Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63884
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂廷璋(Ting-Jang Lu)
dc.contributor.authorLi-Chan Yangen
dc.contributor.author楊麗嬋zh_TW
dc.date.accessioned2021-06-16T17:21:56Z-
dc.date.available2017-08-27
dc.date.copyright2012-08-27
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citation1. Kan, W. S., Pharmaceutical Botany. 1 ed.; National Research Institute of Chinese medicine: 1969.
2. Lin, C. C.; Huang, P. C.; Lin, J. M., Antioxidant and hepatoprotective effects of Anoectochilus formosanus and Gynostemma pentaphyllum. Am J Chin Med 2000, 28, (1), 87-96.
3. Wang, S. Y.; Kuo, Y. H.; Chang, H. N.; Kang, P. L.; Tsay, H. S.; Lin, K. F.; Yang, N. S.; Shyur, L. F., Profiling and characterization antioxidant activities in Anoectochilus formosanus hayata. J Agric Food Chem 2002, 50, (7), 1859-65.
4. Shih, C. C.; Wu, Y. W.; Lin, W. C., Scavenging of reactive oxygen species and inhibition of the oxidation of low density lipoprotein by the aqueous extraction of Anoectochilus formosanus. Am J Chin Med 2003, 31, (1), 25-36.
5. Wang, L. F.; Lin, C. M.; Shih, C. M.; Chen, H. J.; Su, B.; Tseng, C. C.; Gau, B. B.; Cheng, K. T., Prevention of cellular oxidative damage by an aqueous extract of Anoectochilus formosanus. Ann N Y Acad Sci 2005, 1042, 379-86.
6. Lin, J. M.; Lin, C. C.; Chiu, H. F.; Yang, J. J.; Lee, S. G., Evaluation of the anti-inflammatory and liver-protective effects of anoectochilus formosanus, ganoderma lucidum and gynostemma pentaphyllum in rats. Am J Chin Med 1993, 21, (1), 59-69.
7. Du, X. M.; Sun, N. Y.; Hayashi, J.; Chen, Y.; Sugiura, M.; Shoyama, Y., Hepatoprotective and antihyperliposis activities of in vitro cultured Anoectochilus formosanus. Phytother Res 2003, 17, (1), 30-3.
8. Shih, C. C.; Wu, Y. W.; Hsieh, C. C.; Lin, W. C., Effect of Anoectochilus formosanus on fibrosis and regeneration of the liver in rats. Clin Exp Pharmacol Physiol 2004, 31, (9), 620-5.
9. Shih, C. C.; Wu, Y. W.; Lin, W. C., Aqueous extract of Anoectochilus formosanus attenuate hepatic fibrosis induced by carbon tetrachloride in rats. Phytomedicine 2005, 12, (6-7), 453-60.
10. Wu, J. B.; Lin, W. L.; Hsieh, C. C.; Ho, H. Y.; Tsay, H. S.; Lin, W. C., The hepatoprotective activity of kinsenoside from Anoectochilus formosanus. Phytother Res 2007, 21, (1), 58-61.
11. Fang, H. L.; Wu, J. B.; Lin, W. L.; Ho, H. Y.; Lin, W. C., Further studies on the hepatoprotective effects of Anoectochilus formosanus. Phytother Res 2008, 22, (3), 291-6.
12. Wu, J. B.; Chuang, H. R.; Yang, L. C.; Lin, W. C., A standardized aqueous extract of Anoectochilus formosanus ameliorated thioacetamide-induced liver fibrosis in mice: the role of Kupffer cells. Biosci Biotechnol Biochem 2010, 74, (4), 781-7.
13. Hsieh, W. T.; Tsai, C. T.; Wu, J. B.; Hsiao, H. B.; Yang, L. C.; Lin, W. C., Kinsenoside, a high yielding constituent from Anoectochilus formosanus, inhibits carbon tetrachloride induced Kupffer cells mediated liver damage. J Ethnopharmacol 135, (2), 440-9.
14. Shih, C. C.; Wu, Y. W.; Lin, W. C., Antihyperglycaemic and anti-oxidant properties of Anoectochilus formosanus in diabetic rats. Clin Exp Pharmacol Physiol 2002, 29, (8), 684-8.
15. Shyur, L. F.; Chen, C. H.; Lo, C. P.; Wang, S. Y.; Kang, P. L.; Sun, S. J.; Chang, C. A.; Tzeng, C. M.; Yang, N. S., Induction of apoptosis in MCF-7 human breast cancer cells by phytochemicals from Anoectochilus formosanus. J Biomed Sci 2004, 11, (6), 928-39.
16. Tseng, C. C.; Shang, H. F.; Wang, L. F.; Su, B.; Hsu, C. C.; Kao, H. Y.; Cheng, K. T., Antitumor and immunostimulating effects of Anoectochilus formosanus Hayata. Phytomedicine 2006, 13, (5), 366-70.
17. Kuan, Y. C.; Wu, T. J.; Kuo, C. Y.; Hsu, J. C.; Chang, W. Y.; Sheu, F., Molecular Cloning of a New Immunomodulatory Protein from Anoectochilus formosanus which Induces B Cell IgM Secretion through a T-Independent Mechanism. PLoS One 6, (6), e21004.
18. Hsieh, C. C.; Hsiao, H. B.; Lin, W. C., A standardized aqueous extract of Anoectochilus formosanus modulated airway hyperresponsiveness in an OVA-inhaled murine model. Phytomedicine 17, (8-9), 557-62.
19. Masuda, K.; Ikeuchi, M.; Koyama, T.; Yamaguchi, K.; Woo, J. T.; Nishimura, T.; Yazawa, K., Suppressive effects of Anoectochilus formosanus extract on osteoclast formation in vitro and bone resorption in vivo. J Bone Miner Metab 2008, 26, (2), 123-9.
20. Shih, C. C.; Wu, Y. W.; Lin, W. C., Ameliorative effects of Anoectochilus formosanus extract on osteopenia in ovariectomized rats. J Ethnopharmacol 2001, 77, (2-3), 233-8.
21. Du, X.; Sun, N.; Tamura, T.; Mohri, A.; Sugiura, M.; Yoshizawa, T.; Irino, N.; Hayashi, J.; Shoyama, Y., Higher yielding isolation of kinsenoside in Anoectochilus and its antihyperliposis effect. Biol Pharm Bull 2001, 24, (1), 65-9.
22. Shih, C.-C., The studies of pharmacological properties of Anoectochilus formosanus on rats. 2002, 194.
23. Robbers, J. E. S., Marilyn K. ; Tyler, Varro E., Pharmacognosy and Pharmacobiotechnology. 1996, 337.
24. Roberfroid, M. B., Introducing inulin-type fructans. Br J Nutr 2005, 93 Suppl 1, S13-25.
25. Ohta, Y.; Lee, J. B.; Hayashi, K.; Fujita, A.; Park, D. K.; Hayashi, T., In vivo anti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. J Agric Food Chem 2007, 55, (25), 10194-9.
26. Peng, Z. G.; Chen, H. S.; Guo, Z. M.; Dong, B.; Tian, G. Y.; Wang, G. Q., [Anti-HIV activities of Achyranthes bidentata polysaccharide sulfate in vitro and in vivo]. Yao Xue Xue Bao 2008, 43, (7), 702-6.
27. Weaver, C. M., Inulin, oligofructose and bone health: experimental approaches and mechanisms. Br J Nutr 2005, 93 Suppl 1, S99-103.
28. MengYong, Z.; CaiJiao, W.; HuSheng, Z.; XianWu, P.; JianMin, F., Protective effect of polysaccharides from morinda officinalis on bone loss in ovariectomized rats. Int J Biol Macromol 2008, 43, (3), 276-8.
