Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64384
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王俊能(Chun-Neng Wang)
dc.contributor.authorZuo-Hao Chanen
dc.contributor.author曾佐豪zh_TW
dc.date.accessioned2021-06-16T17:44:07Z-
dc.date.available2015-08-16
dc.date.copyright2012-08-16
dc.date.issued2012
dc.date.submitted2012-08-14
dc.identifier.citationBaron C, Zambryski PC (1995) The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Annual Review of Genetics 29: 107-129
Barth S, Geier T, Eimert K, Watillon B, Sangwan RS, Gleissberg S (2009) KNOX overexpression in transgenic Kohleria (Gesneriaceae) prolongs the activity of proximal leaf blastozones and drastically alters segment fate. Planta 230: 1081-1091
Bhaskar PB, Venkateshwaran M, Wu L, Ane JM, Jiang J (2009) Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato. PloS One 4: e5812
Birch RG (1997) PLANT TRANSFORMATION: problems and strategies for practical application. Annual Review of Plant Physiology and Plant Molecular Biology 48: 297-326
Bolton GW, Nester EW, Gordon MP (1986) Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232: 983-985
Braun AC (1952) The crown-gall disease. Annals of the New York Academy of Sciences 54: 1153-1161
Chan MT, Lee TM, Chang HH (1992) Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant & Cell Physiology 33: 577-583
Chang HH, Chan MT (1991) Agrobacterium tumefaciens-mediated transformation of soybean (Glycine max L. Merr.) is promoted by the inclusion of potato suspension culture. Botanical Bulletin of Academia Sinica 32
Chiou JG (2011) A biolistic approach for functional studies in non-model plants. Bachelor thesis, National Taiwan University: Department of Life Science
Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H (2007) Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318: 453-456
Duckely M, Oomen C, Axthelm F, Van Gelder P, Waksman G, Engel A (2005) The VirE1VirE2 complex of Agrobacterium tumefaciens interacts with single-stranded DNA and forms channels. Molecular Microbiology 58: 1130-1142
Dumas F, Duckely M, Pelczar P, Van Gelder P, Hohn B (2001) An Agrobacterium VirE2 channel for transferred-DNA transport into plant cells. Proceedings of the National Academy of Sciences of the United States of America 98: 485-490
Escudero J, Hohn B (1997) Transfer and Integration of T-DNA without Cell Injury in the Host Plant. The Plant Cell 9: 2135-2142
Geier T, Sangwan RS (1996) Histology and chimeral segregation reveal cell-specific differences in the competence for shoot regeneration and Agrobacterium-mediated transformation in Kohleria internode explants. Plant Cell Reports 15: 386-390
Gheysen G, Villarroel R, Van Montagu M (1991) Illegitimate recombination in plants: a model for T-DNA integration. Genes & Development 5: 287-297
Ghisleni PL, Martinetti L (1995) Saintpaulia. Annali Accademia di Agricoltura di Torino: 158-266
Godwin I, Todd G, Fordlloyd B, Newbury HJ (1991) The Effects of Acetosyringone and pH on Agrobacterium-Mediated Transformation Vary According to Plant-Species. Plant Cell Reports 9: 671-675
Hansen G, Das A, Chilton MD (1994) Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proceedings of the National Academy of Sciences of the United States of America 91: 7603-7607
Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant journal: for cell and molecular biology 6: 271-282
Hong TH (2010) Establishing virus-induced gene silencing system in Sinningia speciosa (Gesneriaceae). Master thesis, National Taiwan University
Graduate Institute of Ecology and Evolutionary Biology
Hood EE, Jen G, Kayes L, Kramer J, Fraley RT, Chilton MD (1984) Restriction endonuclease map of pTi Bo542, a potential Ti plasmid vector for genetic engineering of plants. Nature Biotechnology 2: 702 - 709
Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal 6: 3901-3907
Jin S, Komari T, Gordon MP, Nester EW (1987) Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. J. Bacteriol 169: 4417-4425
Khush GS (1999) Green revolution: preparing for the 21st century. Genome / National Research Council Canada; Genome / Conseil national de recherches Canada 42: 646-655
Komari T (1989) Transformation of callus cultures of nine plant species mediated by Agrobacterium. Plant Science 60: 223–229
Komari T, Halperin W, Nester EW (1986) Physical and functional map of supervirulent Agrobacterium tumefaciens tumor-inducing plasmid pTiBo542. Journal of Bacteriology 166: 88-94
Kushikawa S, Hoshino Z, Masahiro M (2001) Agrobacterium-mediated
transformation of Saintpaulia ionantha Wendl. Plant Science 161: 953-960.
Lee HS, Kim SW, Lee KW, Eriksson T, Liu JR (1995) Agrobacterium-mediated transformation of ginseng (Panax ginseng) and mitotic stability of the inserted beta-glucuroidase gene in regenerants from isolated protoplasts. Plant Cell Reports 14: 545-549
Li XQ, Liu CN, Ritchie SW, Peng JY, Gelvin SB, Hodges TK (1991) Factors influencing Agrobacterium-mediated transient expression of gusA in rice. Plant Molecular Biology 20
Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 383: 794-799
Mantegazza R, Moller M, Harrison CJ, Fior S, De Luca C, Spada A (2007) Anisocotyly and meristem initiation in an unorthodox plant, Streptocarpus rexii (Gesneriaceae). Planta 225: 653-663
Mantegazza R, Tononi P, Moller M, Spada A (2009) WUS and STM homologs are linked to the expression of lateral dominance in the acaulescent Streptocarpus rexii (Gesneriaceae). Planta 230: 529-542
Mercuri A, De Benedetti L, Burchi G, Schiva T (2000) Agrobacterium-mediated transformation of African violet. Plant Cell, Tissue and Organ Culture 60: 39-46
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497
Newell CA (2000) Plant transformation technology. Developments and applications. Molecular Biotechnology 16: 53-65
Nishii K, Nagata T, ChunNeng W (2009) High morphological plasticity in Gesneriaceae meristems: reversions in vegetative and floral development. Trends in Developmental Biology 4: 33-40
Paszkowski J, Baur M, Bogucki A, Potrykus I (1988) Gene targeting in plants. The EMBO journal 7: 4021-4026
Perret M, Chautems A, Spichiger R, Kite G, Savolainen V (2003) Systematics and evolution of tribe Sinningieae (Gesneriaceae): evidence from phylogenetic analyses of six plastid DNA regions and nuclear ncpGS. American Journal of Botany 90: 445-460
Pitzschke A, Hirt H (2010) New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. The EMBO journal 29: 1021-1032
Renou JP, Brochardb P, Jalouzota R (1993) Recovery of transgenic chrysanthemum (Dendranthema grandiflora Tzvelev) after Hygromycin resistance selection. Plant Science 89: 185–197
Schrammeijer B, Risseeuw E, Pansegrau W, Regensburg-Tuink TJ, Crosby WL, Hooykaas PJ (2001) Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Current Biology : CB 11: 258-262
Smith EF and Townsend CO (1907) A plant-tumor of bacterial origin. Science 25: 671-673
Stachel SE, Nester EW, Zambryski PC (1986) A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proceedings of the National Academy of Sciences of the United States of America 83: 379-383
Tempe J, Petit A (1982) Opine utilization by Agrobacterium. Kahl, G. and J. S. Schell (eds.): Molecular biology of plant tumors Academic Press, Orlando: 451-459
Torregrosa L, Peros JP, Lopez G, Bouquet A (1998) Effect of Hygromycin, Kanamycin and Phosphinothricin on the embryogenetic callus development and axillary micropropagation of Vitis vinifera L. ISHS Acta Horticulturae 528
Toth S, Kiss C, Scott P, Kovacs G, Sorvari S, Toldi O (2006) Agrobacterium-mediated genetic transformation of the desiccation tolerant resurrection plant Ramonda myconi (L.) Rchb. Plant Cell Reports 25: 442-449
Tzfira T, Li J, Lacroix B, Citovsky V (2004) Agrobacterium T-DNA integration: molecules and models. Trends in Genetics : TIG 20: 375-383
Vergunst AC, van Lier MC, den Dulk-Ras A, Stuve TA, Ouwehand A, Hooykaas PJ (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proceedings of the National Academy of Sciences of the United States of America 102: 832-837
Wang CC, Cai XZ, Wang XM, Zheng Z (2006) Optimisation of tobacco rattle virus-induced gene silencing in Arabidopsis. Functional Plant Biology 33: 347-355
Winkelmann T (1993) Use of protoplast regeneration system for African Violet improvement. African Violet 46: 50-52
Wolanin PM, Thomason PA, Stock JB (2002) Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biology 3: REVIEWS3013
Zaitlin D, Pierce AJ (2010) Nuclear DNA content in Sinningia (Gesneriaceae); intraspecific genome size variation and genome characterization in S. speciosa. Genome / National Research Council Canada = Genome / Conseil national de recherches Canada 53: 1066-1082
Zhang MZ, Ye D, Wang LL, Pang JL, Zhang YH, Zheng K, Bian HW, Han N, Pan JW, Wang JH, Zhu MY (2008) Overexpression of the cucumber LEAFY homolog CFL and hormone treatments alter flower development in gloxinia (Sinningia speciosa). Plant Molecular Biology 67: 419-427
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64384-
dc.description.abstract大岩桐(Sinningia speciosa)是今日廣為栽培的觀賞植物。其栽培歷史悠久,故品種眾多,各品種之間也不難找到一些變異,花形的變異更是明顯,例如花市常見的輻射對稱品系便是現在最普遍的。因此大岩桐可以作為我們探究控制花部對稱性候選基因的材料。一旦建立了有效的農桿菌轉殖系統,這些基因的功能則會漸漸浮出水面。雖然先前已經有學者針對大岩桐的轉殖發表過文章,但是該文獻著重的是基因功能分析,因此有需要進一步針對大岩桐轉殖的部分作探討。我們先將無菌組培的大岩桐葉片切成0.5平方公分大小的葉片,在使用農桿菌菌株LB4404進行感染。感染之後以潮黴素(Hygromycin) 5 mg/L進行篩選。使用的載體是pCAMBIA1301,其中的beta-glucuronidase(GUS)帶有內含子。除此之外,我們又發現,在含MS、2 ppm BA和0.2 ppm NAA的培養基上,大岩桐的葉子切片能透過這樣的組培方式在兩個星期後分化出小型的愈傷組織,並且在一個禮拜後分化成不定芽,並長根繼續生長,再將這些不定芽移植至於菌環境以外的培養土上,仍能繼續生長。運用同一個轉殖系統轉殖後,在120片外體植片中,分化出14棵不定芽,經gDNA PCR檢測GUS基因,證實其中五株確定為轉殖株。另外RT-PCR結果又顯示在這五株轉植株中,全都表現GUS基因,轉殖成功率為4.16%。這是繼貓臉苦苣苔(Kohleria sp.)後,第二種苦苣苔科植物的轉殖系統,可作為往後研究計畫的基礎技術,進而得以在演化發育的研究領域中進行花部控制、發育或是逆境反應基因的功能性研究。zh_TW
dc.description.abstractSinningia speciosa is an ornamental plant species that is widely cultivated. Many cultivars, however, generated a range of floral mutations such as Peloria (actinomorphy). It thus allows us to examine candidate genes that control floral symmetry. These functions should be able to be clarified if a suitable transformation system is established. Although there was a transformation protocol published on S. speciosa, yet it mainly focused on genetic analysis. Due to this reason, a more detailed transformation should be clarified. We therefore chose Agrobacterium, strand LBA4404, with medium Hygromycin as a selective agent, to infect leaf explants after they were sectioned into the size of 0.5 cm2. We also found out that S. speciosa has the capability to regenerate vigorously through vegetative cuttings after being placed on MS medium containing 2 ppm of BA and 0.2 ppm of NAA. So the major optimizing factor is on Agrobacterium infections. New