Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64698
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韋文誠(Wen-Cheng Wei)
dc.contributor.authorYi-Chang Huen
dc.contributor.author胡宜昌zh_TW
dc.date.accessioned2021-06-16T22:57:37Z-
dc.date.available2013-08-28
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-09
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64698-
dc.description.abstract具有莫來石結構的鋁酸鉍(Bi2Al4O9)材料具有應用於固態氧化物燃料電池陰極之潛力。傳統的固態反應法由於混合不易均勻,
不容易得到高純度的Bi2Al4O9相;再者,前莊士岳論文使用液相反應燒結,鋁酸鉍材料依舊難以燒結緻密。有鑑於此,本研究
改以利用濕式化學法,以PVA溶膠凝膠製程,穩定多成份陽離子,並達到分子級均勻混合之效果,得到高純度與比表面積、細緻的
粉末。本研究重點有四:
(一)比較固相反應法與溶膠凝膠法所得到的粉體性質、燒結性及導電度之差異;
(二)比較掺雜的鈣含量在鋁酸鉍相(Bi2Al4O9)與富鉍相(Bi24Al2O39)之差異;
(三)分析不同鈣掺雜含量之鋁酸鉍的離子傳遞係數(ti)與離子導電度行為(σion),並討論其導電之機制;
(四)將鈣掺雜之鋁酸鉍與常用之镧鍶鈷鐵((La,Sr)(Co,Fe)O3)製成複合陰極與全電池,並探討不同複合比例對於極化阻抗、功率輸出之差異。
zh_TW
dc.description.abstractThe compounds of the composition Bi2M4O9 (M=Al3+, Ga3+, Fe3+) possessing mullite-type crystal structures have attracted considerable interests as potential candidate for the applications as cathode of SOFC due to their mixed ionic/electronic conductivity. In this study,
high purity, high specific surface area and fine Ca-doped Bi2Al4O9 powders can be obtained by PVA sol-gel route, and comparing to that prepared by conventional solid-state route which often shows the disadvantage of inhomogeneous mixing and lower purity. The properties,
including the powder characteristics, sintering density and electrical conductivity of Ca-doped Bi-mullite derived from two processings (solid-state and sol-gel routes) were studied. Besides, the discrepancies of Ca-distribution within Bi2Al4O9 and Bi24Al2O39 phases were also
investigated. Further, the ionic transference number and ionic conductivity of Ca-doped Bi2Al4O9 were measured by an electromotive force (EMF) method.
Finally, Ca-doped Bi2Al4O9 composited with La0.6Sr0.4Co0.2Fe0.8O3-δas a composite cathode in various ratio will be applied for intermediate-temperature
solid oxide fuel cells (IT-SOFCs) and the electrochemically performance, including interfacial polarization resistance and power densities, were studied
in detail.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:57:37Z (GMT). No. of bitstreams: 1
ntu-101-R99527043-1.pdf: 9346236 bytes, checksum: f8db782fdfa828c0488226a8961b41b8 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents摘要---------------------------------------------------------------------------------------------------I
Abstract----------------------------------------------------------------------------------------------II
Abbreviations and Symbols----------------------------------------------------------------------V
List of Figures-------------------------------------------------------------------------------------VI
List of Tables---------------------------------------------------------------------------------------X
Chapter 1 Introduction-----------------------------------------------------------------------------1
Chapter 2 Literature Review----------------------------------------------------------------------5
2.1 Ionic Transference Phenomena------------------------------------------------------5
2.2 PVA Sol-Gel Synthesis---------------------------------------------------------------8
2.3 Mixed Ionic-Electronic Conductivity---------------------------------------------12
2.4 Composite Cathode Materials------------------------------------------------------15
2.4.1 Optimal Mixing Ratio--------------------------------------------------------17
2.4.2 Composite Cathode Processing---------------------------------------------20
Chapter 3 Experimental procedure-------------------------------------------------------------42
3.1 Powder Preparation-----------------------------------------------------------------42
3.1.1 Materials-----------------------------------------------------------------------42
3.1.2 PVA Sol-Gel Route (5-20CM)----------------------------------------------42
3.1.3 EDTA-Citrate Complexing Process (LSCF and GDC)------------------43
3.2 Powder Characterizations----------------------------------------------------------45
3.2.1 X-ray Powder Diffractometry-----------------------------------------------45
3.2.2 Thermal Analysis-------------------------------------------------------------45
3.2.3 Microstructure Observation-------------------------------------------------46
3.2.4 Sedimentation Test of SG-CM Powder------------------------------------46
3.2.5 Particle Size Measurement--------------------------------------------------47
3.2.6 Specific Surface Area Measurement (BET)-------------------------------48
3.2.7 Sintered Density Measurement---------------------------------------------48
3.2.8 Thermal Expansion Test (TMA)--------------------------------------------49
3.2.9 Electrical Conductivity Measurement--------------------------------------50
3.2.10 Electromotive Force (EMF) Test------------------------------------------50
3.2.11 TEM and EDX Analysis----------------------------------------------------51
3.2.12 Chemical Compatibility----------------------------------------------------51
3.3 Cell Assembly and Test-------------------------------------------------------------52
3.3.1 Symmetrical Cell--------------------------------------------------------------52
3.3.2 Single Cell---------------------------------------------------------------------54
Chapter 4 Experimental Results-----------------------------------------------------------------63
4.1 Power Properties---------------------------------------------------------------------63
4.1.1 XRD Diffraction Analysis------------------------------------------------------63
4.1.2 Thermal Analysis----------------------------------------------------------------64
4.1.3 Microstructure Observation----------------------------------------------------65
4.1.4 Particle Size Determination----------------------------------------------------66
4.1.5 Specific Surface Area-----------------------------------------------------------67
4.2 Sintering Analysis-------------------------------------------------------------------79
4.2.1 Reactive Liquid-phase sintering (RLS)------------------------------------79
4.2.2 Sintered Samples by PVA Sol-gel Route----------------------------------79
4.2.3 Hot-Pressing Process---------------------------------------------------------81
4.2.4 Thermal Expansion Tests----------------------------------------------------81
4.2.5 Dispersion of SG-CM Powder----------------------------------------------82
4.2.6 Chemical Compatibility Tests-----------------------------------------------83
4.2.7 Ca-distribution in Mullite-type Phase--------------------------------------99
4.3 Ionic Transference Number-------------------------------------------------------107
4.3.1 Effect of Temperature-------------------------------------------------------107
4.3.2 Effect of Ca-doping Concentration---------------------------------------108
4.4 Results of Electrical Conductivity-----------------------------------------------109
4.5 Impedance Spectra of Composite Cathodes on GDC-------------------------118
4.5.1 Optimal Mixing Ratio-------------------------------------------------------118
4.5.2 Interfacial Polarization Resistance----------------------------------------118
4.6 Single Cell Performance----------------------------------------------------------119
Chapter 5 Discussion----------------------------------------------------------------------------134
5.1 Conducting Mechanisms of SG-CM composites------------------------------134
5.2 Interfacial Polarization Resistance and Cell Performance--------------------136
Chapter 6 Conclusions--------------------------------------------------------------------------142
Chapter 7 Future works-------------------------------------------------------------------------146
Appendix 1---------------------------------------------------------------------------------------147
Appendix 2---------------------------------------------------------------------------------------149
References----------------------------------------------------------------------------------------151
dc.language.isoen
dc.title鉍鋁莫來石材料應用在中溫固態氧化物燃料電池之研究zh_TW
dc.titleStudy on Mullite-type Bi2-xCaxAl4O9-d material for Intermediate-Temperature Solid Oxide Fuel Cellen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王錫福,馬小康,郭俞麟
dc.subject.keyword鉍鋁莫來石,溶膠凝膠法,離子導電度,混合導體,複合陰極,功率輸出,zh_TW
dc.subject.keywordMullite-type materials,sol-gel route,ionic conductivity,mixed ionic-electronic conductor (MIEC),composite cathode,electrochemical performance,en
dc.relation.page177
dc.rights.note有償授權
dc.date.accepted2012-08-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
9.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved