請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64472
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳瑞碧(James Swi-Bea Wu) | |
dc.contributor.author | Chi-Chang Fu | en |
dc.contributor.author | 傅基彰 | zh_TW |
dc.date.accessioned | 2021-06-16T17:49:12Z | - |
dc.date.available | 2017-08-19 | |
dc.date.copyright | 2012-08-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-13 | |
dc.identifier.citation | 李哲瑜。1995。酸味種楊桃果汁儲藏期間品質之變化及非酵素性褐變機制之探討。國立台灣大學食品科技研究所博士論文。
林淑玲,1987。番石榴單寧對果汁儲藏期間顏色變化之影響及其分布、組成,萃取方法之研究。國立台灣大學食品科技研究所碩士論文。 陳美玲。1989。以模式系統探討混濁番石榴果汁非酵素性褐變之機制。國立台灣大學食品科技研究所碩士論文。 莊培梃。2011。含抗壞血酸乙醇溶液中褐變情形之研究。國立台灣大學食品科技研究所博士論文。 游玉文。1991。氧氣對無菌包裝番石榴果漿品質的影響及番石榴之脫氣條件的探討。私立輔仁大學食品營養研究所碩士論文。 鄭怡琳。1996。果汁中抗壞血酸及單寧類化合物相互作用造成褐變之研究。國立台灣大學食品科技研究所博士論文。 蔡依瑾。2010。抗壞血酸在乙醇溶液中降解之研究。國立台灣大學食品科技研究所碩士論文。 Ahmed, A. A.; Watrous, G. H. J.; Hargrove, G. L.; Dimick, P. S. Effects of fluorescent light on flavor and ascorbic acid content in refrigerated orange juice and drinks. J. Milk Food Technol. 1976, 39, 332-336. Andrews, F. E.; Driscoll, P. J. Stability of ascorbic acid in orange juice exposed to light and air during storage. J Am Diet Assoc. 1977, 71, 140-142. Anan, T.; Sakata, K.; Yagi, A.; Kato, H. Structure of the precursor of a brown compound produced by heating (-)-epicatechin with L-alanine. Agric. Biol. Chem. 1987, 51, 3395-3397. Baiano, A.; Marchitelli, V.; Tamagnone, P.; Del-nobile, M. A. Use of active packaging for increasing ascorbic acid retention in food beverages. J. Food Sci. 2004, 69, 502-508. Ball, G. F. M. Vitamin C. In “Bioavailability and Analysis of Vitamins in Food” Ball, G. F. M. (Ed). Chapman and Hall. London, UK. 1998. Barril, C., Clark, A.C., Prenzler, P.D., Karuso, P., and Scollary, G.R. Formation of pigment precursor (+)-1'-methylene-6'-hydroxy-2Hfuran-5'-one-catechin isomers from (+)-catechin and a degradation product of ascorbic acid in a model wine system. J. Agric. Food Chem. 2009. 57, 9539-9546. Barril, C.; Clark, A. C.; Scollary, G. R. Chemistry of ascorbic acid and sulfur dioxide as an antioxidant system relevant to white wine. Anal. Chim. Acta. 2012, 732, 186–193. Bauernfeind, J. C.; Pinkert, D. M. Food processing with added ascorbic acid. In ” Advances in Food Research”. Chichester, C. O.; Mrak, E. M.; Stewart, G. F. (Eds). Academic Press, London, UK. 1970. Baxendale, J. H.; Wilson, J. A. The photolysis of hydrogen peroxide at high light intensities. Trans. Faraday Soc. 1956. 53, 344-356. Beutter, G. R.; Czapski, P. G. Ascorbate autoxidation in the presence of iron and copper chelates. Free Rad. Res. Comms. 1986, 1, 349-353. Birch, G. G.; Pepper, T. Protection of vitamin C by sugars and their hydrogenated derivatives. J. Agric. Food Chem. 1983, 31, 980-985. Blasco, R.; Estevea, M. J.; Frigola, A.; Rodrigo, M. Ascorbic acid degradation kinetics in mushrooms in a high-temperature short-time process controlled by a thermoresistometer. Lebensm.-Wiss. u.-Technol. 2004, 37, 171–175. Bradshaw, M. P.; Prenzler, P. D.; Scollary, G. R. Ascorbic Acid-Induced Browning of (+)-Catechin In a Model Wine System. J. Agric. Food Chem. 2001, 49, 934-939. Bradshaw, M. P.; Cheynier, V.; Scollary, G. R.; Prenzler, P. D. Defining the ascorbic acid crossover from anti-oxidant to pro-oxidant in a model wine matrix containing (+)-catechin. J. Agric. Food Chem. 2003, 51, 4126-4132. Bradshaw, M. P.; Barril, C.; Clark, A. C.; Prenzler, P. D.; Scollary, G. R. Ascorbic acid: a review of its chemistry and reactivity in relation to a wine environment. Crit. Rev. Food Sci. Nutr. 2011, 51, 479–498. Brekke, J. E.; Tonaki, K. I. Stability of guava puree concentrate during refrigerated storage. J. Food Sci. 1970, 35, 469-471. Buettner, G. R.; Jurkiewicz, B. A. Chemistry and biochemistry of ascorbic acid. In “Handbook of Antioxidants”. Cadenas, E.; Packer, L. (Eds). Marcel Dekker, Inc. New York, NY, USA, 1996b. Chan, H. T.; Cavaletto, C. G. Aseptically packaged papaya and guava puree: changes in chemical and sensory quality during processing and storage. J. Food Sci. 1982, 47, 1164-1169. Champagen, E. T.; Hinojosa, O.; Clemetson, C. A. B. Produtction of ascorbate free radicals in infant formulas and other media. J. Food Sci. 1990, 55, 1133-1136. Cheynier, V.; Basire, N.; Rigaud, J. Mechanism of trans-caffeoyltartaric acid and catechin oxidation in model solutions containing grape polyphenoloxidase. J. Agric. Food Chem. 1989. 37, 1069–1071. Chuang, P. T.; Szu-Chuan Shen, S. C.; Wu, J. S. B. Browning in Ethanolic Solutions of Ascorbic Acid and Catechin. J. Agric. Food Chem. 2011, 59, 7818–7824. Clark, A.C.; Scollary, G.R. Copper (II)-mediated oxidation of (+)-catechin in a model white wine system. Aust. J. Grape and Wine Res., 2002. 8, 186-195. Clark, A.C.; Vestenr, J.; Barril, C.; Maury, C.; Prenzler, P. D.; Scollary, G. R. The influence of stereochemistry of antioxidants and flavanols on oxidation processes in a model wine system: ascorbic acid, erythorbic acid, (+)-catechin and (-)-epicatechin. J. Agric. Food Chem. 2010, 58, 1004–1011. Clegg, K. M. Citric acid and the browning of solutions containing ascorbic acid. J. Sci. Food Agric. 1966, 17, 546-549. Coldstein, J. L.; Swain, T. Changesontannins in ripening fruits. Phytochem. 1963, 2, 371-383. Conrad, K. R.; Light degradation of juices packaged in polyester bottles. Univ. Guelph. 2002, 130. Danilewicz, J. C. Review of reaction mechanisms of oxygen and proposed intermediate reduction products in wine: central role of iron and copper. Am. J. Enol. Vitic. 2003, 54, 73-85. Debicki-Pospisil, J.; Lovric, T.; Trinajstic, N.; Sabljic, A. Anthocyanin degradation in the presence of furfural and 5-hydroxymethylfurfural. J. Food Sci. 1983, 48, 411-416. Dennison, D.B.; Kirk, J. R. Effect of trace mineral fortification on the storage stability of ascorbic acid in a dehydrated model food system. J. Food Sci. 1982, 47, 1198-1200. Dubois, M.; Gilles, K. A.; Revers, A. P.; Smith, F. Calorimetric method for determination of sugars and related substance. Anal. Chem. 1956, 28, 350-356. Dunkley, W. L.; Franklin, J. D.; Pangborn, R. M. Effect of flourescent light on flavor, ascorbic acid and riboflavin in milk. Food Technol., 1962, 16, 112-118. Du Toit, W. J.; Marais, J.; Pretorius, I. S.; Du Toit, M. Oxygen in must and wine : A review. S. Afr. J. Enol. Vitic. 2006, 27, 76-94. Es-Safi, N.E.; Cheynier, V.; Moutounet, M. Effect of copper on oxidation of (+)-catechin in a model solution system. Int. J. Food Sci. Tech., 2003a. 38, 153–163. Es-Safi, N. E.; Fulcrand, H. L.; Guerneve, C.; Cheynier, V.; Moutounet, M. New phenolic compounds formed by evolution of (+)-catechin and glyoxylic acid in hydroalcoholic solution and their implication in color changes of grape-derived foods. J. Agric. Food Chem. 2000. 48, 4233-4240. Esteve, M. J.; Frígola, A.; Martorell, L.; Rodrigo, C. Kinetics of green asparagus ascorbic acid heated in a high-temperature thermoresistometer. Z. Lebensm. Unters. Forsch. A. 1999. 208, 144-147. Ferna´ndez-Zurbano, P.; Ferreira, V.; Escudero, A.; Cacho, J. Role of hydroxycinnamic acids and flavanols in the oxidation and browning of white wines. J. Agric. Food Chem. 1998, 46, 4937–4944. Ferna´ndez-Zurbano, P.; Ferreira, V.; Pena, C.; Escudero, A.; Serrano, F.; Cacho, J. Prediction of oxidative browning in white wines as a function of their chemical composition. J. Agric. Food Chem. 1995, 43, 2813–2817. Fracassetti, D.; Lawrence, N.; Tredoux, A. G. J.; Tirelli, A.; Nieuwoudt, H. H.; Du Toit, W. J. Quantification of glutathione, catechin and caffeic acid in grape juice and wine by a novel ultra-performance liquid chromatography method. Food Chem. 2011, 128, 1136–1142. Fulcrand, H.; Cheynier, V.; Oszmianski, J.; Moutounet, M. An oxidized tartaric acid residue as a new bridge potentially competing with acetaldehyde in flavan-3-ol condensation. Phytochemistry. 1997, 46, 223-227. Furtado, P.; Figueiredo, P.; Chaves das Nevus, H.; Pina, F. Photochemical and thermal degradation of anthocyanidins. J. Photochem. Photoblol. A. Chem. 1993, 75, 113-118. Godden, P.; Lattey, K.; Francis, L.; Gishen, M.; Cowey, G.; Holdstock, M.; Robinson, E.; Waters, E.; Skouroumounis, G.; Sefton, M. A.; Capone, D.; Kwiatkowski, M.; Field, J.; Coulter, A.; D’Costa, N.; Bramley, B. Towards offering wine to the consumer in optimal condition—the wine, the closures and other packaging variables: A review of AWRI research examining the changes that occur in wine after bottling. Wine Ind. J. 2005, 20, 20–30. Gómez. E.; Martínez, A. Laencina, J. Prevention of oxidative browning during wine storage. Food Res. Int. 1995, 28, 213-217. Gomez-Plaza, E.; Gil-Munoz, R.; Lopez-Roca, J. M.; Martinez, A. Color and phenolic compounds of a young red wine as discrimination variables of its aging status. Food Res. Int. 1999, 32, 503-507. Goula, A. M.; Adamopoulos, K. G.; Chatzitakis, P. C.; Nikas, V. A. Prediction of lycopene degradation during a drying process of tomato pulp. J Food Eng. 2006, 74, 37-46. Granzer, R. Effect of light radiation on orange juice in clear glass bottles filled industrially. Ind. Obst-Gemueseverwert. 1983a. 68, 263-266. Granzer, R. Effect of light rays on ascorbic acid and carotenoids content as well as sensory qualities of orange juice in colorless glass bottles. Fluess. Obst. 1983b. 50, 358-359. Halliwell, B.; Foyer, C. H. Ascorbic acid, metal ions and the superoxide radical. J. Biochem. 1976, 155, 697-700. Hayashi, T.; Hoshii, Y.; Namiki, M. On the yellow product and browning of the reaction of dehydroascorbic acid with amino acids. Agric. Biol. Chem. 1983, 47, 1003-1009. Hooper, F. C.; Ayres, A. D. The enzymatic degradation of ascorbic acid. Part 1.- The inhibition of the enzymatic oxidation of ascorbic acid by substances occurring in black currants. J. Sci. Food Agr., 1950, 1, 5-8. Huelin, F. E. Studies on the anaerobic decomposition of ascorbic acid. J. Food Sci. 1953, 18, 633-639. Huelin, F. E.; Coggiola, I. M.; Sidhu, G. S.; Kennett, B. H. The anaerobic decomposition of ascorbic acid in the pH range of foods and in more acid solutions. J. Sci. Food Agric. 1971, 22, 540-542. Ilse, V. B.; Simbarashe, S,; Frank, D.; Bruno, D. M. Modeling the effect of headspace oxygen level on the degradation of vitamin C in a model fruit juice. J. Food Sci. 2009, 27, s27-s27. Jeney-Nagymate, E.; Fodor, P. The stability of vitamin C in different beverages. Brit. Food J. 2008, 110, 296-309. Johnson, G.; Donnelly, B. J.; Johnson, D. K. The chemical nature and precurssors of clarified apple juice sediment. J. Food Sci. 1968, 33, 254-257. Johnson, R. L.; Toledo, R. T. Storage stability of 55°Brix orange juice concentrate aseptically packaged in plastic and glass containers. J. Food Sci. 1975, 40, 433-434. Johnson, R. L.; Toledo, R. T. Storage stability of 55°Brix orange juice concentrate aseptically package in plastic and glass containers. J. Food Sci. 1975, 40, 433-434. John, F. K.; Zenaida, S. R.; Linda, L. L.; Frank, P. W.; Kornelia, J. L-Ascorbic acid stability in aseptically processed orange juice in TetraBrik cartons and the effect of oxygen. Food Chem. 1992, 45, 327-331. Joschek, H. I.; Miller, S. I. Photooxidation of phenol, cresols, and dihydroxybenzenes. J. Am. Chem. Soc. 1966, 88, 3273–3281. Joslyn, M. A.; Goldstein, J. L. Astringency of fruits and fruit products in relation to phenolic content. Adv. Food Res. 1964, 13, 179-217. Julkunen-Tiitto, R. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985. 33, 213-217. Kacem, B.; Cornell, J. A.; Marshall, M. R.; Shireman, R. B.; Matthews, R. F. Nonenzymatic browning in aseptically packsged orange drinks: effect of ascorbic acid, amino acid and oxygen. J. Food Sci. 1987, 52, 1668-1672. Kacem, B.; Matthews, R. F.; Crandall, P. G.; Cornell, J. A. Nonenzymatic browning in aseptically packaged orange juice and orange drinks. Effect of amino acids, deaeration, and anaerobic storage. J. Food Sci. 1987, 52, 1665-1667. Kanner, J.; Fishbein, J.; Shalom, P.; Harel, S.; Bengera, I. Storage Stability of Orange Roux, D. G. Juice Concentrate Packaged Aseptically. J. Food Sci. 1982, 47, 429-431. Kanner, J.; Shapira, N. Oxygen- and metal- ion- dependent nonezymatic browning of grapefruit juice. Am. Chem. Soc. 1989, 55-64. Karbowiak, T.; Gougeon, R. D.; Alinc, J. B.; Brachais, L.; Debeaufort, F.; Voilley, A.; Chassagne, D. Wine oxidation and the role of cork. Int. J. Food Sci. Nutr. 2010, 50, 20-52. Karel, M.; Nickerson, J. T. R. Effects of relative humidity, air, and vacuum on browning of dehydrated orange juice. Food Technol. 1964. 18, 1214-1218. Karel, M. Prediction of nutrient losses and optimization of processing conditions. In “Nutritional and safety aspects of food processing”. Tannenbaum, S. R. (Ed). 1979, 233-263. Kearsley M. W.; Rodriguez N. The stability and use of natural colors in foods: anthocyanin, β-carotene and riboflavin. J Food Technol. 1981, 16, 421-431. Keenan, C. P.; Gozukara, M. Y.; Christie, G. B. Y.; Heyes, D. N. Oxygen permeability of macrocrystalline paraffin wax and relevance to wax coatings on natural corks used as wine bottle closures. Aust. J. Grape Wine Res. 1999, 5, 66–70. Khan, M. M. T.; Martell, A. E. Metal ion and metal chelate catalysted oxidation of ascorbic acid by molecular oxygen. I. Cupric and ferric ion catalyzed oxidation. J. Am. Chem. Soc. 1967, 89, 4176-4185. Kimoto, E.; Tanaka, H.; Ohmoto, T.; and Choami, M. Analysis of the transformation products of dehydro-L-ascorbic acid by ion-pairing highperformance liquid chromatography. Anal. Biochem. 1993, 214, 38–44. Kumar, R.; Singh, M. Tannins: their adverse role in ruminant nutrition. J. Agric. Food Chem. 1984, 32, 447-453. Kurata, T.; Fujimaki, M. Formation of 3-keto-4-deoxypentosone and 3-hydroxy-2-pyrone by the degradation of dehydro-L-ascorbic acid. Agric. Biol. Chem. 1967.40, 1287-1291. Kurata T.; Sakurai, Y. Degradation of L-ascorbic acid and mechanism of nonenzymic browning reaction. part II. Nonoxidative degradation of L-ascorbic acid including the formation of 3-deoxy-1-pentosone. Agric Biol. Chem. 1976. 31, 170-176. Lathrop, P. J.; Leung, H. K. Rates of ascorbic acid degradation during thermal processing of canned peas. J. Food Sci. 1980, 45, 152-153. Lee, H. S.; Labuza, T. Destruction of ascorbic acid as a function of water activity. J. Food Sci. 1975, 40, 370-384. Lee, H. S.; Nagy, S. Chemical degradative indicators to monitor the quality of processed and stored citrus products. In “Chemical makers for processed and stored foods”. Am. Chem. Soc. 1996, 86-106. Lee, H. S.; Nagy, S. Quality changes and nonenzymic browning intermediates in grapefruit juice during storage. J. Food Sci. 1988, 53, 168-172. Legrini, O.; Oliveros, E.; Braun, A. M. Photochemical processes for water treatment. Chem. Rev. 1993, 93, 671–698. Liu, S. C.; Chang, H. M.; Wu, J. S. B. A study on the mechanism of browning in mei liqueur using model solutions. Food Res. Int. 2003, 36, 579-585. Li, H.; Guo, A.; Wang, H. Mechanisms of oxidative browning of wine. Food Chem. 2008, 108, 1-13. Loomis, W. D.; Battaile, J. Plant phenolic compounds and the isolation of plant enzymes. Phytochem. 1966, 5, 423-438. Lopes, P.; Saucier, C.; Glories, Y. Nondestructive colorimetric method to determine the oxygen diffusion rate through closures used in winemaking. J. Agric. Food Chem. 2005, 53, 6967–6973. Lopes, P.; Saucier, C.; Teissedre, P. L.; Glories, Y. Impact of storage position on oxygen ingress through different closures into wine bottles. J. Agric. Food Chem. 2006, 54, 6741–6746. Lopez-Toledano, A.; Mayen, M.; Merida, J.; Medina, M. Yeastinduced inhibition of (+)-catechin and (-)-epicatechin degradation in model solutions. J. Agric. Food Chem. 2002. 50, 1631–1635. Loschner, J.; Kroh, L.; Vogel, J. Ascorbic acid - a carbonyl component of non-enzymatic browning reactions. Zeitschriftfur Lebensmitteluntersuchung und - Forschung A. 1990, 191, 302–305. Luthar, Z.; Tisler, V. Tannin-carbohydrate complex (Fagopyrum esculentum Moench). Fagopyrum. 1992, 12, 21 – 26. Mahoney, J. R.; Graf, E. Role of alpha-tocopherol, ascorbic acid, citric acid and EDTA as oxidants in model systems. J. Food Sci. 1986, 51, 1293-1296. Marck P. B.; Celia, B.; Andrew, C. C.; Paul, D. P. Geoffrey, R. S. Ascorbic acid: A review of its chemistry and reactivity in relation to a wine environment. J. Food Sci. Nutr. 2011, 51, 479-498. Markakis, P.; Francis, F. J. Stability of anthocyanins in foods. In ”Anthocyanins as Food Colors”. Markakis, P (Ed.). Academic Press, Inc. New York, NY, 1982. Martell, A. E. Chelates of ascorbic acid: Formation and catalytic properties. In “Ascorbic acid chemistry metabolism and uses”. Seib, P. A.; Tolbert, B. M. (Eds). American Chemical Society. Washington, D.C., USA. 1982. Mehansho, H.; Butler, L. G.; Carlson, D. M. Dietary tannins and salivary proline-rich proteins interactions, induction, and defense mechanisms. Ann. Rev. Nutr. 1987. 7, 423-440. Monagas, M.; Bartolome, B.; Gomez-Cordoves, C. Updated knowledge about the presence of phenolic compounds in wine. Crit. Rev. Food Sci. Nutr. 2005. 45, 85-118. Murata, M.; Shinoda, Y.; Homma, S. Browning of model orange juice solution and changes in the components. Int. Congr. Sci. 2002, 1245, 459– 460. Nagy, S. Vitamin C contents of citrus fruits and their products: A review. J. Agric. Food Chem., 1980, 28, 8-18. Nath, M. C.; Bhattathiry, E. P. M. Reaction of alloxan with ascorbic acid. Nature. 1955, 176, 787–788. Oh, H. I.; Hoff, J. E.; Armstrong, G. S.; Haff, L. A. Hydrophobic interaction in tannin-protein complexes. J. Agric. Food Chem. 1980, 28, 394-398. Oliveira, C. M.; Ferreira, A. C. S.; Freitas, D. V.; Silva, A. M. S. Oxidation mechanisms occurring in wines. Food Res Int. 2011, 44, 1115–1126. Oszmianski, J.; Cheynier, V.; Moutounet, M. Iron-catalysed oxidation of (+)-catechin in model systems. J. Agric. Food Chem. 1996. 44, 1712-1715. özkan M.; Kırca A.; Cemeroglu B. Effects of hydrogen peroxide on the stability of ascorbic acid during storage in various fruit juices. Food Chem. 2004, 88, 591-597. Palamidis, N.; Markakis, P. Stability of grape anthocyanin in carbonated beverages. J. Food Sci. 1975, 40, 1047-1049. Pastore, P.; Rizzetto, T.; Curcuruto, O.; Dal Cin,M.; Zaramella, A.; Marton, D. Characterization of dehydroascorbic acid solutions by liquid chromatography/ mass spectrometry. Rapid Com. Mass Spectrom. 2001, 15, 2051–2057. Petriella, C.; Chirife, J.; Resnik, S. L.; Lozano, R. D. Solute effects at high water activity on nonenzymatic browning of glucose-lysine solutions. J. Food Sci. 1988, 53, 987-988. Rassis, D.; Saguy, I.S. Kinetics of aseptic concentrated orange juice quality changes during commercial processing and storage. Int. J. Food Sci. Technol. 1995, 30, 191-198. Recent advances in the chemistry and chemical utilization of the natural condensed tannins. Phytochem. 1972, 11, 1219-1230. Rickard, J. E. Tannin levels in cassava, a comparison of methods of analysis. J. Sci. Food Agric. 1986, 31, 37-42. Robards, K.; Prenzler, P. D.; Tucker, G.; Swatsitang, P.; Glover, W. Phenolic compounds and their role in oxidative processes in fruits. Food Chem. 1999, 66, 401–436. Robertson, G. L.; Samaniego, C. M. L. Effect of initial dissolved oxygen levels on the degradation of ascorbic acid and the browning of lemon juice during storage. J. Food Sci. 1986, 51, 184-187. Robertson, G. L.; Samaniego-Esguerra, C. M. Effect of soluble solids and temperature on ascorbic acid degradation in lemon juice stored in glass bottles. J. Food Qual. 1990, 13, 361-374. Roig, M. G.; Rivera, Z. S.; Kennedy, J. F. A model study on rate of degradation of L-ascorbic acid during processing using home-produced juice concentrates. Int. J. Food Sci. Nutr. 1995, 46, 107-115. Rojas, A. M.; Gerschenson, L. N. Ascorbic acid destruction in aqueous model systems: an additional discussion. J. Sci. Food Agric. 2001, 81, 1433-1439. Rossi, J. A.; Singleton, V. L. Contribution of grape phenols to oxygen absorption and browning of wines. Am. J. Enol. 1996, 47, 231-239. Sahbaz, F.; Giiler Somer, G. Photosensitized decomposition of ascorbic acid in the presence of riboflavin. Food Chem. 1993, 46, 177-182. Sapers, G. M. Scientific Status Summary. Browning of foods: control by sulfites, antioxidants, and other means. Food Technol. 1993. 47, 75-84. Saucier, C. T.; Waterhouse, A. L. Synergetic activity of catechin and other antioxidants. J. Agric. Food Chem. 1999. 47, 4491–4494. Sawamura, M.; Takemoto, K.; Matsuzaki, Y.; Ukeda, H.; Kusunose, H. Identification of two degradation products from aqueous dehydroascorbic acid. J. Agric. Food Chem. 1994, 42, 1200–1203. Schulz, A., Trage, C., Schwarz, H., and Kroh, L.W. Electrospray ionization mass spectrometric investigations of α-dicarbonyl compounds- probing intermediates formed in the course of the nonenzymatic browning reaction of L-ascorbic acid. Int. J. Mass Spect. 2007, 262, 169–173. Shen, S. C.; Tseng, K. C.; Wu, J. S. B. An analysis of Maillard reaction products in ethanolic glucose-glycine solution. Food Chem. 2007, 102, 281-287. Shinoda, Y.; Murata, M.; Homma, S.; Komura, H. Browning and decomposed products of model orange juice. Biosci. Biotechnol. Biochem. 2004, 68, 529–536. Shtamm, E.V.; Purmal, A. P.; Skurlatov,Y. I. Mechanism of catalytic ascorbic acid oxidation system Cu2+-ascorbic acid-O2. Int. J. Chem. Kinetics. 1979. XI, 461–494. Silva, A.; Lambri, M.; De Faveri, M. D. Evaluation of the performances of synthetic and cork stoppers up to 24 months post-bottling. Eur. Food Res. Technol. 2003, 216, 529–534. Singh, R. P.; Heldman, D. R.; Kirk, J. R. Kinetics of quality degradation: ascorbic acid oxidation in infant formula during storage. J. Food Sci. 1976, 41, 304-308. Sizer, C. E.; Waugh, P. L.; Edsta, S. Ackermann, P. Maintaining flavor and nutrient quality of aseptic orange juice. Food Technol. 1988, 42, 152-159. Skouroumounis, G. K.; Kwiatkowski, M. J.; Francis, I. L.; Oakey, H.; Capone, D.; Duncan, B.; Sefton, M. A.; Waters, E. J. The impact of closure type and storage conditions on the composition, colour and flavour properties of a Riesling and a wooded Chardonnay wine during five years’storage. Aust. J. Grape Wine Res. 2005, 11, 369-384. Smoot, J. M.; Nagy, S. Effects of storage temperature and duration on total vitamin C content of canned single-strength grapefruit juice. J. Agric. Food Chem. 1980, 28, 417-421. Svirbely, J. L.; Szent-Györgyi, A. The chemical nature of vitamin C. J. Biochem. 1933, 27, 279-285. Taga, M. S.; Miller, E. E.; Pratt, D. E. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc. 1984. 62, 928-931. Tannenbaum, S. R. Ascorbic acid chemistry. In ”Principles of food science”. Fennema O. R. (Ed). Marcel Dekker, Inc. New York, NY, USA. 1976. Tannenbaurn, S. R.; Fennema, O. R. Vitamins and Minerals. In “Principles of Food Science”. Fennema, O. R. (Ed). Marcel Dekker, Inc. New York, NY, USA. 1976. Tannenbaum, S. R.; Young, V. R.; Archer, M. C. Vitamins and minerals. In “Food chemistry”, 2nd ed. Fennena, O. R. (Ed.). Marcel Dekker, Inc. New York, NY, USA. 1985. Tinsley, I. J.; Bockian, A. H. Some effects of sugars on the breakdown of pelargonidin-3-glucoside in model system at 90℃. Food Res. 1960, 25, 161-173. Trammell, D. J.; Dalsis, D. E.; Malone, C. T. Effect of oxygen on taste, ascorbic acid loss and browning for HTST-pasteurized, single-strength orange juice. J. Food Sci. 1986, 4, 1021-1023. Tseng, K. C.; Chang, H. M.; Wu, J. S. B. Degradation kinetics of anthocyanin in ethanolic solutions. J Food Proc. Preserv. 2006, 30, 503-514. Uddin, M. S.; Hawlader, M. N. A.; Ding, L.; Mujumdar, A. S. Degradation of ascorbic acid in dried guava during storage. J. Food Eng. 2002, 51, 21-26. Valade, M.; Tribaut-Sohier, I.; Bunner, D.; Laurent, M.; Moncomble, D.; Tusseau, D. Les apports d’oxyg`ene en vinification et leurs impacts sur les vins. Le cas particulier du champagne (2`eme partie). Revue Franc¸aise d’Oenologie. 2007, 222, 17–28. Van Buren, J. P.; Way, R. D.; Tannins hazes in deproteined apple juice. J. Food Sci. 1978, 43, 1235-1237. Vasserot, Y.; Jacopin, C.; Jeandet, P. Effect of bottle capacity and bottle-cap permeability to oxygen on dimethylsulfide formation in champagne wines during aging on the lees. Am. J. Enol. Vitic. 2001, 52, 54–55. Velısek, J.; Davıdek, J.; Kubelka, V.; Zelinkova, Z.; Pokorny, J. Volatile degradation products of L-dehydroascorbic acid. Z. Lebensm. 1976, 162, 285–290. Vikram, V. B.; Ramesh, M. N.; Prapulla, S.G. Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. J. Food Eng. 2005, 69, 31–40. Wedzicha, B. L. Chemistry of Sulphur Dioxide in Foods. Elsevier Applied Science, London, U.K. 1984. Weissberger, A.; LuValle, L. E.; Thomas, D. S. Oxidation Processes. XVII. The autoxidation of ascorbic acid in the presence of copper. J. Am. Chem. Soc. 1944, 66, 700-705. Wencai, X. U.; Dongli, L. I.; Yabo, F. U.; Shaoyun, H. Effect of Oxygen Scavenging Packaging on Orange Juice Quality. Adv. Mater. Res. 2012, 380, 248-253. Whiting, G. C.; Coggins, R. A. Formation of L-xylosone from ascorbic acid. Nature, 1960, 185, 843–844. Will, F.; Schopplein, E.; Ludwig, M.; Steil, A.; Turner, A.; Dietrich, H. Analytical and sensorial alterations of orange juice after hot bottling in PET and glass. Deutsche. Lebens. Und. 2000, 96, 279-284. Yuan, J. P.; Chen, F. Degradation of ascorbic acid in aqueous solution. J. Agric. Food Chem. 1998, 46, 5078-5082. Zerdin, K.; Rooney, M. L.; Vermue, J. The vitamin C content of orange juice packed in an oxygen. Food Chem. 2003, 82, 387-395. Zhai, H.; Du, J.; Guan, X.; Qiao, X.; Pan, Z. Cultivating and processing technologies for wine grapes. China Agricultural Press. Beijing, China. 2001. Zoeckein, B. W.; Fugelsang, K. C.; Gump, B. H.; Nury, F. S. Production wine analysis. Van Nostrand Reinhold, Inc. New York, NY, USA. 1990. Zotou, A.; Loukou, Z., Karava, O. Method development for the determination of seven organic acids in wines by reversed-phase high performance liquid chromatography. Chromatographia. 2004, 60, 39-44. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64472 | - |
dc.description.abstract | 非酵素性褐變經常發生於酒品儲藏期間並使其品質降低。因此許多製酒業者經常使用抗壞血酸在水果釀造酒中作為抗氧化劑,以維持顏色穩定。然而,卻有學者指出於酒類中添加抗壞血酸可能有促進褐變的現象。本研究即以還原市售白葡萄酒作為真實系統代表,探討抗壞血酸在市售水果釀造酒中對褐變的影響,此外也改變儲藏條件以釐清環境因子對於抗壞血酸影響褐變的情形。
結果顯示,當市售水果釀造酒中兒茶素含量低時,添加抗壞血酸不會產生促進褐變的現象。避光缺氧儲藏環境中,抗壞血酸在酒精溶液中主要降解途徑為有氧降解。終產物包括 2-furoic acid (2-FA) 及 3-hydroxy-2-pyrone (3OH2P),其總量隨著酒精濃度增加而增加,但酒精溶液之褐變情形卻隨酒精濃度提升而降低。根據結果推測,上述抗壞血酸降解終產物在酒精溶液中應該不是造成褐變的主因,可能是抗壞血酸降解途徑的中間產物 L-xylosone 與兒茶素作用並產生褐變之物質所導致。缺氧儲藏期間,抗壞血酸與兒茶素降解及褐變程度皆顯著地大幅降低,且儲藏期間皆未測得抗壞血酸降解產物 2-FA 及 3OH2P,其原因推測為抗壞血酸與兒茶素降解後仍停留在降解途徑過程中的中間產物,並未形成最後造成褐變的物質,因而降低褐變現象。照光儲藏條件下,抗壞血酸、兒茶素與抗壞血酸降解產物皆快速產生降解。為此推測,在光線的作用下會促進抗壞血酸與兒茶素降解,同時加速二者作用形成分子量更大的產物,進而使酒精性飲料褐變顯著提升。 綜合以上結果,建議添加抗壞血酸到酒品中做為抗氧化劑前應先了解酒品中兒茶素的含量,並考慮是否有其添加的必要性。選擇具有遮光效果的容器,避免與光線接觸,同時也應與氧氣隔絕,如此即可避免於儲藏過程中發生褐變之現象。 | zh_TW |
dc.description.abstract | Non-enzymatic browning commonly occurs during wine storage and downgrade the quality. In order to improve color quality of fruit fermented liquor, ascorbic acid is usually used as an antioxidant in wine industry. On the contrary, some researchers reported that the addition of ascorbic acid may increase browning in wine. In the present study, we used reconstituted white wine as real alcoholic beverages to evaluate the effect of ascorbic acid induce on browning in fruit fermented liquors. Furthermore, the storage test in various conditions was conducted for understanding the effect of ascorbic acid on wine browning.
The results shown that the addition of ascorbic acid does not increase browning in wines contain low catechin content. The ascorbic acid was found to undergo aerobic degradation in alcoholic solution during dark storage. The final aerobic degradation products of ascorbic acid include 2-furoic acid (2-FA) and 3-hydroxy-2-pyrone (3OH2P). The production of 2-FA and 3OH2P increase with the increase of alcoholic concentration, whereas, the browning of alcoholic solution decrease with the increase in alcoholic concentration. According to the above result, we postulate that ascorbic acid degradation end products shouldn’t be the major factor to cause browning in alcoholic beverages. L-xylosone, the medial product of ascorbic acid degradation, was considered to interact with catechin and form browning pigments. The degradation of ascorbic acid and catechin, and browning index were significantly decreased in alcoholic solutions during anaerobic storage. However, none ascorbic acid degradation products were detected including 2-FA and 3OH2P during anaerobic storage. We postulate that after ascorbic acid and catechin degraded, they still stay in the medial of pathway, cause the final browning pigment substance wasn’t formed and decreases the browning index. The amounts of ascorbic acid, catechin and ascorbic acid degradation products drop rapidly in alcoholic solution during storage under light exposed. We postulate that light promotes the degradation of ascorbic acid and catechin, accelerates the interaction between those products to form high molecular weight aggregates, and significantly accelerate the browning in alcoholic beverages. The above-mentioned results suggest that the content of catechin should be considered before added ascorbic acid into wine for its preventive/ antioxidant advantages. After bottling, the wine/ liquor products should choose the dark containers to keep away from exposure to light and oxygen, thus prevent the browning during storage. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:49:12Z (GMT). No. of bitstreams: 1 ntu-101-R99641002-1.pdf: 1830992 bytes, checksum: 8abbebfa9d6d3972947001e9eed1efd2 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
中文摘要………………………………………………………………………..……Ⅰ 英文摘要…………………………………………………………………….….……Ⅱ 目錄……………………………………………………………………….……….…Ⅳ 圖次……………………………………………………………………………..……Ⅷ 表次…………………………………………………………………………..………Ⅹ 第一章 前言……………………………………………………………………..……1 第二章 文獻整理……………………………………………………………..………2 壹、抗壞血酸…………………………………………………………………………2 第一節 簡介………………………………………………………………………2 第二節 性質與結構………………………………………………………………2 第三節 影響抗壞血酸穩定之因子………………………………………………4 一、氧氣………………………………………………………………………4 二、酸鹼值……………………………………………………………………4 三、溫度………………………………………………………………………5 四、水活性與水分含量………………………………………………………7 五、光線………………………………………………………………………7 六、金屬離子…………………………………………………………………8 七、糖…………………………………………………………………………9 八、過氧化氫…………………………………………………………………9 第四節 抗壞血酸的降解………………………………………..………………12 一、抗壞血酸的降解途徑……………………………………..……………12 (一) 酵素性……………………………………………………...………12 (二) 非酵素性………………………………………………...…………12 1. 有氧性裂解…………………………………………….…………12 2. 厭氧性裂解…………………………………………….…………13 二、抗壞血酸的降解產物與褐變…………………………………..………16 第五節 抗壞血酸與單寧的交互作用……………………………………..……22 貳、酒精溶液中的褐變與抗壞血酸相關應用的研究………………………………24 第三章 材料與方法…………………………………………………………………28 壹、試藥………………………………………………………………………………28 貳、實驗材料與儀器設備……………………………………………………………30 參、市售白葡萄酒成分分析…………………………………………………………31 第一節 分析項目……………………………………………………..…………31 一、酸鹼值……………………………………………………………………31 二、CIE L*a*b*值測定………………………………………………………31 三、糖度………………………………………………………………………31 四、褐變指標…………………………………………………………………31 五、總糖含量測定……………………………………………………………31 六、總酚類化合物含量測定…………………………………………………32 七、縮合單寧含量測定………………………………………………………32 八、抗壞血酸含量分析………………………………………………………32 九、抗壞血酸降解產物及兒茶素含量分析…………………………………33 十、有機酸含量分析…………………………………………………………34 十一、二氧化硫分析…………………………………………………………35 十二、金屬元素分析…………………………………………………………37 肆、實驗架構…………..………………………………………………………..……37 一、避光有氧儲藏………………………………………………………..…39 二、避光缺氧儲藏………………………………………………..…………42 三、照光有氧儲藏…………………………………………………..………43 伍、資料處裡分析…………………………………………..………………………43 第一節 統計分析…………………………………………………..……………43 第二節 繪圖………………………………………………………………..……43 第四章 結果與討論…………………………………………………………....……44 壹、市售白葡萄酒冷凍乾燥前後之性質與成分分析結果……………….…...……44 貳、抗壞血酸與兒茶素對還原市售白葡萄酒真實系統褐變之影響………………50 參、避光有氧儲藏對於還原市售白葡萄酒褐變之影響……………………...……53 第一節 抗壞血酸的降解…………………………………………………..……53 第二節 抗壞血酸的降解產物……………………………………..……………57 第三節 兒茶素的降解………………………………………………..…………62 第四節 褐變現象……………………………………………………..…………66 第五節 酒精模式溶液與真實系統的複回歸統計分析………………..………72 肆、避光缺氧儲藏對於還原市售白葡萄酒褐變之影響………………………..…75 第一節 抗壞血酸的降解…………………………………..……………………75 第二節 抗壞血酸的降解產物………………………………………..…………79 第三節 兒茶素的降解……………………………………………………..……79 第四節 褐變現象………………………………………………..………………83 伍、照光有氧儲藏對於還原市售白葡萄酒褐變之影響………………………..…87 第一節 抗壞血酸的降解………………………………………………..………87 第二節 抗壞血酸的降解產物…………………………………………..………90 第三節 兒茶素的降解…………………………………………………..………93 第四節 褐變現象…………………………………………………..……………96 第五節 酒精模式溶液與真實系統的複回歸統計分析………………………..99 第五章 結論………………………………………………………………..………102 第六章 參考文獻……………………………………………………..……………104 圖次 圖 2-1. 抗壞血酸的結構…………………………………………………..…………3 圖 2-2. 不同加工方式與溫度對於抗壞血酸保留率的影響…………………..……6 圖 2-3. 抗壞血酸的氧化作用………………………………………………………14 圖 2-4. 抗壞血酸之裂解途徑………………………………………………………15 圖 2-5. 抗壞血酸有氧降解主要產物之生成途徑…………………………………18 圖 2-6. 抗壞血酸有氧降解之次要產物……………………………………………19 圖 2-7. 抗壞血酸厭氧降解產物生成途徑…………………………………………20 圖 2-8. 抗壞血酸形成黃色色素之可能途徑………………………………………21 圖 2-9. 花青素與 furfural 作用的可能途徑……………..…………….…………23圖 2-10. 抗壞血酸與兒茶素作用形成 xanthylium 陽離子之作用機制…..….…25 圖 2-11. 抗壞血酸於酒精溶液中之降解比例與褐變指標………………….….…26 圖 2-12. 兒茶素於酒精溶液中之降解比例與褐變指標………………….…….…27 圖 3-1. 抗壞血酸-兒茶素酒精溶液褐變之實驗架構……………………………38 圖 4-1. 還原市售白葡萄酒於 45℃ 儲藏時之褐變指標變化……………………52 圖 4-2. 抗壞血酸-兒茶素酒精溶液於 45℃ 避光儲藏期間之抗壞血酸保留率…………………………………………………………………...………55 圖 4-3. 抗壞血酸-兒茶素酒精模式溶液於 45℃ 避光儲藏期間之抗壞血酸降解產物生成………..………………………..……………………………...…59 圖 4-4. 抗壞血酸-兒茶素真實酒精溶液於 45℃ 避光儲藏期間之抗壞血酸降解產物生成…………….…………...………………………………...………60 圖 4-5. 抗壞血酸-兒茶素酒精溶液於 45℃ 避光儲藏期間之兒茶素保留率………………………………………………………………………...…64 圖 4-6. 抗壞血酸-兒茶素酒精溶液於 45℃ 避光儲藏期間之褐變……………70 圖 4-7. 抗壞血酸-兒茶素酒精溶液於 45℃ 缺氧避光儲藏期間之抗壞血酸保留率……………………………………….………………………………..…77 圖 4-8. 抗壞血酸-兒茶素酒精溶液於 45℃ 缺氧避光儲藏期間之兒茶素保留率………….…………………………………………….……………….…81 圖 4-9. 抗壞血酸-兒茶素酒精溶液於 45℃ 缺氧避光儲藏期間之褐變………………………………………….……………………………..…85 圖 4-10. 抗壞血酸-兒茶素酒精溶液於 45℃ 照光儲藏期間之抗壞血酸保留率…………………………………………………….....……………..……88 圖 4-11. 抗壞血酸-兒茶素酒精模式溶液於 45℃ 照光儲藏期間之抗壞血酸降解產物之生成情形…………………….………………………………..…91 圖 4-12. 抗壞血酸-兒茶素真實酒精溶液於 45℃ 照光儲藏期間之抗壞血酸降解產物之生成情形…..…………...…………………………………..……92 圖 4-13. 抗壞血酸-兒茶素酒精溶液於 45℃ 照光儲藏期間之兒茶素保留率…………………………….………………………………………..……94 圖 4-14. 抗壞血酸-兒茶素酒精溶液於 45℃照光儲藏期間之褐變變化程度…………………….……………………………………………..………97 表次 表 2-1. 添加鐵離子與 EDTA 對於抗壞血酸氧化之影響.………….……………10 表 2-2. 添加過氧化氫於不同果汁其抗壞血酸降解反應速率常數………………11 表4-1. 凍乾前與凍乾後之市售白葡萄酒褐變指標、酸鹼值、色澤與糖度……………………………………………………………………...……45 表 4-2. 凍乾前與凍乾後之市售白葡萄酒總糖、總多酚、縮合單寧、兒茶素、與二氧化硫含量……………….………………………………………....…..46 表 4-3. 凍乾前與凍乾後之市售白葡萄酒抗壞血酸與抗壞血酸降解之產物含量…………………...…………………………………………………....…47 表 4-4. 凍乾前與凍乾後之市售白葡萄酒有機酸含量………………….....…...…48 表 4-5. 凍乾前與凍乾後之市售白葡萄酒金屬元素組成………………..…......…49 表 4-6. 抗壞血酸在酒精模式溶液與真實系統中於 45℃ 避光儲藏 48 小時之保留率………………………………………………………………...………56 表 4-7. 酒精模式溶液與真實系統於 45℃ 儲藏 32 天之抗壞血酸降解產物生成…………………………………………………………………...………61 表 4-8. 於 45℃ 避光儲藏至第 15 天兒茶素在酒精模式溶液與真實系統中之保留率………………………………………………………………...……65 表 4-9. 於 45℃ 避光儲藏至第 32 天酒精模式溶液與真實系統中之褐變情形………………………………………………………………………...…71 表 4-10. 酒精濃度 0 ~ 20% 抗壞血酸-兒茶素酒精模式溶液於 45℃ 避光儲藏條件下各因子之複回歸結果………………………………………...……73 表 4-11. 酒精濃度 0 ~ 18% 模擬市售水果釀造酒真實系統於45℃ 避光儲藏條件下各因子之複回歸結果………………………………………...………74 表 4-12. 比較避光且同時缺氧與避光環境下酒精模式溶液與真實系統經儲藏至 48 小時後之抗壞血酸保留率……………………………………...…..…78 表 4-13. 比較避光與同時避光和缺氧環境下酒精模式溶液與真實系統經儲藏至第 15 天之兒茶素保留率…………………..………………………….…82 表 4-14. 比較避光與同時避光和缺氧環境下酒精模式溶液與真實系統經儲藏至第 32 天之褐變情形………………………………………………...……86 表 4-15. 比較避光與照光環境下酒精模式溶液與真實系統經儲藏至第 2 天之抗壞血酸保留率…………………………………………………………....…89 表 4-16. 比較避光與照光環境下酒精模式溶液與真實系統經儲藏至第 15 天之兒茶素保留率………………………………………………………………95 表 4-17. 比較避光與照光環境下酒精模式溶液與真實系統經儲藏至第 32 天之褐情形…………………………………………………………….……..…98 表 4-18. 酒精濃度 0 ~ 20% 抗壞血酸-兒茶素酒精模式溶液於 45℃ 照光儲藏條件下各因子之複回歸結果………………………………………….…100 表 4-19. 酒精濃度 0 ~ 18% 模擬市售水果釀造酒真實系統於 45℃ 避光儲藏條件下各因子之複回歸結果………………………………….……………101 | |
dc.language.iso | zh-TW | |
dc.title | 抗壞血酸與兒茶素在酒精飲料中褐變之研究 | zh_TW |
dc.title | Browning of Alcoholic Beverages Containing Ascorbic Acid and Catechin | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李敏雄(Min-Hsiung Lee),吳明昌(Ming-Chang Wu),沈賜川(Szu-Chuan Shen),王裕泰 | |
dc.subject.keyword | 抗壞血酸,兒茶素,非酵素性褐變,酒精飲料,乙醇,降解, | zh_TW |
dc.subject.keyword | Ascorbic acid,Catechin,Non-enzymatic browning,Alcoholic beverage,Ethanol,Degradation, | en |
dc.relation.page | 119 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-14 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。