Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63992
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松
dc.contributor.authorWan-Shan Kangen
dc.contributor.author康菀珊zh_TW
dc.date.accessioned2021-06-16T17:25:35Z-
dc.date.available2015-08-19
dc.date.copyright2012-08-19
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citation[1] L. D. Hicks, T. C. Harman, X. Sun, M. S. Dresselhaus, Experimental Study of the Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit, Phys. Rev. B 53 (1996) 10493.
[2] L. D. Hicks, M. S. Dresselhaus, Thermoelectric Figure of Merit of a One-Dimensional Conductor, Phys. Rev. B 47 (1993) 16631.
[3] L. D. Hicks, M. S. Dresselhaus, Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit, Phys. Rev. B 47 (1993) 12727.
[4] F. J. Disalvo, Thermoelectric Cooling and Power Generation, Science 285 (1999) 703.
[5] B. C. Sales, Smaller Is Cooler, Science 295 (2002) 1248.
[6] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit, Nature 413 (2001) 597.
[7] H. Zou, D. M. Rowe, S.G. Williams, Peltier Effect in a Co-Evaporated Sb2Te3(P)-Bi2Te3(N) Thin Film Thermocouple, Thin Solid Films 408 (2002) 270.
[8] H. Beyer, J. Nurnus, H. Bottner, A. Lambrecht, E. Wagner, G. Bauer, High Thermoelectric Figure of Merit ZT in PbTe and Bi2Te3-Based Superlattices by a Reduction of the Thermal Conductivity, J. Phys. E 13 (2002) 965.
[9] B. Aboulfarash, A. Mzerd, A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, A. Boyer, Growth of (Bil-xSbx)2Te3 Thin Films by Metal-Organic Chemical Vapour Deposition, J. Mater. Chem. Phys. 62 (2000) 179.
[10] B. Zheng, Z. Xiao, B. Chhay, R. L. Zimmerman, M. E. Edwards, D. Ila, Thermoelectric Properties of MeV Si Ion Bombarded Bi2Te3/Sb2Te3 Superlattice Deposited by Magnetron Sputtering, Surf. Coat. Technol. 203 (2009) 2682.
[11] B. Y. Yoo, C. K. Huang, J. R. Lim, J. Herman, M. A. Ryan, J. P. Fleurial, N. V. Myung, Electrochemically Deposited Thermoelectric N-Type Bi2Te3 Thin Films, Electrochim. Acta 50 (2005) 4371.
[12] M. S. Martı’n-Gonza’lez, A. L. Prieto, R. Gronsky, T. Sands, and A. M. Stacy, Insights into the Electrodeposition of Bi2Te3, J. Electrochem. Soc. 149 (2002) C546.
[13] 馮勝彥,多量子點系統之熱整流效應,中央大學碩士論文,2010年7月。
[14] D.M. Rowe, CRC Handbook of Thermoelectrics, CRC press, (1995).
[15] 陳尚謙,準單晶碲化鉍奈米線和薄膜的熱電性質研究,政治大學碩士論文,2011年7月。
[16] 陳亭綱,使用垂直矽奈米線降低熱傳導之理論分析與實驗結果,交通大學碩士論文,2009年7月。
[17] M. S. Dresslhaus, G. Dresslhaus, X. Sun, Z. Zhang, S. B. Cronin, T. Koga, J. Y. Ying, G. Chen, The Promise of Low-Dimensional Thermoelectric Materials, Microscale Therm. Eng. 3 (1999) 89.
[18] T. M. Tritt, Holey and Unholey Semiconductors, Science 283 (1999) 804.
[19] H. Bando, K. Koizumi, Y. Oikawa, K. Daikohara, V. A. Kulbachinskii, H. Ozaki, The Time-Dependent Process of Oxidation of the Surface of Bi2Te3 Studied by X-Ray Photoelectron Spectroscopy, J. Phys.: Condens. Matter 12 (2000) 5607.
[20] H. J. Goldsmid, Introduction to Thermoelectricity, Springer-Verlag Berlin Heidelberg, (2010).
[21] T. Caillat, M. Carle, P. Pierrat, H. Scherrer, S. Scherrer, J. Phys. Chem. Solids 53 (1992) 1121.
[22] T. B. Massalski, Binary Alloy Phase Diagram, 2nd ed., ASM International, Ohio, (1990).