plantlets induced from shoots were beta-glucuronidase(GUS)-stained and confirmed with gDNA PCR and RT-PCR in order to predict the rate of success. Out of all 120 explants, 14 regenerants were collected and five of which was successfully transformed as confirmed by PCR using GUS primers, while all of which showed GUS expression as confirmed by RT-PCR, resulting in a transformation rate of 4.16%. This project shall serve as an important mile stone in building a reliable transformation protocol in Gesneriaceae, allowing functional validations of several candidate floral developmental genes in evo-devo, thus assists any possible future project which could be brought out by our laboratory.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:44:07Z (GMT). No. of bitstreams: 1
ntu-101-R98b44019-1.pdf: 1355069 bytes, checksum: 3d85c67aea933522e486ca720db68ddd (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsINDEX
口試委員會審定書 #
ACKNOWLEDGEMENT I
中文摘要 III
ABSTRACT IV
INDEX VI
LIST OF FIGURES IX
LIST OF TABLES X
Chapter 1
Introduction 1
Overview 1
Agrobacterium-mediated transformation 3
Possible applications of Agrobacterium-mediated transformation in members of Gesneriace 7
Infection of Agrobacterium on Sinningia speciosa 9
Aim of study 11
Chapter 2
Materials and Methods 13
Plant material and tissue culture 13
Hygromycin resistance of Sinningia speciosa 16
Plasmid preparation 16
Preparation of competent cells of Agrobacterium tumefaciens 17
Vector transformation into Agrobacterium tumefaciens through electroporation 18
Agrobacterium-mediated transformation 18
Verification of transformed regenerants by genomic DNA PCR 20
Verification of transformed regenerants by RT-PCR 23
GUS-staining 26
Chapter 3
Results 28
Tissue culture: callus induction and plant regeneration 28
Hygromycin resistance of S. speciosa and its working concentration 31
Agrobacterium-mediated transformation 32
DNA extraction 36
PCR using GUS-F and GUS-R as primers 37
RT-PCR 38
GUS-staining 39
Chapter 4
Discussion 41
Tissue culture in Sinningia speciosa 41
Selection of Hygromycin resistance in Sinningia speciosa 42
Duration of immersion plays a crucial role in survival of leaf explants 42
Future prospectives 46
References . 52
Appendix 58
dc.language.isoen
dc.subject大岩桐zh_TW
dc.subject農桿菌轉殖zh_TW
dc.subject苦苣苔科zh_TW
dc.subjectGUS染色zh_TW
dc.subject組織培養zh_TW
dc.subjectAgrobacterium-mediated transformationen
dc.subjectSinningia speciosaen
dc.subjectGesneriaceaeen
dc.subjectGUS stainingen
dc.subjectTissue cultureen
dc.title大岩桐(Sinningia speciosa)農桿菌轉殖系統之建立zh_TW
dc.titleAgrobacterium-mediated transformation in Darwin’s Gloxinia, Sinningia speciosaen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪傳揚(Chwan-Yang Hong),陳仁治(Jen-Chih Chen),鄭秋萍(Chiu-Ping Cheng)
dc.subject.keyword大岩桐,農桿菌轉殖,苦苣苔科,GUS染色,組織培養,zh_TW
dc.subject.keywordAgrobacterium-mediated transformation,Sinningia speciosa,Gesneriaceae,GUS staining,Tissue culture,en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2012-08-14
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved