請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64403完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫璐西 | |
| dc.contributor.author | Wei-Shan Chang | en |
| dc.contributor.author | 張瑋珊 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:45:11Z | - |
| dc.date.available | 2012-08-19 | |
| dc.date.copyright | 2012-08-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-14 | |
| dc.identifier.citation | 呂玟蒨。2011。以大鼠模式探討龍眼花 proanthocyanidin A2 的生物可利用性。國立台灣大學食品科技研究所博士論文。台北。台灣。
詹國靖。2009。以大鼠模式探討芝麻 Lignan 化合物的生物可利用性。國立台灣大學食品科技研究所博士論文。台北。台灣。 蔡東湖。2003。大白鼠的基本手術技術與微透析應用。國立陽明大學 藥物動力學部份上課教材。台北。台灣。 謝欣玲。2005。芝麻酚在大白鼠之口服生物可利用率。國立台灣大學食品科技研究所碩士論文。台北。台灣。 韓國柱。1999。中草藥藥代動力學。中國醫藥科技出版社。北京。中國。 Anagnostopoulou, M. A.; Kefalas, P.; Kokkalou, E.; Assimopoulou, A. N.; Papageorgiou, V. P. Analysis of antioxidant compounds in sweet orange peel by HPLC-diode array detection-electrospray ionization mass spectrometry. Biomed. Chromatogr. 2005, 19, 138–148. Benavente-Garcia, O.; Castillo, J. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem. 2008, 56, 6185-6205. Brack, M. E.; Boterberg, T.; Depypere, H. T.; Stove, C.; Leclercq, G.; Mareel, M. M. The citrus methoxyflavone tangeretin affects human cell–cell interactions. Advances in Experimental Medicine and Biology. 2002, 505, 135–139. Breinholt, V.; Lauridsen, S. T.; Dragsted, L. O. Differential effects of dietary flavonoids on drug metabolizing and antioxidant enzymes in female rat. Xenobiotica, 1999, 29, 1227–1240. Causon, R. Validation of chromatographic methods in biomedical analysis. Viewpoint and discussion. J. Chromatogr. B. 1997, 689, 175-180. Chen, L.; Lee, M. J.; Li, H.; Yang, C. S. Absorption, distribution, and elimination of tea polyphenols in rats. Drug Metab Dispos. 1997, 25, 1045-1050. Chen, K. H.; Weng, M. S.; Lin, J. K. Tangeretin suppresses IL-1beta-induced cyclooxygenase (COX)-2 expression through inhibition of p38 MAPK, JNK, and AKT activation in human lung carcinoma cells. Biochemical Pharmacology. 2007, 73, 215–227. Choi, S. Y.; Ko, H. C.; Ko, S. Y.; Hwang, J. H.; Park, J. G.; Kang, S. H.; Han, S. H.; Yun, S. H.; Kim, S. J. Correlation between flavonoid content and the NO production inhibitory activity of peel extracts from various citrus fruits. Biological and Pharmaceutical Bulletin. 2007, 30, 772–778. Gaydou, E. M.; Bianchini, J. P.; Randriamiharisoa, R. P. Orange and mandarin peel oils differentiation using polymethoxylated flavones composition. J. Agric. Food Chem. 1987, 35, 525-529. Hollman, P. C.; Katan, M. B. Absorption, metabolism and health effects of dietary effects of dietary flavonoids in man. Biomed. Pharmacother. 1997, 51, 305-310. Horowitz, R. M.; Gentili, B. Flavonoid constituents of citrus. In Citrus Science and Technology; Avi Publishing: Westport, CT, 1977, 1, 397-426. Jayaprakasha, G. K.; Negi, P. S.; Sikder, S.; Rao, L. J.; Sakariah, K. K. Antibacterial activity of citrus reticulate peel extracts. Z. Naturforsch. 2000, 55c, 1030–1034. Kandaswami, C.; Perkins, E.; Soloniuk, D. S.; Drzewiecki, G.; Middleton, Jr. E. Antiproliferative effects of citrus flavonoids on a human squamous cell carcinoma in vitro. Cancer Letters. 1991, 56, 147–152. Kansy, M.; Senner, F.; & Gubernator, K. Physicochemical high throughput screening: Parallel artificial membrane permission assay in the description of passive absorption process. Journal of Medicinal Chemistry. 1998, 41, 1007–1010. Kawaii, S.; Tomono, Y.; Katase, E.; Ogawa, K.; Yano, M. Antiproliferative activity of flavonoids on several cancer cell lines. Biosci Biotechnol Biochem. 1999, 63, 896-899 Kim, M. S.; Hur, H. J.; Kwon, D. Y.; Hwang, J. T. Tangeretin stimulates glucose uptake via regulation of AMPK signaling pathways in C2C12 myotubes and improves glucose tolerance in high-fat diet-induced obese mice. Molecular and Cellular Endocrinology. 2012, 358, 127–134 King, R. A.; Broadbent, J. L.; Head, R. J. Absorption and excretion of the soy isoflavone genistein in rats. J. Nutr. 1996, 126, 176-182. Kinoshita, T.; Firman, K. Myricetin 5,7,3′,4′,5′-pentamethyl ether and other methylated flavonoids from Murraya paniculata. Phytochemistry. 1997, 45, 179-181. Kobayashi, S.; Tanabe, S. Evaluation of the anti-allergic activity of Citrus unshiu using rat basophilic leukemia RBL-2H3 cells as well as basophils of patients with seasonal allergic rhinitis to pollen. Int. J. Mol. Med. 2006, 17, 511-515. Kohri, T.; Nanjo, F.; Suzuki, M.; Seto, R.; Matsumoto, N.; Yamakawa, M.; Hojo, H.; Hara, Y.; Desai, D.; Amin, S.; Conaway, C.; Chung, F. L.; Synthesis of (−)-[4-3H] epigallocatechin gallate and its metabolic fate in rats after intravenous administration. J. Agric. Food Chem. 2001, 49, 1042–1048. Kurowska, E. M.; Manthey J. A. Hypolipidemic effects and absorption of citrus polymethoxylated flavones in hamsters with diet-induced hypercholesterolemia. J Agric Food Chem. 2004, 52, 2879–2886. Kwon, S. H.; Kang, M. J.; Huh, J. S.; Ha, K. W.; Lee, J. R.; Lee, S.K.; Lee, B. S.; Han, I. H.; Lee, M. S.; Lee, M. W.; Lee, J.; Choi, Y. W. Comparison of oral bioavailability of genistein and genistin in rats. Int. J. Pharm. 2007, 337, 148–154 Lambert, J. D.; Yang, C. S. Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutation Research. 2003, 523–524, 201–208 Lee, Y. S.; Cha, B. Y.; Saito, K.; Choi, S. S.; Wang, X. X.; Choi, B. K.; Yonezawa, T.; Teruya, T.; Nagai, K.; Woo, J. T. Effect of a Citrus depressa Hayata (shiikuwasa) extract on obesity in high-fat diet-induced obese mice. Phytomedicine. 2011, 18, 648-654 Li, S.; Wang, Y.; Dushenkov, S.; Ho, C. T. In Dietary Supplements, Bioavailability of Polymethoxyflavones. ACS Symposium Series; American Chemical Society: Washington, DC. 2008, 987, 233 Li, S.; Pan, M. H. ; Lo, C. Y.; Tan, D.; Wang, Y.; Shahidi, F.; Ho, C.T. Chemistry and health effects of polymethoxyflavones and hydroxylated polymethoxyflavones. Journal of Functional Foods. 2009, 1, 2–12. Lin, N.; Sato, T.; Takayama, Y.; Mimaki, Y.; Sashida, Y.; Yano, M.; Ito, A. Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochemical Pharmacology. 2003, 65, 2065–2071. Liu, X.; Chism, J. P.; LeCluyse, E. L.; Brouwer, K. R.; Brouwer, K. L. Correlation of biliary excretion in sandwich-cultured rat hepatocytes and in vivo in rats. Drug Metab. Dispos. 1999, 27, 637-644. Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jime’nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004, 79, 727–747. Manthey, J. A.; Grohmann, K.; Guthrie, N. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem. 2001, 8, 135–153. Manthey, J. A.; Cesar, T. B.; Jackson, E.; Talcott, S. M. Pharmacokinetic study of nobiletin and tangeretin in rat serum by high-performance liquid chromatography-electrospray ionization-mass spectrometry. J. Agric. Food Chem. 2011, 59, 145–151. Martinez, C. C.; Vicente, O.; Yanez Gascon, M. J.; Alcaraz, B. M.; Canteras, J. M.; Avente-Garcia, O.; Castillo, J. Treatment of metastatic melanoma B16F10 by the flavonoids tangeretin, rutin, and diosmin. Journal of Agricultural and Food Chemistry. 2005, 53, 6791–6797. Mehrotra, N.; Gupta, M.; Kovar, A.; Meibohm, B. The role of pharmacokinetics and pharmacodynamics in phosphodiesterase-5 inhibitor therapy. International Journal of Impotence Research. 2007, 19, 253–264. Miyata, Y.; Tanaka, H.; Shimada, A.; Sato, T.; Ito, A.; Yamanouchi, T.; Kosano, H. Regulation of adipocytokine secretion and adipocyte hypertrophy by polymethoxyflavonoids, nobiletin and tangeretin. Life Science, 2011, 88, 613-618 Morley, K. L.; Ferguson, P. J.; Koropatnick, J. Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells. Cancer Letters, 2007, 251, 168–178. Murakami, A.; Koshimizu, K.; Ohigashhi, H.; Kuwahara, S.; Kuki, W.; Takahashi, Y.; Hosotani, K.; Kawahara, S.; Matsuoka, Y. Characteristic rat tissue accumulation of nobiletin, a chemopreventive polymethoxyflavonoid, in comparison with luteolin. BioFactors. 2002, 16, 73–82. Murakami, A.; Shigemori, T.; Ohigashi, H. Zingiberaceous and citrus constituents, 1’-acetoxychavicol acetate, zerumbone, auraptene, and nobiletin, suppress lipopolysaccharide-induced cyclooxygenase-2 expression in RAW 264.7 murine macrophages through different modes of action. Journal of Nutrition. 2005, 135, 2987–2992. Nielsen, S.E.; Breinholt, V.; Justesen, U.; Cornett, C.; Dragsted, L. O. In vitro biotransformation of flavonoids by rat liver microsomes. Xenobiotica. 1998, 28, 389-340. Nielsen, S. E.; Breinholt, V.; Cornett C.; Dragsted, L. O. Biotransformation of the citrus flavone tangeretin in rats. Identification of metabolites with intact flavane nucleus. Food and Chemical Toxicology. 2000, 38, 739-746. Qiu, F.; Chen, X. Y.; Song, B.; Zhong, D. F.; Liu, C. X. Influence of dosage forms on pharmacokinetics of daidzein and its main metabolite daidzein-7-O-glucuronide in rats. Acta Pharmacol. Sin. 2005, 26, 1145–1152. Ramiro-Puig, E.; Urpi-Sarda, M.; Perez-Cano, F. J.; Franch, A.; Castellote, C.; Andres-Lacueva, C.; Izquierdo-Pulido, M.; Castell, M. Cocoa-enriched diet enhances antioxidant enzyme activity and modulates lymphocyte composition in thymus from young rats. J. Agric. Food Chem. 2007, 55, 6431–6438. Shargel, L.; Wu-Pong, S.; Yu, Andrew B. C. In Applied Biopharmaceutics and Pharmacokinetics, 5th edition; Chapter 1. Introduction to biopharmaceutics and pharmacokinetics. McGraw-Hill Professional Publishing, New York, NY, USA. 2004, 1, 7. Shargel, L.; Wu-Pong, S.; Yu, Andrew B. C. In Applied Biopharmaceutics and Pharmacokinetics, 5th edition; Chapter 11. Hepatic elimination of drugs. McGraw-Hill Professional Publishing, New York, NY, USA. 2004, 1, 321. Shargel, L.; Wu-Pong, S.; Yu, Andrew B. C. In Applied Biopharmaceutics and Pharmacokinetics, 5th edition; Chapter 15. Bioavailability and Bioequivalence. McGraw-Hill Professional Publishing, New York, NY, USA. 2004, 1, 453. Suganuma, M.; Okabe, S.; Oniyama, M.; Tada, Y.; Ito, H.; Fujiki, H. Wide distribution of [3H] (−)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis. 1998, 19, 1771–1776. Suzuki, R.; Kohno, H.; Murakami, A.; Koshimizu, K.; Ohigashi, H.; Yano, M.; Tokuda, H.; Nishino, H.; Tanaka, T. Citrus nobiletin inhibits azoxymethane- induced large bowel carcinogenesis in rats. Biofactors. 2004, 22, 111–114. Tanaka, S.; Sato, T.; Akimoto, N.; Yano, M.; Ito, A. Prevention of UVB-induced photoinflammation and photoaging by a polymethoxy flavonoid, nobiletin, in human keratinocytes in vivo and in vitro. Biochemical Pharmacology, 2004, 68, 433–439. Umeda-Sawada, R.; Ogawa, M.; Igarashi, O. The metabolism and distribution of sesamin lignans (sesamin and episesamin) in rats. Lipids 1999, 34, 633-637. Van, S. S.; Parmar, V. S.; Sharma, S. K.; De, B. B.; Fore, F.; Coopman, P.; Vanhoecke, B.W.; Boterberg, T.; Depypere, H. T.; Leclercq, G.; Bracke, M. E. Tangeretin inhibits extracellular-signal regulated kinase (ERK) phosphorylation. FEBS Letters. 2005, 579, 1665–1669. Van de Waterbeemd, H.; Lennernas, H.; Artursson, P. In Methods in principal medicinal chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. 2003, vol. 18. Walle, T.; Hsieh, F.; DeLegge, M. H.; Oatis, J. E.; Jr; Walle, U. K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metabolism and Distribution. 2004, 32, 1377–1382. Walle, T.; Ta, N.; Kawamori, T.; Wen, X.; Tsuji, P. A.; Walle, U. K. Cancer chemopreventive properties of orally bioavailable flavonoids–methylated versus unmethylated flavones. Biochem. Pharmacol. 2007, 73, 1288–1296. Wang, Z.; Li, S.; Ferguson, S.; Goodnow, R.; Ho, C. T. Validated reversed phase LC method for quantitative analysis of polymethoxyflavones in citrus peel extracts. J. Sep. Sci. 2008, 31, 30–37. Wen, X.; Walle, T. Methylation protects dietary flavonoids from rapid hepatic metabolism. Xenobiotica. 2006, 36, 387-397. Whitman, S. C.; Kurowska, E. M.; Manthey, J. A.; Daugherty, A. Nobiletin, a citrus flavonoid isolated from tangerines, selectively inhibits class A scavenger receptor-mediated metabolism of acetylated LDL by mouse macrophages. Atherosclerosis. 2005, 178, 25 – 32. Wu, Y. Q.; Zhou, C. H.; Tao, J.; Li, S. N. Antagonistic effects of nobiletin, a polymethoxyflavonoid, on eosinophilic airway inflammation of asthmatic rats and relevant mechanisms. Life Sci. 2006, 78, 2689-2696. Yanez, J.; Vicente, V.; Alcaraz, M.; Castillo, J.; Benavente-Garcia, O.; Canteras, M.; Teruel, J. A. Cytotoxicity and antiproliferative activities of several phenolic compounds against three melanocytes cell lines: relationship between structure and activity. Nutr Cancer. 2004, 49, 191-199. Yang, C.; Chen, L.; Lee, M. J.; Balentine, D.; Kuo, M.; Schantz, S. Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers, Cancer Epidemiol. Biomarkers Prev. 1998, 7, 351–354. Yenjai, C.; Prasanphen, K.; Daodee, S.; Wongpanich, V.; Kittakoop, P. Bioactive flavonoids from Kaempferia parviflora. Fitoterapia. 2004, 75, 89-92. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64403 | - |
| dc.description.abstract | 近年來,存在於柑橘類水果中一種特殊的類黃酮成分-「多甲氧基黃酮 (polymethoxyflavone, PMF)」,因其具有特殊的生物活性而開始受到矚目。多甲氧基黃酮屬於黃酮類 (flavones) 的一種,其結構的特性為在基本骨架 (C6-C3-C6) 上具有兩個以上的甲氧基 (methoxy groups),並且在C環的4號碳位置上接有一羰基。多甲氧基黃酮主要存在於柑橘屬 (citrus genus) 的植物中,尤其以果皮的部分含量最為豐富;其中,橘皮素 (tangeretin) 為一種在柑橘類果皮中頗具代表性的多甲氧基黃酮類,其化學名稱為 5,6,7,8,4’ - 五甲氧基黃酮 (5,6,7,8,4’ - pentamethoxyflavone) 。已有許多研究指出,橘皮素具有良好的生理活性,例如抗發炎、抗菌、抗癌以及降血脂等功效,但是目前對於橘皮素在生物體內生物可利用率之相關研究仍相當缺乏,故本研究之目的係以大鼠模式評估橘皮素之生物可利用性。本研究藥物動力學試驗的結果顯示,以胃管餵食大鼠50 mg/kg BW tangeretin 後,其在血液測得之 Cmax 為0.87 ± 0.33 μg/mL , T1/2 為 342.43 ± 71.27 min;以股靜脈注射給予大鼠5 mg/kg BW tangeretin 後,其在血液測得之Cmax 為 1.11 ± 0.41 μg/mL,T1/2 為69.87 ± 15.72 min;經計算後得橘皮素之口服生物可利用率為 27.11 %,遠高於一般多元酚類化合物。推測橘皮素吸收較佳的原因可能與其分子結構帶有甲氧基而使其極性較低,因而具有較高的細胞膜穿透性有關。在大鼠體內組織分佈試驗中可發現,於胃管餵食4小時後在腸胃道即含有大量的橘皮素,尤其以胃中含量最高,佔給予劑量的20%。此外,在排除試驗部分,以胃管餵食後 0-8 hr的時間區段中有相對較高的橘皮素由尿液排出;另一方面,在胃管餵食後 8-24 hr 為橘皮素於糞便中之主要排除期。管餵48小時後約有7.5 % 橘皮素以原型態型式經由糞便排出體外;同時在 LC/MSn 的分析結果中也可觀察到有許多代謝產物產生,這些代謝物的含量與種類有待未來進一步的分析與鑑定。 | zh_TW |
| dc.description.abstract | There is a special group of flavonoids called polymethoxyflavones (PMFs) which is rich in citrus fruits. Since the special bioactivity has been studied extensively, this group of compounds are receiving more popularity recently. PMF is a general term for flavones bearing two or more methoxy groups on their basic benzo-γ- pyrone (C6-C3-C6) skeleton with a carbonyl group at the C4 position. PMFs exist almost exclusively in citrus plants, especially in citrus peels. Tangeretin is one of the most abundant and representative polymethoxyflavones in citrus peels, especially in tangerines and oranges, It’s also known as 5,6,7,8,4’-pentamethoxyflavone. Recent studies have shown that tangeretin exhibits anti-inflammatory, antifungal, anticancer activities and hypolipidemic effect. However, the oral bioavailability and metabolism of this compound are still lacking. The aim of this study is to investigate the bioavailability of tangeretin in Sprague-Dawley rats. In the pharmacokinetic study, after tube feeding 50mg/kg BW of tangeretin, the pharmacokinetic parameter Cmax and T1/2 were 0.87 ± 0.33 μg/mL and 342.43 ± 71.27 min, respectively. After intravenous injection of 5 mg/kg BW of tangeretin, our results showed that Cmax and T1/2 were 1.11 ± 0.41 μg/mL and 69.87 ± 15.72 min, respectively. The bioavailability of tangeretin is 27.11 % , much higher than other polyphenolic compounds. It is suggested that, the lipophilic nature of the multiple methoxy groups on the tangeretin structure, results in the lower solubility in water and higher cell membrane permeability, therefore tangeretin has higher bioavailability. In the tissue distribution study, higher concentration of tangeretin was found in the gastrointestinal tract after tube feeding 50 mg/kg BW of tangeretin for 4 hours. It was especially in stomach which contained up to 20% of dosing. Furthermore, in the excretion study, the major excretion period of tangeretin occurred 0-8 hours in urine excretion and 8-24 hours in fecal excretion after tube feeding 50 mg/kg BW of tangeretin, and 7.5% tangeretin was excreted to feces after 48 hours. On the other hand, the metabolites of tangeretin should be further studied in order to understand the health potential of tangeretin and its metabolites. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:45:11Z (GMT). No. of bitstreams: 1 ntu-101-R99641035-1.pdf: 5051012 bytes, checksum: 808e6b79815733e8eaf225c9e46092ef (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 謝誌 I
中文摘要 III Abstract IV 縮寫表 VI 目錄 VIII 圖次 XII 表次 XIV 附錄 XV 壹、前言 1 貳、文獻整理 2 一、多甲氧基黃酮 (Polymethoxyflavone, PMF) 2 (一) 類黃酮 (Flavonoids)簡介 2 (二) 柑橘類果皮之多甲氧基黃酮 (Polymethoxyflavone) 4 (三) 多甲氧基黃酮之生理活性 6 二、橘皮素 (Tangeretin) 及其生理活性 8 (一) 橘皮素簡介 8 (二) 橘皮素之生理功效 9 三、藥物動力學 (Pharmacokinetics) 11 (一) 藥物動力學簡介 11 (二) 藥物動力學參數 12 (三) 多元酚類化合物之藥物動力學研究 14 四、生物可利用率 (Bioavailability) 16 (一) 生物可利用率定義 16 1. 絕對生物可利用率 16 2. 相對生物可利用率 16 (二) 多元酚類化合物之生物可利用率相關研究 17 (三) 多甲氧基黃酮之生物可利用率 18 (四) 多甲氧基黃酮之代謝研究 20 參、研究目的與實驗架構 22 一、研究目的 22 二、實驗架構 23 (一) 大鼠藥物動力學試驗 23 (二) 大鼠體內分佈及排除試驗 24 肆、材料與方法 25 一、實驗材料 25 二、化學藥品與溶劑 25 三、實驗動物及飼料 26 四、儀器設備 26 五、實驗方法 30 (一) Tangeretin 藥物動力學參數測定 30 1. 動物飼養 30 2. Tangeretin 於血漿樣本之檢量線製作 30 3. Tangeretin 分析方法之確效 31 4. Tangeretin 液相層析質譜儀 (LC/MSn) 分析 31 5. 管灌餵食組 32 6. 靜脈注射組 33 7. Tangeretin 於大白鼠的生物可利用率測定 34 8. 藥物動力學參數分析 34 (二) Tangeretin 於大白鼠的吸收與分佈試驗 34 1. 實驗動物飼養 34 2. Tangeretin於各組織臟器萃取之回收率 (Recovery) 測定 34 3. 管灌餵食與犧牲 35 4. 動物檢體的收集與前處理 36 5. 檢體萃取 36 6. 高效能液相層析儀 (HPLC) 分析 37 (三) Tangeretin 於大白鼠的排除試驗 38 1. 動物飼養 38 2. 代謝籠試驗 38 3. 檢體萃取及分析 38 4. Tangeretin 於尿液與糞便樣本之檢量線製作 39 5. 液相層析質譜儀 (LC/MSn) 分析 40 伍、結果與討論 41 一、 以大鼠模式探討 tangeretin 之藥物動力學研究 41 (一) 實驗材料 tangeretin 之質譜圖與純度分析 41 (二) Tangeretin分析方法之確效 43 (三) 血漿中 tangeretin 之藥物動力學參數及口服生物可利用率 45 二、以大鼠模式探討 tangeretin 之吸收與分佈試驗 51 (一) Tangeretin分析方法之確效 51 (二) Tangeretin於大鼠血漿及各組織臟器之回收率試驗 53 (三) Tangeretin於大鼠各組織臟器之分佈情形 55 三、以大鼠模式探討 tangeretin 於尿液與糞便之排除試驗 67 (一) Tangeretin於大鼠之尿液排除結果 67 (二) Tangeretin於大鼠之糞便排除結果 72 (三) Tangeretin之代謝研究 77 陸、結論 86 柒、參考文獻 87 捌、附錄 95 | |
| dc.language.iso | zh-TW | |
| dc.subject | 藥物動力學 | zh_TW |
| dc.subject | 生物可利用率 | zh_TW |
| dc.subject | 多甲氧基黃酮 | zh_TW |
| dc.subject | 橘皮素 | zh_TW |
| dc.subject | polymethoxyflavones(PMFs) | en |
| dc.subject | bioavailability | en |
| dc.subject | pharmacokinetics | en |
| dc.subject | tangeretin | en |
| dc.title | 以大鼠模式探討橘皮素的藥物動力學及組織分佈 | zh_TW |
| dc.title | Study on the Pharmacokinetics and Tissue Distribution
of Tangeretin in Rat | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳炳輝,魏國晉,呂廷璋,何其儻 | |
| dc.subject.keyword | 生物可利用率,藥物動力學,多甲氧基黃酮,橘皮素, | zh_TW |
| dc.subject.keyword | bioavailability,pharmacokinetics,polymethoxyflavones(PMFs),tangeretin, | en |
| dc.relation.page | 102 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