[23] 莊東漢,材料破損分析,五南出版社,2007年。
[24] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE, Houston, Texas, (1974).
[25] A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., Wiley, New York, (2001).
[26] N. Kanani, Electroplating-Basic Principles, Process and Practice, 1st ed., Elsevier, (2004).
[27] R. K. Pandey, S. N. Sahu, S. Chandra, Handbook of Semiconductor Electrodeposition, Marcel Dekker, New York, (1996).
[28] R. D. Engelken, Ionic Electrodeposition of II-VI and III-V Compounds, J. Electrochem. Soc. 135 (1988) 834.
[29] M. Takahashi, Y. Katou, K. Nagata, S. Furuta, The Composition and Conductivity of Electrodeposited Bi-Te Alloy Films, Thin Solid Films 240 (1994) 70.
[30] S. Michel, S. Diliberto, C. Boulanger, B. Bolle, Effect of Electrochemical Deposition Conditions on the Crystallographic Texture of Bismuth Telluride Alloys, J. Cryst. Growth 296 (2006) 227.
[31] Y. Miyazaki, T. Kajitani, Preparation of Bi2Te3 Films by Electrodeposition, J. Cryst. Growth 229 (2001) 542.
[32] P. Heo, K. Hagiwara, R. Ichino, M. Okido, Electrodeposition and Thermoelectric Characterization of Bi2Te3, J. Electrochem. Soc. 153 (2006) C213.
[33] J. Yang, W. Zhu, X. Gao, S. Bao, X. Fan, Electrochemical Aspects of the Formation of Bi2Te3 Thin Film via the Route of ECALE, J. Electroanal. Chem. 577 (2005) 117.
[34] M. Takahashi, M. Kojima, S. Sato, N. Ohnisi, A. Nishiwaki, K. Wakita, T. Miyuki, S. Ikeda, and S. Muramatsu, Electric and Thermoelectric properties of Electrodeposited Bismuth Telluride(Bi2Te3) Films, J. Appl. Phys. 96 (2004) 5582.
[35] Y. H. Lee, K. Y. Lee, J. S. Bae, J. H. Lee, J. Y. Byun, D. B. Hyun, T. S. Oh, Electrodeposition of Bi2Te3 for Nanowire Application, Materials Science Forum 449-452 (2004) 377.
[36] H. Scherrer, S. Scherrer, in: R. David, Lide (Eds.), CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, (1996).
[37] S. Michel, S. Diliberto, C. Boulanger, N. Stein, J. M. Lecuire, Galvanostatic and potentiostatic deposition of bismuth telluride films from nitric acid solution: effect of chemical and electrochemical parameters, J. Cryst. Growth 277 (2005) 274.
[38] S. Wen, R. R. Corderman, F. Seker, A. P. Zhang, L. Denault, M. L. Blohm, Kinetics and Initial Stages of Bismuth Telluride Electrodeposition, J.Electrochem. Soc. 153 (2006) C595.
[39] D. W. Liu, J. F. Li, Electrocrystallization Process during Deposition of Bi-Te Films, J.Electrochem. Soc. 155 (2008) D493.
[40] F. Li, W. Wang, Electrodeposition of BixSb2-xTey Thermoelectric Thin Film from Nitric Acid and Hydrochloric Acid Systems, Appl. Surf. Sci. 255 (2009) 4225.
[41] W. M. Latimer, Oxidation Potentials, 2nd ed., Prentice-Hall, Inc., (1952).
[42] S. I. Hsiu, I. W. Sun, Electrodeposition Behaviour of Cadmium Telluride from 1-ethyl-3-methylimidazolium Chloride Tetrafluoroborate Ionic Liquid, J. Appl. Electrochem. 34 (2004) 1057.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63992-
dc.description.abstract碲化鉍(Bi2Te3)是目前在中低溫環境中最為廣泛應用的熱電材料,本實驗將探討電鍍參數對鍍層的影響,分別為電鍍電位、鍍液離子濃度、鍍液pH值,與鍍液中陰離子的種類。在硝酸系統中,電鍍電位在-0.475 V < E < -0.1 V (vs. SCE),只有在-0.1 V下可獲得較緻密的鍍層,其餘電位下則為樹枝狀,而所有電位下鍍層碲含量皆低於劑量比。固定鍍液中Bi3+為11 mM,改變HTeO2+濃度由8~20 mM,發現鍍層中碲含量與碲離子濃度呈正相關,故可藉由鍍液離子濃度的調配,獲得劑量比(Bi2Te3)碲化鉍鍍層。針對最佳劑量比鍍層之鍍液,探討鍍液pH值與電鍍電位(-0.1 V < E < +0.02 V)對鍍層的影響,發現電鍍電位主要改變鍍層顆粒大小,並不影響鍍層成分,而鍍液pH值也不影響成分,但對鍍層顏色、表面形貌以及附著性均有很大的影響。在-0.1 V以及0.7 M硝酸條件下,鍍層外觀為灰色,表面形貌為針狀,附著性較佳;而相同電位,在1.5 M硝酸下鍍層則為黑色、顆粒狀,附著性較差。使用鹽酸來取代硝酸可提高TeO2的溶解速率,使鍍液配製更為便利。在較高的電鍍電位,鹽酸系統中獲得的鍍層成分會偏離劑量比,意即其電位操作區間較硝酸系統小,但在-0.02 V與0.35 M鹽酸下可獲得平坦光亮緻密的碲化鉍鍍層。
  由循環伏安掃描結果得知,當溶液中只有其中一種離子時,鉍離子的還原峰會隨著硝酸與鹽酸濃度增加往負方向偏移,碲離子的還原峰則往正方向偏移。而兩種離子的混合溶液還原峰則隨著硝酸濃度增加往正偏移,但會隨著鹽酸濃度增加往負偏移。在鹽酸系統中,鉍離子會與氯離子錯合形成結構穩定的BiCl4 使得鉍離子的還原比在硝酸系統中困難,而碲離子則會與氯離子形成TeCl62-,並形成離子橋促進電化學反應,使碲離子的還原比在硝酸系統中容易。無論在硝酸還是鹽酸系統中,碲化鉍的還原起始電位皆比單獨成分的鉍和碲來的正,可知有pure underpotential deposition (PUD)的發生。
zh_TW
dc.description.abstractBi2Te3 is the thermoelectric material most widely used at low temperature ranges. The effects of electrodeposition parameters on deposited layer, such as potential, electrolyte concentration, electrolyte pH, and anion species, is discussed in this study. The Bi-Te film plated at -0.1 V presents a dense morphology; however, the others show a dendrite structure within the potential range of -0.475 V < E < -0.1 V (vs. SCE) in the nitric acid system. By varying the electrolyte HTeO2+ concentration from 8 to 20 mM at a constant Bi3+ concentration of 11 mM, the deposits with Te contents ranging from 45 to 67 at% can be made, specifically the deposit Te content varies linearly with the electrolyte HTeO2+ concentration. The electrolyte, in which the deposit close to stoichiometric Bi2Te3 was electroplated, was further subjected to study the effect of the potential (-0.1 V to +0.02 V) and electrolyte pH. It is found that the potential markedly influences the grain size but hardly affects the composition of the Bi-Te deposits. In contrast, the solution pH strongly influences the color, morphology, and adhesion of the deposits. The Bi2Te3 plated at -0.1 V in the solution containing 0.7 M HNO3 shows a gray color, needle-like morphology with sufficient adhesion. In contrast, the deposit plated at -0.1 V in 1.5 M HNO3 displays a black color, loose granular morphology with inferior adhesion. The preparation of electrolyte becomes easier due to the dissolution rate of TeO2 can be increased using hydrochloric acid instead of nitric acid. The deposit composition becomes Te-rich at higher applied potentials in the HCl system. The applicable potential range of the HCl system is smaller than that of the HNO3 system although a flat, dense Bi2Te3 film can be obtained at -0.02 V in 0.35 M HCl.
Cyclic voltammetry results show that with increasing HNO3 and HCl concentration the reduction potential of BiIII shifts toward negative direction, but the reduction potential of TeIV shifts along positive direction in the solution solely composed of BiIII or TeIV. With increasing HNO3 concentration and decreasing HCl concentration in the solution containing of BiIII and TeIV, the reduction peak shifts along positive direction. In the HCl system, the reduction of BiIII becomes more difficult than in the HNO3 system because stable complexant ion BiCl4- forms but the reduction of TeIV becomes easier due to the fact that Cl- ion bridge promotes electrochemical reaction. Owing to the pure underpotential deposition (PUD), the reduction potential of the solution containing BiIII and TeIV is more positive than the solution only containing BiIII or TeIV.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:25:35Z (GMT). No. of bitstreams: 1
ntu-101-R99527024-1.pdf: 6316830 bytes, checksum: eb046eb062a494b1524f8e47f0de930e (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents總目錄
口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
總目錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 熱電簡介 3
2.1.1 Seebeck效應 3
2.1.2 Peltier效應 4
2.1.3 Thomson效應 4
2.2 熱電優值 6
2.2.1 提升熱電優值之困難 7
2.2.2 提升熱電優值之方法 9
2.3 碲化鉍 11
2.3.1 基本性質 11
2.3.2 Pourbaix圖 13
2.4 電化學基本原理 17
2.4.1 電鍍 17
2.4.2 二元化合物電鍍機制 19
2.4.3 循環伏安原理(Cyclic voltammetry) 22
2.5 電鍍碲化鉍的發展 23
第三章 實驗方法 24
3.1 實驗流程 24
3.2 電鍍製程 25
3.3 循環伏安掃描 26
3.4 鍍層微結構與化學成分分析 27
第四章 結果與討論 29
4.1電鍍電位(-0.475 V < E < -0.1 V)與鍍層之關係 29
4.2電鍍液濃度與鍍層之關係 30
4.3電鍍電位(-0.1 V < E < +0.02 V)與鍍液pH值對鍍層之關係 32
4.3.1 硝酸系統 32
4.3.2 鹽酸系統 42
4.4 循環伏安掃描結果 49
4.4.1 硝酸系統 49
4.4.2 鹽酸系統 54
第五章 結論 60
參考文獻 62
 
圖目錄
圖2.1 Seebeck效應示意圖[13] 5
圖2.2 Peltier效應示意圖[13] 5
圖2.3 Thomson效應示意圖[13] 6
圖2.4 載子濃度(n)與導電率(σ)、Seebeck係數(α)、功率因子(α2σ)以及熱傳導率(λ)的關係[15] 8
圖2.5 聲子在塊材與奈米線中散射行為示意圖[16] 10
圖2.6 不同維度下碲化鉍的量子井與量子線寬度對ZT值的影響[17] 10
圖2.7 各種熱電材料之ZT值與溫度的關係[18] 12
圖2.8 碲化鉍(Bi2Te3)晶體結構[19] 12
圖2.9 鉍-碲二元相圖[22] 13
圖2.10 鉍的Pourbaix圖[24] 14
圖2.11 碲的Pourbaix圖[24] 15
圖2.12 鉍-碲的Pourbaix圖[12] 16
圖2.13 電極表面反應路徑示意圖[25] 18
圖2.14 電鍍過程中主要的五個步驟[26] 18
圖2.15 循環伏安法(a)電位掃描方式(b)循環伏安圖[25] 22
圖3.1 實驗流程圖 24
圖3.2 橫截面TEM製作流程圖 28
圖4.1 電鍍電位與鍍層中碲含量關係 29
圖4.2 不同電鍍電位下鍍層表面形貌(a) -0.1 V (b) -0.175 V (c) -0.25V (d) -0.325 V (e) -0.4 V (f) -0.475 V 30
圖4.3 電鍍液濃度與鍍層中碲含量關係 31
圖4.4 不同碲離子濃度下鍍層表面形貌(a) 8 mM (b) 12 mM (c) 14 mM (d) 16 mM (e) 18 mM (f) 20 mM 32
圖4.5 相同鍍液組成(11 mM Bi3+與14 mM HTeO2+)在-0.1 V,不同硝酸濃度下鍍層外觀顏色(a) 0.7 M HNO3 (b) 1.5 M HNO3 35
圖4.6 相同鍍液組成(11 mM Bi3+與14 mM HTeO2+)在-0.1 V,不同硝酸濃度下鍍層表面形貌(a) 0.7 M HNO3 (b) 1.5 M HNO3 35
圖4.7 相同鍍液組成(11 mM Bi3+與14 mM HTeO2+)在-0.1 V,不同硝酸濃度下鍍層破斷橫截面形貌(a) 0.7 M HNO3 (b) 1.5 M HNO3 36
圖4.8 在-0.1 V以及1.5 M硝酸下鍍層TEM橫截面形貌 37
圖4.9 在-0.1 V以及0.7 M硝酸下鍍層TEM橫截面形貌 37
圖4.10 硝酸濃度在0.7 M vs. (a) -0.1 V (b) -0.06 V (c) -0.02 V (d) +0.02 V,以及在1.5 M vs. (e) -0.1 V (f) -0.06 V (g) -0.02 V (h) +0.02 V電位下鍍層形貌 38
圖4.11在-0.02 V與0.7 M硝酸下鍍層TEM橫截面形貌(a)柱狀結構 (b)局部空隙 39
圖4.12 不同硝酸濃度下各電位鍍層碲含量 40
圖4.13 不同硝酸濃度下鍍層厚度與電鍍電位之關係 40
圖4.14 0.7 M硝酸下各電位下鍍層XRD分析結果 41
圖4.15 1.5 M硝酸下各電位下鍍層XRD分析結果 41
圖4.16 鹽酸濃度在0.7 M vs. (a) -0.1 V (b) -0.06 V (c) -0.02 V (d) +0.02 V,以及在1.5 M vs. (e) -0.1 V (f) -0.06 V (g) -0.02 V (h) +0.02 V電位下鍍層形貌 44
圖4.17 鹽酸濃度在0.35 M vs. (a) -0.1 V (b) -0.06 V (c) -0.02 V (d) +0.02 V電位下鍍層形貌 45
圖4.18 鹽酸濃度在0.35 M vs. (a) -0.1 V (b) -0.06 V (c) -0.02 V (d) +0.02 V電位下破斷橫截面 45
圖4.19 在-0.02 V與0.35 M鹽酸下(a)鍍層TEM橫截面形貌 (b)放大倍率 46
圖4.20 不同鹽酸濃度下各電位鍍層碲含量 47
圖4.21 不同鹽酸濃度下鍍層厚度與電鍍電位之關係 47
圖4. 22 0.35 M鹽酸下各電位下鍍層XRD分析結果 48
圖4.23 11 mM Bi3+在不同硝酸濃度下之(a)循環伏安掃描結果(b)陰極部分 51
圖4.24 14 mM HTeO2+在不同硝酸濃度下之(a)循環伏安掃描結果(b)陰極部分 52
圖4.25 11 mM Bi3++ 14 mM HTeO2+在不同硝酸濃度下之循環伏安掃描結果 53
圖4.26 11 mM Bi3++ 14 mM HTeO2+及其混合溶液在0.7 M硝酸中循環伏安掃描結果比較 53
圖4.27 11 mM BiCl4-在不同鹽酸濃度下之循環伏安掃描結果 56
圖4.28 0.7 M硝酸與鹽酸中,11 mM Bi3+與BiCl4-之循環伏安掃描結果比較 56
圖4.29 14 mM TeCl62-在不同鹽酸濃度下之循環伏安掃描結果 57
圖4.30 0.7 M硝酸與鹽酸中,14 mM HTeO2+與TeCl62-之循環伏安掃描結果比較 57
圖4.31 11 mM BiCl4- + 14 mM TeCl62-在不同鹽酸濃度下之(a)循環伏安掃描結果(b)陰極部分 58
圖4.32 0.35 M鹽酸與添加不同濃度KCl的循環伏安掃描結果 59
圖4.33 11 mM BiCl4-與14 mM TeCl62-及其混合溶液在0.7 M鹽酸中循環伏安掃描結果比較 59
 
表目錄
表3.1 改變電鍍電位之實驗參數 25
表3.2 改變鍍液離子濃度之實驗參數 25
表3.3 改變鍍液pH值之實驗參數 26
表3.4 改變鍍液溶劑之實驗參數 26
表4.1 相同鍍液組成(11 mM Bi3+與14 mM HTeO2+)在-0.1 V,不同硝酸濃度下鍍層成分組成 36
dc.language.isozh-TW
dc.title電鍍電位與鍍液離子濃度和pH值對電鍍碲化鉍的影響zh_TW
dc.titleEffects of Potential, Electrolyte Composition, and pH on the Characteristics of Electrodeposited Bi-Te Filmsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊東漢,蔡文達,葛明德,李文錦
dc.subject.keyword碲化鉍,電鍍,熱電材料,循環伏安,低電位電鍍,zh_TW
dc.subject.keywordBi2Te3,electrodeposition,thermoelectric materials,cyclic voltammetry,underpotential deposition,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
6.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved