionic Transference Number-------------------------------------------------------107 4.3.1 Effect of Temperature-------------------------------------------------------107 4.3.2 Effect of Ca-doping Concentration---------------------------------------108 4.4 Results of Electrical Conductivity-----------------------------------------------109 4.5 Impedance Spectra of Composite Cathodes on GDC-------------------------118 4.5.1 Optimal Mixing Ratio-------------------------------------------------------118 4.5.2 Interfacial Polarization Resistance----------------------------------------118 4.6 Single Cell Performance----------------------------------------------------------119 Chapter 5 Discussion----------------------------------------------------------------------------134 5.1 Conducting Mechanisms of SG-CM composites------------------------------134 5.2 Interfacial Polarization Resistance and Cell Performance--------------------136 Chapter 6 Conclusions--------------------------------------------------------------------------142 Chapter 7 Future works-------------------------------------------------------------------------146 Appendix 1---------------------------------------------------------------------------------------147 Appendix 2---------------------------------------------------------------------------------------149 References----------------------------------------------------------------------------------------151 | |
dc.language.iso | en | |
dc.title | 鉍鋁莫來石材料應用在中溫固態氧化物燃料電池之研究 | zh_TW |
dc.title | Study on Mullite-type Bi2-xCaxAl4O9-d material for Intermediate-Temperature Solid Oxide Fuel Cell | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王錫福,馬小康,郭俞麟 | |
dc.subject.keyword | 鉍鋁莫來石,溶膠凝膠法,離子導電度,混合導體,複合陰極,功率輸出, | zh_TW |
dc.subject.keyword | Mullite-type materials,sol-gel route,ionic conductivity,mixed ionic-electronic conductor (MIEC),composite cathode,electrochemical performance, | en |
dc.relation.page | 177 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-09 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 9.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。