29. Uthaisangsook, S.; Day, N. K.; Bahna, S. L.; Good, R. A.; Haraguchi, S., Innate immunity and its role against infections. Ann Allergy Asthma Immunol 2002, 88, (3), 253-64; quiz 265-6, 318.
30. Schepetkin, I. A.; Quinn, M. T., Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol 2006, 6, (3), 317-33.
31. Lin, C.-C., The analysis of carbohydrates and organic acids in water extract of Anoectochilus formosanus Hayata. 2009.
32. Chiang, C.-H., Physiochemical characteristics and potential immuno-modulating activities of the water-soluble polysaccharide fractions from Anoectochilus formosanus Hayata. 2003.
33. van Holst, G. J.; Clarke, A. E., Quantification of arabinogalactan-protein in plant extracts by single radial gel diffusion. Anal Biochem 1985, 148, (2), 446-50.
34. Tzianabos, A. O., Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin Microbiol Rev 2000, 13, (4), 523-33.
35. Masuda, Y.; Ito, K.; Konishi, M.; Nanba, H., A polysaccharide extracted from Grifola frondosa enhances the anti-tumor activity of bone marrow-derived dendritic cell-based immunotherapy against murine colon cancer. Cancer Immunol Immunother 59, (10), 1531-41.
36. Wang, H. X.; Ng, T. B., Natural products with hypoglycemic, hypotensive, hypocholesterolemic, antiatherosclerotic and antithrombotic activities. Life Sci 1999, 65, (25), 2663-77.
37. Cao, X.; Pettit, M. E.; Conlan, S. L.; Wagner, W.; Ho, A. D.; Clare, A. S.; Callow, J. A.; Callow, M. E.; Grunze, M.; Rosenhahn, A., Resistance of polysaccharide coatings to proteins, hematopoietic cells, and marine organisms. Biomacromolecules 2009, 10, (4), 907-15.
38. Guenechea, G.; Bueren, J. A.; Maganto, G.; Tuduri, P.; Guerrero, A.; Pivel, J. P.; Real, A., AM5, a protein-associated polysaccharide, stimulates hematopoiesis and modulates the expression of endogenous hematopoietic growth factors in murine long-term bone marrow cultures. Stem Cells 1995, 13, (2), 175-85.
39. Kim, H. J.; Kim, M. H.; Byon, Y. Y.; Park, J. W.; Jee, Y.; Joo, H. G., Radioprotective effects of an acidic polysaccharide of Panax ginseng on bone marrow cells. J Vet Sci 2007, 8, (1), 39-44.
40. Kiyohara, H.; Hirano, M.; Wen, X. G.; Matsumoto, T.; Sun, X. B.; Yamada, H., Characterisation of an anti-ulcer pectic polysaccharide from leaves of Panax ginseng C.A. Meyer. Carbohydr Res 1994, 263, (1), 89-101.
41. Lazareva, E. B.; Spiridonova, T. G.; Chernega, E. N.; Plesskaia, L. G.; Grunenkova, I. V.; Smirnov, S. V.; Men'shikov, D. D., [Topical pectins for the treatment of burn wounds]. Antibiot Khimioter 2002, 47, (9), 9-13.
42. Luo, Y.; Diao, H.; Xia, S.; Dong, L.; Chen, J.; Zhang, J., A physiologically active polysaccharide hydrogel promotes wound healing. J Biomed Mater Res A 94, (1), 193-204.
43. Burgalassi, S.; Raimondi, L.; Pirisino, R.; Banchelli, G.; Boldrini, E.; Saettone, M. F., Effect of xyloglucan (tamarind seed polysaccharide) on conjunctival cell adhesion to laminin and on corneal epithelium wound healing. Eur J Ophthalmol 2000, 10, (1), 71-6.
44. Fujimoto, S.; Furue, H.; Kimura, T.; Kondo, T.; Orita, K.; Taguchi, T.; Yoshida, K.; Ogawa, N., Clinical outcome of postoperative adjuvant immunochemotherapy with sizofiran for patients with resectable gastric cancer: a randomised controlled study. Eur J Cancer 1991, 27, (9), 1114-8.
45. Franz, G., [Polysaccharides: biopolymers with medicinal actions]. J Pharm Belg 1995, 50, (2-3), 87-93.
46. Schepetkin, I. A.; Faulkner, C. L.; Nelson-Overton, L. K.; Wiley, J. A.; Quinn, M. T., Macrophage immunomodulatory activity of polysaccharides isolated from Juniperus scopolorum. Int Immunopharmacol 2005, 5, (13-14), 1783-99.
47. Roxas, M.; Jurenka, J., Colds and influenza: a review of diagnosis and conventional, botanical, and nutritional considerations. Altern Med Rev 2007, 12, (1), 25-48.
48. Barrett, B., Medicinal properties of Echinacea: a critical review. Phytomedicine 2003, 10, (1), 66-86.
49. Alban, S.; Classen, B.; Brunner, G.; Blaschek, W., Differentiation between the complement modulating effects of an arabinogalactan-protein from Echinacea purpurea and heparin. Planta Med 2002, 68, (12), 1118-24.
50. Classen, B.; Thude, S.; Blaschek, W.; Wack, M.; Bodinet, C., Immunomodulatory effects of arabinogalactan-proteins from Baptisia and Echinacea. Phytomedicine 2006, 13, (9-10), 688-94.
51. Demigne, C.; Jacobs, H.; Moundras, C.; Davicco, M. J.; Horcajada, M. N.; Bernalier, A.; Coxam, V., Comparison of native or reformulated chicory fructans, or non-purified chicory, on rat cecal fermentation and mineral metabolism. Eur J Nutr 2008, 47, (7), 366-74.
52. Roberfroid, M. B.; Delzenne, N. M., Dietary fructans. Annu Rev Nutr 1998, 18, 117-43.
53. Wang, X.; Gibson, G. R., Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J Appl Bacteriol 1993, 75, (4), 373-80.
54. van den Broek, L. A.; Hinz, S. W.; Beldman, G.; Vincken, J. P.; Voragen, A. G., Bifidobacterium carbohydrases-their role in breakdown and synthesis of (potential) prebiotics. Mol Nutr Food Res 2008, 52, (1), 146-63.
55. Marzorati, M.; Verhelst, A.; Luta, G.; Sinnott, R.; Verstraete, W.; Van de Wiele, T.; Possemiers, S., In vitro modulation of the human gastrointestinal microbial community by plant-derived polysaccharide-rich dietary supplements. Int J Food Microbiol 139, (3), 168-76.
56. Bodera, P., Influence of prebiotics on the human immune system (GALT). Recent Pat Inflamm Allergy Drug Discov 2008, 2, (2), 149-53.
57. van den Broek, L. A. M.; Hinz, S. W. A.; Beldman, G.; Vincken, J. P.; Voragen, A. G. J., Bifidobacterium carbohydrases-their role in breakdown and synthesis of (potential) prebiotics. Molecular Nutrition & Food Research 2008, 52, (1), 146-163.
58. Lutz, T.; Scharrer, E., Effect of short-chain fatty acids on calcium absorption by the rat colon. Exp Physiol 1991, 76, (4), 615-8.
59. Kitchin, B.; Morgan, S. L., Not just calcium and vitamin D: other nutritional considerations in osteoporosis. Curr Rheumatol Rep 2007, 9, (1), 85-92.
60. Cashman, K. D., Diet, nutrition, and bone health. J Nutr 2007, 137, (11 Suppl), 2507S-2512S.
61. Scholz-Ahrens, K. E.; Schrezenmeir, J., Inulin and oligofructose and mineral metabolism: the evidence from animal trials. J Nutr 2007, 137, (11 Suppl), 2513S-2523S.
62. Scholz-Ahrens, K. E.; Ade, P.; Marten, B.; Weber, P.; Timm, W.; Acil, Y.; Gluer, C. C.; Schrezenmeir, J., Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr 2007, 137, (3 Suppl 2), 838S-46S.
63. Lins, K. O.; Bezerra, D. P.; Alves, A. P.; Alencar, N. M.; Lima, M. W.; Torres, V. M.; Farias, W. R.; Pessoa, C.; de Moraes, M. O.; Costa-Lotufo, L. V., Antitumor properties of a sulfated polysaccharide from the red seaweed Champia feldmannii (Diaz-Pifferer). J Appl Toxicol 2009, 29, (1), 20-6.
64. Yamasaki, A.; Shoda, M.; Iijima, H.; Nagai, S.; Wada, J.; Suzuki, H.; Chikazawa, N.; Tasaka, T.; Kameda, C.; Tanaka, H.; Ikebe, M.; Jo, E.; Sato, N.; Nakamura, M.; Sekine, F.; Morisaki, T.; Katano, M., A protein-bound polysaccharide, PSK, enhances tumor suppression induced by docetaxel in a gastric cancer xenograft model. Anticancer Res 2009, 29, (3), 843-50.
65. Seifert, G. J.; Roberts, K., The biology of arabinogalactan proteins. Annu Rev Plant Biol 2007, 58, 137-61.
66. Clarke, A. E. A., R. L.;Stone, B. A., Form and function of arabinogalactan and arabinogalactan-protein. Phytochmistry 1979, 18, 521-540.
67. Aspinall, G. O., Polysaccharides (The Commonwealth and international library. A course in organic chemistry) 1970.
68. Schepetkin, I. A.; Xie, G.; Kirpotina, L. N.; Klein, R. A.; Jutila, M. A.; Quinn, M. T., Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha. Int Immunopharmacol 2008, 8, (10), 1455-66.
69. Compton, S. J.; Jones, C. G., Mechanism of dye response and interference in the Bradford protein assay. Anal Biochem 1985, 151, (2), 369-74.
70. Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F., Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry 1956, 28, (3), 350-356.
71. Blumenkrantz, N.; Asboe-Hansen, G., New method for quantitative determination of uronic acids. Anal Biochem 1973, 54, (2), 484-9.
72. Laine, C.; Tamminen, T.; Vikkula, A.; Vuorinen, T., Methylation analysis as a tool for structural analysis of wood polysaccharides. Holzforschung 2002, 56, (6), 607-614.
73. van Hengel, A. J.; Roberts, K., Fucosylated arabinogalactan-proteins are required for full root cell elongation in arabidopsis. Plant J 2002, 32, (1), 105-13.
74. Nergard, C. S.; Diallo, D.; Michaelsen, T. E.; Malterud, K. E.; Kiyohara, H.; Matsumoto, T.; Yamada, H.; Paulsen, B. S., Isolation, partial characterisation and immunomodulating activities of polysaccharides from Vernonia kotschyana Sch. Bip. ex Walp. J Ethnopharmacol 2004, 91, (1), 141-52.
75. Kruger, M. C.; Brown, K. E.; Collett, G.; Layton, L.; Schollum, L. M., The effect of fructooligosaccharides with various degrees of polymerization on calcium bioavailability in the growing rat. Exp Biol Med (Maywood) 2003, 228, (6), 683-8.
76. Yang, L. C.; Wu, J. B.; Ho, G. H.; Yang, S. C.; Huang, Y. P.; Lin, W. C., Effects of poly-gamma-glutamic acid on calcium absorption in rats. Biosci Biotechnol Biochem 2008, 72, (12), 3084-90.
77. Munoa, F. J.; Pares, R., Selective medium for isolation and enumeration of Bifidobacterium spp. Appl Environ Microbiol 1988, 54, (7), 1715-8.
78. Harmon, S. M.; Kautter, D. A.; Peeler, J. T., Improved medium for enumeration of Clostridium perfringens. Appl Microbiol 1971, 22, (4), 688-92.
79. Zwietering, M. H.; Jongenburger, I.; Rombouts, F. M.; van 't Riet, K., Modeling of the bacterial growth curve. Appl Environ Microbiol 1990, 56, (6), 1875-81.
80. Hopkins, M. J.; Cummings, J. H.; Macfarlane, G. T., Inter-species differences in maximum specific growth rates and cell yields of bifidobacteria cultured on oligosaccharides and other simple carbohydrate sources. Journal of Applied Microbiology 1998, 85, (2), 381-386.
81. Classen, B.; Blaschek, W., An arabinogalactan-protein from cell culture of Malva sylvestris. Planta Med 2002, 68, (3), 232-6.
82. Sanz, M. L.; Polemis, N.; Morales, V.; Corzo, N.; Drakoularakou, A.; Gibson, G. R.; Rastall, R. A., In vitro investigation into the potential prebiotic activity of honey oligosaccharides. Journal of Agricultural and Food Chemistry 2005, 53, (8), 2914-2921.
83. Esteves, M. P.; Moura, P.; Cabanas, S.; Lourenco, P.; Girio, F.; Loureiro-Dias, M. C., In vitro fermentation of selected xylo-oligosaccharides by piglet intestinal microbiota. Lwt-Food Science and Technology 2008, 41, (10), 1952-1961.
84. Wang, R. F.; Cao, W. W.; Cerniglia, C. E., PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl Environ Microbiol 1996, 62, (4), 1242-7.
85. Bronner, F., Recent developments in intestinal calcium absorption. Nutr Rev 2009, 67, (2), 109-13.
86. Kraidith, K.; Jantarajit, W.; Teerapornpuntakit, J.; Nakkrasae, L. I.; Krishnamra, N.; Charoenphandhu, N., Direct stimulation of the transcellular and paracellular calcium transport in the rat cecum by prolactin. Pflugers Arch 2009, 458, (5), 993-1005.
87. Raschka, L.; Daniel, H., Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone 2005, 37, (5), 728-35.
88. Roberfroid, M. B.; Cumps, J.; Devogelaer, J. P., Dietary chicory inulin increases whole-body bone mineral density in growing male rats. J Nutr 2002, 132, (12), 3599-602.
89. Coxam, V., Current data with inulin-type fructans and calcium, targeting bone health in adults. J Nutr 2007, 137, (11 Suppl), 2527S-2533S.
90. Coudray, C.; Tressol, J. C.; Gueux, E.; Rayssiguier, Y., Effects of inulin-type fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats. Eur J Nutr 2003, 42, (2), 91-8.
91. Gibson, G. R.; Probert, H. M.; Loo, J. V.; Rastall, R. A.; Roberfroid, M. B., Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 2004, 17, (2), 259-75.
92. Degnan, B. A.; Macfarlane, G. T., Arabinogalactan utilization in continuous cultures of Bifidobacterium longum: effect of co-culture with Bacteroides thetaiotaomicron. Anaerobe 1995, 1, (2), 103-12.
93. Higgins, C. F., ABC transporters: physiology, structure and mechanism--an overview. Res Microbiol 2001, 152, (3-4), 205-10.
94. Yuan, J.; Zhu, L.; Liu, X.; Li, T.; Zhang, Y.; Ying, T.; Wang, B.; Wang, J.; Dong, H.; Feng, E.; Li, Q.; Wang, H.; Wei, K.; Zhang, X.; Huang, C.; Huang, P.; Huang, L.; Zeng, M., A proteome reference map and proteomic analysis of Bifidobacterium longum NCC2705. Mol Cell Proteomics 2006, 5, (6), 1105-18.
95. Showalter, A. M., Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 2001, 58, (10), 1399-417.
96. Pal, A., Arabinogalactan Protein and Arabinogalactan: Biomolecules with Biotechnological and Therapeutic Potential. Bioactive Molecules and Medicinal Plants 2008.
97. Katono, T.; Kawato, T.; Tanabe, N.; Suzuki, N.; Iida, T.; Morozumi, A.; Ochiai, K.; Maeno, M., Sodium butyrate stimulates mineralized nodule formation and osteoprotegerin expression by human osteoblasts. Arch Oral Biol 2008, 53, (10), 903-9.
98. Rahman MM, K. A., Kukita T, Shobuike T, Nakamura T, Kohashi O, Two histone deacetylase inhibitors, trichostatin A and sodium butyrate, suppress differentiation into osteoclasts but not into macrophages. Blood 2003, 101, (9), 3451-3459.
99. Schroeder TM, W. J., Histone deacetylase inhibitors promote osteoblast maturation. J Bone Miner Res 2005, 20, (12), 2254-2263.
100. Mitamura, R.; Hara, H.; Aoyama, Y., Ingestion of raffinose promotes calcium absorption in the large intestine of rats. Bioscience Biotechnology and Biochemistry 2004, 68, (2), 384-389.
101. Du, X. M.; Irino, N.; Furusho, N.; Hayashi, J.; Shoyama, Y., Pharmacologically active compounds in the Anoectochilus and Goodyera species. Journal of Natural Medicines 2008, 62, (2), 132-148.
102. Asahara, T.; Nomoto, K.; Shimizu, K.; Watanuki, M.; Tanaka, R., Increased resistance of mice to Salmonella enterica serovar Typhimurium infection by synbiotic administration of Bifidobacteria and transgalactosylated oligosaccharides. J Appl Microbiol 2001, 91, (6), 985-96.
103. Niven, S. J.; Beal, J. D.; Brooks, P. H., The simultaneous determination of short chain fatty acid, monosaccharides and ethanol in fermented liquid pig diets. Animal Feed Science and Technology 2004, 117, (3-4), 339-345.
104. Honda, A.; Umemura, Y.; Nagasawa, S., Effect of high-impact and low-repetition training on bones in ovariectomized rats. J Bone Miner Res 2001, 16, (9), 1688-93.
105. Parfitt, A. M.; Drezner, M. K.; Glorieux, F. H.; Kanis, J. A.; Malluche, H.; Meunier, P. J.; Ott, S. M.; Recker, R. R., Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 1987, 2, (6), 595-610.
106. Chomczynski, P.; Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987, 162, (1), 156-9.
107. Iwami, K.; Moriyama, T., Effects of short chain fatty acid, sodium butyrate, on osteoblastic cells and osteoclastic cells. Int J Biochem 1993, 25, (11), 1631-5.
108. Isama, K.; Tsuchiya, T., Enhancing effect of poly(L-lactide) on the differentiation of mouse osteoblast-like MC3T3-E1 cells. Biomaterials 2003, 24, (19), 3303-9.
109. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72, 248-54.
110. Rahman, M. M.; Kukita, A.; Kukita, T.; Shobuike, T.; Nakamura, T.; Kohashi, O., Two histone deacetylase inhibitors, trichostatin A and sodium butyrate, suppress differentiation into osteoclasts but not into macrophages. Blood 2003, 101, (9), 3451-9.
111. Rockville, Bone Health and Osteoporosis: A Report of the Surgeon General. Office of the Surgeon General (US). 2004.
112. Chen, H. L.; Hong, L. T.; Lee, J. K.; Huang, C. J., The bone-protective effect of a Taiwanese yam (Dioscorea alata L. cv. Tainung No.2) in ovariectomised female BALB/C mice. Journal of the Science of Food and Agriculture 2009, 89, (3), 517-522.
113. Lopez, H. W.; Coudray, C.; Levrat-Verny, M. A.; Feillet-Coudray, C.; Demigne, C.; Remesy, C., Fructooligosaccharides enhance mineral apparent absorption and counteract the deleterious effects of phytic acid on mineral homeostasis in rats. J Nutr Biochem 2000, 11, (10), 500-8.
114. Bronner, F., Mechanisms of intestinal calcium absorption. J Cell Biochem 2003, 88, (2), 387-93.
115. Bouillon, R.; Van Cromphaut, S.; Carmeliet, G., Intestinal calcium absorption: Molecular vitamin D mediated mechanisms. J Cell Biochem 2003, 88, (2), 332-9.
116. Anderson, J. J. B., Osteoporosis. OSTEOPOROSIS 2003, 4278-4281.
117. Qvist, P.; Christgau, S.; Pedersen, B. J.; Schlemmer, A.; Christiansen, C., Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (Serum CTx): Effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone 2002, 31, (1), 57-61.
118. Swaminathan, R., Biochemical markers of bone turnover. Clin Chim Acta 2001, 313, (1-2), 95-105.
119. Zhao, Y.; Zou, B.; Shi, Z.; Wu, Q.; Chen, G. Q., The effect of 3-hydroxybutyrate on the in vitro differentiation of murine osteoblast MC3T3-E1 and in vivo bone formation in ovariectomized rats. Biomaterials 2007, 28, (20), 3063-73.
120. Volman, J. J.; Ramakers, J. D.; Plat, J., Dietary modulation of immune function by beta-glucans. Physiol Behav 2008, 94, (2), 276-84.
121. Chihara, G., Recent progress in immunopharmacology and therapeutic effects of polysaccharides. Dev Biol Stand 1992, 77, 191-7.
122. Komatsu, W.; Yagasaki, K.; Miura, Y.; Funabiki, R., Stimulation of tumor necrosis factor and interleukin-1 productivity by the oral administration of cabbage juice to rats. Biosci Biotechnol Biochem 1997, 61, (11), 1937-8.
123. Nose, M.; Terawaki, K.; Oguri, K.; Ogihara, Y.; Yoshimatsu, K.; Shimomura, K., Activation of macrophages by crude polysaccharide fractions obtained from shoots of Glycyrrhiza glabra and hairy roots of Glycyrrhiza uralensis in vitro. Biol Pharm Bull 1998, 21, (10), 1110-2.
124. Hibbs, J. B., Jr.; Taintor, R. R.; Vavrin, Z.; Rachlin, E. M., Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 1988, 157, (1), 87-94.
125. Tsikas, D., Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J Chromatogr B Analyt Technol Biomed Life Sci 2007, 851, (1-2), 51-70.
126. Harding, C. V.; Canaday, D.; Ramachandra, L., Choosing and preparing antigen-presenting cells. Curr Protoc Immunol Chapter 16, Unit 16 1.
127. Zhang, X.; Goncalves, R.; Mosser, D. M., The isolation and characterization of murine macrophages. Curr Protoc Immunol 2008, Chapter 14, Unit 14 1.
128. Kwon, K. H.; Kim, K. I.; Jun, W. J.; Shin, D. H.; Cho, H. Y.; Hong, B. S., In vitro and in vivo effects of macrophage-stimulatory polysaccharide from leaves of Perilla frutescens var. crispa. Biol Pharm Bull 2002, 25, (3), 367-71.
129. Vanam, U.; Pandey, V.; Prabhu, P. R.; Dakshinamurthy, G.; Reddy, M. V.; Kaliraj, P., Evaluation of immunoprophylactic efficacy of Brugia malayi transglutaminase (BmTGA) in single and multiple antigen vaccination with BmALT-2 and BmTPX for human lymphatic filariasis. Am J Trop Med Hyg 2009, 80, (2), 319-24.
130. Yeap, S. K.; Omar, A. R.; Ali, A. M.; Ho, W. Y.; Beh, B. K.; Alitheen, N. B., Immunomodulatory Effect of Rhaphidophora korthalsii on Natural Killer Cell Cytotoxicity. Evid Based Complement Alternat Med 2012, 786487.
131. Ramesh, H. P.; Yamaki, K.; Tsushida, T., Effect of fenugreek (Trigonella foenum-graecum L.) galactomannan fractions on phagocytosis in rat macrophages and on proliferation and IgM secretion in HB4C5 cells. Carbohydrate Polymers 2002, 50, (1), 79-83.
132. Matsuo, T.; Kurahashi, Y.; Nishida, S.; Kumada, K.; Hayami, T.; Takagi, T., [Granulopoietic effects of lentinan in mice: effects on GM-CFC and 5-FU-induced leukopenia]. Gan To Kagaku Ryoho 1987, 14, (5 Pt 1), 1310-4.
133. Hierholzer, C.; Harbrecht, B.; Menezes, J. M.; Kane, J.; MacMicking, J.; Nathan, C. F.; Peitzman, A. B.; Billiar, T. R.; Tweardy, D. J., Essential role of induced nitric oxide in the initiation of the inflammatory response after hemorrhagic shock. J Exp Med 1998, 187, (6), 917-28.
134. Haddad, J. J., Cytokines and related receptor-mediated signaling pathways. Biochem Biophys Res Commun 2002, 297, (4), 700-13.
135. Fiorentino, D. F.; Zlotnik, A.; Mosmann, T. R.; Howard, M.; O'Garra, A., IL-10 inhibits cytokine production by activated macrophages. J Immunol 1991, 147, (11), 3815-22.
136. Rapoport, A. P.; Abboud, C. N.; DiPersio, J. F., Granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF): receptor biology, signal transduction, and neutrophil activation. Blood Rev 1992, 6, (1), 43-57.
137. Campbell, I. K.; Rich, M. J.; Bischof, R. J.; Hamilton, J. A., The colony-stimulating factors and collagen-induced arthritis: exacerbation of disease by M-CSF and G-CSF and requirement for endogenous M-CSF. J Leukoc Biol 2000, 68, (1), 144-50.
138. Lin, H.; de Stanchina, E.; Zhou, X. K.; Hong, F.; Seidman, A.; Fornier, M.; Xiao, W. L.; Kennelly, E. J.; Wesa, K.; Cassileth, B. R.; Cunningham-Rundles, S., Maitake beta-glucan promotes recovery of leukocytes and myeloid cell function in peripheral blood from paclitaxel hematotoxicity. Cancer Immunol Immunother 59, (6), 885-97.
139. Ito, K.; Masuda, Y.; Yamasaki, Y.; Yokota, Y.; Nanba, H., Maitake beta-glucan enhances granulopoiesis and mobilization of granulocytes by increasing G-CSF production and modulating CXCR4/SDF-1 expression. Int Immunopharmacol 2009, 9, (10), 1189-96.
140. Fidler, I. J., Therapy of cancer metastasis by systemic activation of macrophages. Adv Pharmacol 1994, 30, 271-326.
141. Luettig, B.; Steinmuller, C.; Gifford, G. E.; Wagner, H.; Lohmann-Matthes, M. L., Macrophage activation by the polysaccharide arabinogalactan isolated from plant cell cultures of Echinacea purpurea. J Natl Cancer Inst 1989, 81, (9), 669-75.
142. Roesler, J.; Emmendorffer, A.; Steinmuller, C.; Luettig, B.; Wagner, H.; Lohmann-Matthes, M. L., Application of purified polysaccharides from cell cultures of the plant Echinacea purpurea to test subjects mediates activation of the phagocyte system. Int J Immunopharmacol 1991, 13, (7), 931-41.
143. Thude, S.; Classen, B.; Blaschek, W.; Barz, D.; Thude, H., Binding studies of an arabinogalactan-protein from Echinacea purpurea to leucocytes. Phytomedicine 2006, 13, (6), 425-7.
144. Tarantino, G.; Savastano, S.; Capone, D.; Colao, A., Spleen: A new role for an old player? World J Gastroenterol 17, (33), 3776-84.
145. Chen, W.; Zhang, W.; Shen, W.; Wang, K., Effects of the acid polysaccharide fraction isolated from a cultivated Cordyceps sinensis on macrophages in vitro. Cell Immunol 262, (1), 69-74.
146. Chandrashekar, P. M.; Prashanth, K. V.; Venkatesh, Y. P., Isolation, structural elucidation and immunomodulatory activity of fructans from aged garlic extract. Phytochemistry 72, (2-3), 255-64.
147. Zhang, Y.; Lu, X.; Qin, L.; Zhang, J., Sulfated modification and immunomodulatory activity of water-soluble polysaccharides derived from fresh Chinese persimmon fruit. Int J Biol Macromol 46, (1), 67-71.
148. Jiao, L.; Li, X.; Li, T.; Jiang, P.; Zhang, L.; Wu, M., Characterization and anti-tumor activity of alkali-extracted polysaccharide from Enteromorpha intestinalis. Int Immunopharmacol 2009, 9, (3), 324-9.
149. Chen, J. R.; Yang, Z. Q.; Hu, T. J.; Yan, Z. T.; Niu, T. X.; Wang, L.; Cui, D. A.; Wang, M., Immunomodulatory activity in vitro and in vivo of polysaccharide from Potentilla anserina. Fitoterapia 81, (8), 1117-24.
150. Gorgen, I.; Hartung, T.; Leist, M.; Niehorster, M.; Tiegs, G.; Uhlig, S.; Weitzel, F.; Wendel, A., Granulocyte Colony-Stimulating Factor Treatment Protects Rodents against Lipopolysaccharide-Induced Toxicity Via Suppression of Systemic Tumor-Necrosis-Factor-Alpha. Journal of Immunology 1992, 149, (3), 918-924.
151. Boneberg, E. M.; Hartung, T., Molecular aspects of anti-inflammatory action of G-CSF. Inflamm Res 2002, 51, (3), 119-28.
152. Nishiki, S.; Hato, F.; Kamata, N.; Sakamoto, E.; Hasegawa, T.; Kimura-Eto, A.; Hino, M.; Kitagawa, S., Selective activation of STAT3 in human monocytes stimulated by G-CSF: implication in inhibition of LPS-induced TNF-alpha production. Am J Physiol Cell Physiol 2004, 286, (6), C1302-11.
153. Liao, H. F.; Chen, Y. J.; Yang, Y. C., A novel polysaccharide of black soybean promotes myelopoiesis and reconstitutes bone marrow after 5-flurouracil- and irradiation-induced myelosuppression. Life Sci 2005, 77, (4), 400-13.
154. Jiang, Z.; Okimura, T.; Yamaguchi, K.; Oda, T., The potent activity of sulfated polysaccharide, ascophyllan, isolated from Ascophyllum nodosum to induce nitric oxide and cytokine production from mouse macrophage RAW264.7 cells: Comparison between ascophyllan and fucoidan. Nitric Oxide 25, (4), 407-15.
155. Masuda, Y.; Inoue, M.; Miyata, A.; Mizuno, S.; Nanba, H., Maitake beta-glucan enhances therapeutic effect and reduces myelosupression and nephrotoxicity of cisplatin in mice. Int Immunopharmacol 2009, 9, (5), 620-6.
156. Natori, T.; Law, L. W.; Appella, E., Biological and biochemical properties of Nonidet P40-solubilized and partially purified tumor-specific antigens of the transplantation type from plasma membranes of a methylcholanthrene-induced sarcoma. Cancer Res 1977, 37, (9), 3406-13.
157. Aparicio, O.; Geisberg, J. V.; Sekinger, E.; Yang, A.; Moqtaderi,
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63884-
dc.description.abstract臺灣金線連冷水萃取第二型阿拉伯半乳聚醣在本研究中被證實其鍵結主幹為β-(1→3; 1→6)連結的半乳糖,其單醣組成有阿拉伯醣、半乳醣、葡萄醣與甘露醣。經高效能分子排阻層析分析確認其分子量為29 kDa。
本研究中,阿拉伯半乳聚醣經體內與體外試驗,被確認其具有益菌生效應。就體內試驗方面,阿拉伯半乳聚醣能增進小鼠糞便中雙歧桿菌的數目以及降低盲腸內容物的酸鹼值。體外試驗則分別採用糞便混合菌株與純菌株發酵二種方式,來進行益菌生效應的評估。糞便混合菌株發酵試驗,證實該阿拉伯半乳聚醣主要能增進雙歧桿菌的增長,純菌株發酵試驗中,透過逆轉錄聚合酶鏈式反應測試阿拉伯半乳聚醣對雙岐桿菌的作用,結果發現該多醣不僅刺激碳水化合物水解酶的表現,同時也會增進與養份攝取有關的ABC轉運蛋白表現。影響該蛋白的表現被認為有可能是阿拉伯半乳聚醣其益菌生效應的機轉。
因為該阿拉伯半乳聚醣能夠增進腸道中短鏈脂肪酸的產生,所以推測其可能具有抗骨質疏鬆的效果。因此本論文著手評估阿拉伯半乳聚醣其益菌生效益與抗骨質疏鬆兩種生理活性間的關係。本論文使用去卵巢ICR小鼠模擬骨質疏鬆的動物模式,並投與阿拉伯半乳聚醣 (15 mg/kg, 口服)或合併使用鏈黴素歷時三周,評估其改善骨質疏鬆的效果與益菌生效應間的關係。該試驗結果顯示,阿拉伯半乳聚醣能夠增進小鼠糞便中雙歧桿菌的數目。飲水中加入鏈黴素不僅會破壞阿拉伯半乳聚醣的益菌生效果,同時與去卵巢組和偽手術組比較,鏈黴素更使小鼠盲腸酸鹼值顯著的增高。研究中證實,投與阿拉伯半乳聚醣可以改善去卵巢小鼠血中骨鈣素濃度、降低血清骨膠蛋白碳末端肽鏈、預防骨質流失。但合併鏈黴素處理後,卻會抑制阿拉伯半乳聚醣的抗骨質疏鬆效果。骨骼組織型態分析顯示阿拉伯半乳聚醣可以改善骨體積百分比。本研究證實阿拉伯半乳聚醣確實具有抗骨質疏鬆的效果,而且此活性與其益菌生效應有關。
另一部分,阿拉伯半乳聚醣以體內與體外試驗來評估其免疫調控的活性。該阿拉伯半乳聚醣對巨噬細胞具有刺激的效果。結果顯示該多醣能刺激巨噬細胞增生與增進其吞噬活性。同時也能增進小鼠巨噬細胞株RAW264.7 對一氧化氮和細胞激素如腫瘤壞死因子α、白細胞介素1素、白細胞介素10、顆粒球群落刺激生長因子與顆粒單核球群落刺激生長因子等的分泌。體內評估方面,以腹腔注射投與阿拉伯半乳聚醣,會使小鼠脾臟重量增加,促進脾細胞的增生以及提高血清中顆粒球群落刺激生長因子的濃度。
該阿拉伯半乳聚醣更進一步被研究其對分泌顆粒球群落刺激生長因子的機轉探討。結果顯示該機轉可能與MAPK與NFκB的調控路徑有關,另一方面欲了解阿拉伯半乳聚醣對嗜中性白血球缺乏症的影響,以接種結腸癌CT26小鼠合併使用5-氟尿嘧啶為動物試驗模式,投與阿拉伯半乳聚醣(15, 45 mg/kg口服),發現阿拉伯半乳聚醣能改善其嗜中性白血球缺乏症的副作用。
結論,臺灣金線連阿拉伯半乳聚醣在本研究中被證實具有益菌生效應、抗骨質疏鬆與調節免疫等生理活性。
zh_TW
dc.description.abstractA type II arabinogalactan extracted with cold water from Anoectochilus formosanus was demonstrated that has β-(1→3; 1→6) linked Galactose as major structure with branches containing arabinose, galactose, glucose and mannose residues. The molecular weight was 29 kDa determined by high performance size-exclusion chromatography.
This study demonstrated the prebiotic effects of arabinogalactan (AFP) of A. formosanus in vivo and in vitro. In vivo study, AFP could enhance the number of fecal bifidobacteria and reduced the pH values in cecums in mice as inulin acted. In vitro studies used commercial strains and fecal strains for fermentation. AFP influenced the bifidobacteria majorly and in RT-PCR analysis, AFP not only stimulated the carbohydrate enzymes but also induced the expression of ABC transporter associated to nutrient intake. It was suggested as the prebiotic mechanism of AFP.
Since AFP could enhance the production of intestinal short chain fatty acids that were regarded asanti-osteoporosis compounds. But the correlation of AFP between prebiotic and osteoporosis haven’t been demonstrated. It is the first time that evaluated AFP could prevent bone loss in ovariectomized mice through its prebiotic effect. In this experiment female ICR mice were treated with sham-operated or ovariectomized (OVX) that could lead to bone loss while remaining OVX mice were allocated into groups that were AFP (15 mg/kg p.o. daily) with/without streptomycin sulfate (SM) treatment or SM treatment only for 3 weeks.
Results showed AFP could enhance the number of bifidobacteia in feces. SM treatment could reduce prebiotic effect of AFP and let cecum pH value higher than OVX and sham groups. The experiment demonstrated that AFP improved the level of serum osteocalcin, decreased serum C-terminal cross-linked telopeptides of type I collagen (CTx) and prevented bone calcium loss resulting from OVX but in AFP with SM treatment and SM treatment groups exhibited no differences in above bone marker to OVX group. Bone histomorphometry showed AFP improved bone volume /total volume (BV/TV) % and the number of trabecular in femur. Through SM treatment, this study demonstrated that AFP prevented bone loss in OVX mice via its prebiotic effect.
AFP was evaluated the immunomodulatory effects in vivo and in vitro. AFP exhibited the stimulatory effects on the macrophage system. It shows the strong proliferation and phagocytic activity in vitro. Also, the production of NO and cytokines as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-10, granulocyte-colony stimulating factor (G-CSF) and granulocyte macrophage-colony stimulating factor (GM-CSF) appears to be significantly induced by AFP in the murine macrophages RAW264.7. In vivo evaluation showed that intraperitoneal injection of AFP increased the spleen weight, splenocytes proliferation and level of serum G-CSF in mice.
AFP was investigated the signaling pathway of G-CSF secretion in RAW264.7 cells. The results suggested that the intracellular signaling through the activation of MAPK and NF-κB signaling pathways. Oral administration of AFP (15, 45 mg/kg) in mice bearing CT26 carcinoma could reduce the neutropenia caused by 5-fluorouracil (5-FU) injection in CT26 carcinoma inoculated mice.
In conclusion, the prebiotic, anti-osteoporosis and immunomodulatory effects were involved in the bioactivities of a type II arabinogalactan from A. formosanus.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:21:56Z (GMT). No. of bitstreams: 1
ntu-101-D97641004-1.pdf: 4212956 bytes, checksum: c366ed270e51be3a14165e4ed93e9b86 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員審定書…………………………………………………………………………i
致謝 ii
摘要 iii
Abstract v
1. Introduction 1
2.Literature Review 4
2.1 Anoectochilus formosanus 4
2.2 Polysaccharides as biological response modifier 5
2.2.1 Immune modulator 6
2.2.2 Prebiotic effect and bone health promotion 8
2.2.3 Anti-tumor 9
3.Characteristics and prebiotic effects of A. formosanus polysaccharides 11
3.1 Introduction 11
3.2 Materials and methods 12
3.2.1 Preparation of a standardized aqueous extract and polysaccharide of A. formosanus 12
3.2.2 Determination of polysaccharide 14
3.2.3 Monosaccharide distribution 15
3.2.4 Molecular weight (31) 15
3.2.6 Yariv affinity test 18
3.3 Results 19
3.3.1 Chemical composition of polysaccharides 19
3.3.2 Monosaccharide composition 20
3.3.3 Linkage analysis 20
3.4 Discussion 21
3.5 Conclusion 23
4. Prebiotic effects of A. formosanus polysaccharides 29
4.1 Introduction 29
4.2 Materials and methods 30
4.2.1 Purification of polysaccharides 30
4.2.2 Animals 30
4.2.3 in vivo prebiotic studies 31
4.2.5 Statistical analysis 38
4.3 Results 39
4.3.1 Studies on Ca balance and preibiotic activity of SAEAF in growing rats 39
4.3.2 in vitro fermentation studies 40
4.4 Discussion 45
4.5 Conclusion 49
5. Anti-osteoporosis effects of A. formosanus polysaccharides 63
5.1 Introduction 63
5.2 Materials and methods 64
5.2.1 Polysaccharide preparation 64
5.2.2 Animals 64
5.2.3 In vivo assessment of prebiotic effect of AFP 66
5.2.4 Cecal pH and short chain fatty acids 66
5.2.5 Serum bone markers 67
5.2.6 Measurement of bone Ca content 68
5.2.7 Measurement of trabecular bone microarchitecture by microtomography 68
5.2.8 Bone histomorphometric analysis 69
5.2.9 Reverse transcription–PCR analysis 70
5.2.10 In vitro differentiation of osteoblasts and osteoclasts 71
5.2.10 Statistical analysis 73
5.3 Results 73
5.3.1 In vivo anti-osteoporosis in ovariectomized mice 73
5.3.2 Cecal pH values, Ca concentrations and SCFAs 74
5.3.3 Serum biomarkers 75
5.3.3 Bone ash and Ca content 76
5.3.5 Micro-CT analysis 76
5.3.6 Histology 77
5.3.7 RT–PCR analysis 77
5.3.8 Osteoblast cell line differentiation 78
5.3.9 Osteoclast cell line differentiation 79
5.4 Discussion 79
5.5 Conclusion 84
6. Immunomodulatory effects of A. formosanus polysaccharides 104
6.1 Introduction 104
6.2 Materials and methods 106
6.2.1 AFP preparation 106
6.2.2 Endotoxin assays 106
6.2.3 Cell culture 107
6.2.4 Measurement of cell proliferation and NO release 107
6.2.5 Cytokines determination by Enzyme-link immunosorbent assay 109
6.2.6 Macrophage phagocytosis assay 110
6.2.7 Animals and feeding schedule 111
6.2.8 Preparation of mouse splenocytes, intestinal lymphocytes and peritoneal macrophages 111
6.2.9 Phagocytosis assay 112
6.2.10 Cell viability and proliferation assay 113
6.3 Results 114
6.3.1 Endotoxin assay 114
6.3.2 Measurement of cell proliferation and NO release 114
6.3.3 Cytokines determination by enzyme-link immunosorbent assay 115
6.3.4 Macrophage phagocytosis assay 116
6.3.5 Body weight and spleen weight 116
6.3.6 Phagocytosis assay 117
6.3.7 Cell viability and proliferation assay 117
6.3.8 Serum G-CSF assay 117
6.4 Discussion 118
6.5 Conclusion 122
7. The signaling pathway of G-CSF induced by A. formosanus polysaccharides and treatment for neutropenia in mice 130
7.1 Introduction 130
7.2 Materials and methods 131
7.2.1 Polysaccharide preparation 131
7.2.2 Cell culture and experimental design 131
7.2.3 mRNA extraction and RT-PCR analysis 132
7.2.4 Western Blot analysis 135
7.2.5 G-CSF determination by enzyme-link immunosorbent assay 136
7.2.6 Analysis of NF-κB activation 138
7.2.7 Protective effects of AFP on in mice bearing CT26 colon cancer under 5-fluorouracil treatment 138
7.3 Results 140
7.3.1 AFP induces G-CSF secretion in a time- and dose-dependent manner 140
7.3.2 Western blot analysis 140
7.3.3 Inhibitors on AFP induced G-CSF secretion and mRNA expression 141
7.3.4 Analysis of NF-κB activation 142
7.3.5 AFP improved the WBC number in mice under 5-FU treatment 143
7.4 Discussion 143
7.5 Conclusion 146
Literature cited 162
Appendix……………………………………………………………………………...175
 
Tables
Table 1 Distribution of plant arabinogalactans……………………………………….24
Table 2. Chemical composition of polysaccharide fractions from A. formosanus……24
Table 3 Linkage analysis of the polysaccharide AFP isolated from A. formosanus…..25
Table 4 The sugar composition of Crude PS and after total dietary fiber treatment Crude PS-de Glucan…………………………………………………………………….25
Table 5. The primers used in this section………………………………………………51
Table 6 Effect of SAEAF and inulin on intestinal absorption and retention of calcium in rats……………………………………………………………………………………52
Table 7 Effects of administration of indigestible polysaccharide AFP on the number of fecal Bifidobacterium from mice………………………………………………………53.
Table 8. Effect of aqueous extract of A. formosanus (SAEAF) on the growth of B. breve, B. longum, L. acidophilus and C. perfrigens in vitro fermentation……………54
Table 9 Effects of AFP and inulin on the growth of B. breve…………………………55
Table 10 Enumeration of specific intestinal bacterial 16S rRNA gene expression and pH values in fermentations……………………………………………………………...56
Table 11 Primers used for gene expression analysis (RT-PCR)……………………..85
Table 12 The number of fecal bifidobacteria in mice after 7 and 21 days administrated with H2O, AFP (15 mg/kg) or with streptomycin (2mg/mL) in drinking water ………86
Table 13 The calcium concentration in sham-H2O group and in OVX mice treated with AFP or inulin ……………………………………………………………………..87
Table 14 Bone calcium content and the ratio of calcium in bone……………………..88
Table 15 Micro-CT analysis in sham-H2O group and OVX mice groups……………...89
Table 16 Micro-CT analysis in Sham-H2O group and OVX mice group with/without streptomycin in drinking water…………………………………………………………90
 
Pictures
Fig. 1 The flow chart of separation of polysaccharide fractions from A. formosanus.26
Fig. 2 A. formosanus was separated by anion-exchange chromatography on a column of DEAE 650M. The column was eluted with 20 mM tris buffer (pH 7.8) followed by a sodium chloride gradient (0-0.3 M)……………………………………………….........27
Fig. 3 AFP-Fr.1 was separated by size-exclusion chromatography on a column of Sephadex LH-20 and eluted with 20 mM tris buffer (pH 7.8)…………………………27
Fig. 4 Monosaccharide composition analysis by HPAEC-PAD chromatograms. (A) Standard monosaccharide mixture solution (B) Hydrolysate of indigestible polysaccharide AFP from aqueous extract of A. formosanus……………………….....28
Fig. 5 The number of fecal bifidobacteria and number of fecal C perfringens on the 28th day after SAEAF (200, 400 mg.kg) or inulin (400 mg/kg) administration…………….57
Fig. 6 (A) The calcium concentration in serum, (B) soluble calcium concentration in cecum and (C) pH values of cecal content of the rats administrated SAEAF or inulin...............................................................................................................................58
Fig. 7 The growth curves of strains: (A) B. breve, (B) B. longum, (C) L. acidophilus and (D) C. perfringens………………………………………………………………………59
Fig. 8 The growth curve of B. breve in MRS with additional AFP or inulin ..………………………………………………………………………………….60
Fig. 9 The mRNA expressions of B. breve cultivating in AFP or inulin after 9 h and 18 h inocubation for the interesting genes and 16S rRNA were used as an internal control for each by RT-PCR…………………………………………………………………………………61
Fig. 10 Effects of SAEAF, indigestible polysaccharide AFP and inulin on 16S rRNA gene expression of Bifidobacterium spp., Lactobacillus spp., Escherichia coli, and Clostridium perfringens obtained by specific primers………………………………...62
Fig. 11 Experimental design and flow chart for anti-osteoporosis evaluation………..91
Fig. 12 (A) The cecal pH values in the sham-H2O group and in OVX mice administrated with H2O, AFP (5, 15 mg/kg) or inulin (400 mg/kg) (B) the cecal pH values in the sham-H2O group and in OVX mice administrated H2O, AFP treated with or without streptomycin (2 mg/mL) in drinking water…………………………………………….92
Fig. 13 Short chain fatty acids analysis in sham-H2O and OVX mice cecal content (A) concentration of lactic acid, (B) acetic acid (C) propionic acid, (D) butyric acid and (E) total SCFAs………………………………………………………………………..........93
Fig. 14 The serum calcium concentration in sham-H2O group and in OVX mice administrated AFP (5, 15 mg/kg) or inulin (400 mg/kg) for 3 weeks………………….94
Fig. 15 Serum C-terminal cross-linked telopeptides of type I collagen (CTx) concentrations in the sham-H2O group and in OVX mice administrated with H2O, AFP (5, 15 mg/kg) or inulin (400 mg/kg) for 3 weeks (B) the CTx concentration in the sham-H2O group and in OVX mice ……………………………………………………95
Fig. 16 Serum OCN concentration in the sham-H2O group and in OVX mice administrated with H2O, AFP (5, 15 mg/kg) or inulin (400 mg/kg) for 3 weeks (B) the OCN concentration in the sham-H2O group and in OVX mice…………………...…...96
Fig. 17 Micro-CT analysis of metaphysic of the tibia in mice of different groups. (A) Sham-H2O group. (B) Ovariectomy (OVX)-H2O group. (C) OVX-AFPL (AFP, 5 mg/kg) group.(D) OVX-AFPH (AFP, 15 mg/kg) group. (E) OVX-inulin (400 mg/kg) group………………………………………………………………………………..…..97
Fig. 18 Effect of AFP on femoral morphology in OVX mice under tartrate-resistant acid phosphates (TRAP) staining. (A) Sham-H2O group. (B) Ovariectomy (OVX)-H2O group. (C) OVX-AFPL (AFP, 5 mg/kg) group. (D) OVX-AFPH (AFP, 15 mg/kg) group………………………………………………………………….………………..98
Fig. 19 RT-PCR analysis of CaBP D9k of (A) cecum and (B) colon in sham-H2O and OVX mice administrated AFP or Inulin. mRNA was isolated from cecum or colon mucosal and extracted with Trizol…………………………………………………99
Fig. 20 RT-PCR analysis of OCN expressions of tibia bones in the sham-H2O group and in OVX mice were administrated with H2O, AFP (5, 15 mg/kg) or inulin (400 mg/kg) for 3 weeks (B) the OCN expressions of tibia bones in the sham-H2O group and in OVX mice…………………………………………………………………………………...100
Fig. 21 RT-PCR analysis of tartrate-resistant acid phosphates (TRAP) expressions of tibia bones in the sham-H2O group and in OVX mice…………………………….....101
Fig. 22 Effect of sodium butyrate and AFP on alkaline phosphatase (ALP) activity of murine osteoblast MC3T3 E1 at day 6…………………………………………….....102
Fig. 23 The Effects of sodium butyrate and AFP on (A) the number of tartrate-resistant acid phosphates (TRAP) positive cells with above three nuclei. (B) Osteoclasts were under TRAP staining……………………………………………………………….....103
Fig. 24 Effects of AFP on cell proliferation.……………............................................124
Fig. 25 Effects of AFP on NO production in RAW264.7 cells…………………........124
Fig. 26 Effects of AFP on cytokines secretion in RAW264.7 cells. (A) the concentration of IL-1β (B) the concentration of IL-10 (C) the concentration of TNF-α in cultured medium……..................................................................................................................125
Fig. 27 Effects of AFP on cytokines secretion in RAW264.7 cells. (A) the concentration of G-CSF (B) the concentration of GM-CSF in cultured medium………………………………………………………………………………..126
Fig. 28 Effects of AFP on phagocytic activity………………………………………..126
Fig. 29 Effects of AFP on body weight and spleen weight in mice………...………...127
Fig. 30 Effects of AFP on the phagocytosis activity of peritoneal macrophages isolated from mice. …………………………………………………………………………...127
Fig. 31 Effects of AFP on the proliferation of splenocytes induced by mitogen…....128
Fig. 32 Effects of AFP on levels of serum G-CSF in mice……………………….…129
Fig. 33 Effect of AFP on G-CSF expression in RAW264.7 cells in time depended manner………………………………………………..................................................147
Fig. 34 Effect of AFP on G-CSF expression in RAW264.7 cells in dose depended manner……………………………………………………………………………..…147
Fig. 35 Effect of AFP on MAPK phosphorylation. ……………………………..…...148
Fig. 36 Effect of AFP on p38-MAPK phosphorylation. RAW264.7……………..….149
Fig. 37 Effect of AFP on ERK phosphorylation………………………………..……150
Fig. 38 Effect of AFP on IκBα phosphorylation…………………………………...…151
Fig. 39 Effect of AFP on JNK phosphorylation…………………………..……….….152
Fig. 40 Effect of AFP on AP1 transcription factors, c-fos and c-jun……………..…..153
Fig. 41 Effect of AFP on NFκB transcription factors, p65 and p50…………………..153
Fig. 42 Effect of AFP on nuclei CCAAT enhancer-binding protein beta (C/EBPβ)….154
Fig. 43 Effects of AFP on G-CSF mRNA expression under different specific inhibitors……………………………………………………………………………....155
Fig. 44 Effects of AFP on G-CSF secretion in RAW264.7 cells under different specific inhibitors………………………………………………………………………….…...156
Fig. 45 Effects of AFP on NF-κB activation determinate by luciferase assay in cultured RAW264.7 cells……………………………………………………………….……...157
Fig. 46 Effect of AFP on CT26 colon carcinoma growth in vivo……………………..158
Fig. 47 Effect of AFP on the weight CT26 colon tumor growth in vivo……………...159
Fig. 48 Effect of AFP on the weight of spleen in mice…………………………….....160
Fig. 49 Effect of AFP on the weight of tumor in mice…………………………...…...161
Fig. 50 Effects of AFP on the number of white blood cell (WBC) in CT26 inoculated mice…………………………………………………………………………...…........161
Appendix 1……………………………………………………………………...…….175
Appendix 2………………………………………………………………………...….176
Appendix 3………………………………………………………………………...….177
dc.language.isoen
dc.subject臺灣金線連zh_TW
dc.subject多醣zh_TW
dc.subject顆粒球群落刺激因子zh_TW
dc.subject免疫調節zh_TW
dc.subject骨質疏鬆zh_TW
dc.subject益菌生zh_TW
dc.subject第二型阿拉伯半乳聚醣zh_TW
dc.subjecttype II arabinogalactanen
dc.subjectgranulocyte-colony stimulating factoren
dc.subjectimmunomodulatoryen
dc.subjectAnoectochilus formosanusen
dc.subjectpolysaccharideen
dc.subjectosteoporosisen
dc.subjectprebioticen
dc.title臺灣金線連水溶性多醣特徵與生物活性zh_TW
dc.titleCharacteristics and bioactivities of water soluble polysaccharide of Anoectochilus formosanusen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.coadvisor林文川(Wen-Chuan Lin)
dc.contributor.oralexamcommittee蔡國珍(Guo-Jane Tsai),張永和(Yung-Ho Chang),何其儻(Chi-Tang Ho),謝長奇(Chang-Chi Hsieh)
dc.subject.keyword臺灣金線連,多醣,第二型阿拉伯半乳聚醣,益菌生,骨質疏鬆,免疫調節,顆粒球群落刺激因子,zh_TW
dc.subject.keywordAnoectochilus formosanus,polysaccharide,type II arabinogalactan,prebiotic,osteoporosis,immunomodulatory,granulocyte-colony stimulating factor,en
dc.relation.page177
dc.rights.note有償授權
dc.date.accepted2012-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
4.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved