請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63446
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王俊能 | |
dc.contributor.author | Hui-Ju Hsu | en |
dc.contributor.author | 徐卉汝 | zh_TW |
dc.date.accessioned | 2021-06-16T16:42:17Z | - |
dc.date.available | 2015-08-27 | |
dc.date.copyright | 2012-08-27 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-24 | |
dc.identifier.citation | Arisumi, T. (1964). Interspecific hybridization in African violets. Journal of Heredity 55, 181-183.
Broholm, S.K., Tahtiharju, S., Laitinen, R.A., Albert, V.A., Teeri, T.H., and Elomaa, P. (2008). A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proceedings of the National Academy of Sciences of the United States of America 105, 9117-9122. Buchmann, S.L. (1983). Buzz pollination in Angiosperms. Handbook of experimental pollination biology. New York, Van Nostrand Reinhold, 73-113. Busch, A., and Zachgo, S. (2007). Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proceedings of the National Academy of Sciences of the United States of America 104, 16714-16719. Carpenter, R., Copsey, L., Vincent, C., Clark, J., and Coen, E. (1999). Control of organ asymmetry in flowers of Antirrhinum. Cell 99, 367-376. Citerne, H., Jabbour, F., Nadot, S., and Damerval, C. (2010). The evolution of floral symmetry. Advances in Botanical Research 54, 85-137. Citerne, H.L., Moller, M., and Cronk, Q.C.B. (2000). Diversity of CYCLOIDEA-like genes in Gesneriaceae in relation to floral symmetry. Annals of Botany 86, 167-176. Citerne, H.L., Pennington, R.T., and Cronk, Q.C.B. (2006). An apparent reversal in floral symmetry in the legume Cadia is a homeotic transformation. Proceedings of the National Academy of Sciences of the United States of America 103, 12017-12020. Corley, S.B., Carpenter, R., Copsey, L., and Coen, E. (2005). Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proceedings of the National Academy of Sciences of the United States of America 102, 5068-5073. Costa, M.M., Fox, S., Hanna, A.I., Baxter, C., and Coen, E. (2005). Evolution of regulatory interactions controlling floral asymmetry. Development 132, 5093-5101. Cronk, Q.C.B., and Moller, M. (1997). Genetics of floral symmetry revealed. Trends in ecology & evolution 12, 85-86. Cronk, Q.C.B. (2006). Legume flowers bear fruit. Proceedings of the National Academy of Sciences of the United States of America 103, 4801-4802. Cubas, P., Coen, E., and Zapater, J.M.M. (2001). Ancient asymmetries in the evolution of flowers. Current Biology 11, 1050-1052. Cubas, P., Lauter, N., Doebley, J., and Coen, E. (1999). The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal 18, 215-222. Damerval, C., and Manuel, M. (2003). Independent evolution of CYCLOIDEA-like sequences in several angiosperm taxa. Comptes Rendus Palevol 2, 241-250. Dornelas, M.C., Neves do Amaral, W.A., and Rodriguez. A.P.M. (2004). EgLFY, the Eucalyptus grandis homolog of the Arabidopsis gene LEAFY is expressed in reproductive and vegetative tissues. Brazilian Journal of Plant Physiology. 16, 105-114. Doyle, J.J., and. Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19, 11-15. Eastwood, A., Bytebier, B., Tye, H., Tye, A., Robertson, A. and Maunder, M. (1998) The conservation status of Saintpaulia. Curtis's Botanical Magazine 15, 49-62. Endress, P.K. (1999). Symmetry in flowers: diversity and evolution. International Journal of Plant Sciences 160, S3-S23. Feng, X., Zhao, Z., Tian, Z., Xu, S., Luo, Y., Cai, Z., Wang, Y., Yang, J., Wang, Z., Weng, L., et al. (2006). Control of petal shape and floral zygomorphy in Lotus japonicus. Proceedings of the National Academy of Sciences of the United States of America 103, 4970-4975. Fenster, C.B., Armbruster, W.S., and Dudash, M.R. (2009). Specialization of flowers: is floral orientation an overlooked first step? The New Phytologist 183, 502-506. Frohman, M.A., Dush, M.K., and Martin, G.R. (1988). Rapid production of full-length cDNAs from rare transcripts by amplification using a single gene-specific oligonucleotide primer. Proceedings of the National Academy of Sciences of the United States of America 85, 8998-9002. Galego, L., and Almeida, J. (2002). Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes & Development 16, 880-891. Gao, Q., Tao, J.H., Yan, D., Wang, Y.Z., and Li, Z.Y. (2008). Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha (Gesneriaceae). Development Genes and Evolution 218, 341-351. Gaudin, V., Lunness, P.A., Fobert, P.R., Towers, M., Riou-Khamlichi, C., Murray, J.A.H., Coen, E., and Doonan, J.H. (2000). The expression of D-cyclin genes defines distinct developmental zones in snapdragon apical meristems and is locally regulated by the CYCLOIDEA gene. Plant Physiology 122, 1137-1148. Gubitz, T., Caldwell, A., and Hudson, A. (2003). Rapid molecular evolution of CYCLOIDEA-like genes in Antirrhinum and its relatives. Molecular Biology and Evolution 20, 1537-1544. Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95-98. Harrison, C.J., Moller, M., and Cronk, Q.C.B. (1999). Evolution and development of floral diversity in Streptocarpus and Saintpaulia. Annals of Botany 84, 49-60. Hileman, L.C., and Baum, D.A. (2003). Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae). Molecular Biology and Evolution 20, 591-600. Howarth, D.G., and Donoghue, M.J. (2006). Phylogenetic analysis of the 'ECE' (CYC/TB1) clade reveals duplications predating the core eudicots. Proceedings of the National Academy of Sciences of the United States of America 103, 9101-9106. Howarth, D.G., Martins, T., Chimney, E., and Donoghue, M.J. (2011). Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera (Dipsacales). Annals of Botany 107, 1521-1532. Kim, M., Cui, M.L., Cubas, P., Gillies, A., Lee, K., Chapman, M.A., Abbott, R.J., and Coen, E. (2008). Regulatory genes control a key morphological and ecological trait transferred between species. Science 322, 1116-1119. Luo, D., Carpenter, R., Copsey, L., Vincent, C., Clark, J., and Coen, E. (1999). Control of organ asymmetry in flowers of Antirrhinum. Cell 99, 367-376. Luo, D., Carpenter, R., Vincent, C., Copsey, L., and Coen, E. (1996). Origin of floral asymmetry in Antirrhinum. Nature 383, 794-799. Martin-Trillo, M., and Cubas, P. (2010). TCP genes: a family snapshot ten years later. Trends in Plant Science 15, 31-39. Moller, M., and Cronk, Q.C.B. (1997a). Origin and relationships of Saintpaulia (Gesneriaceae) based on ribosomal DNA internal transcribed spacer (ITS) sequences. American Journal of Botany 84, 956-965. Moller, M., and Cronk, Q.C.B. (1997b). Phylogeny and disjunct distribution: evolution of Saintpaulia (Gesneriaceae). Proceedings of the Royal Society of London Series B: Biological Sciences 264, 1827-1836. Navaud, O., Dabos, P., Carnus, E., Tremousaygue, D., and Herve, C. (2007). TCP transcription factors predate the emergence of land plants. Journal of Molecular Evolution 65, 23-33. Neal, P.R., Dafni, A., and Giurfa, M. (1998). Floral symmetry and its role in plant-pollinator systems: Terminology, distribution, and hypotheses. Annual Review of Ecology and Systematics 29, 345-373. Pang, H.B., Sun, Q.W., He, S.Z., and Wang, Y.Z. (2010). Expression pattern of CYC-like genes relating to a dorsalized actinomorphic flower in Tengia (Gesneriaceae). Journal of Systematics and Evolution 48, 309-317. Perez-Rodriguez, M., Jaffe, F.W., Butelli, E., Glover, B.J., and Martin, C. (2005). Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers. Development 132, 359-370. Preston, J.C., Kost, M.A., and Hileman, L.C. (2009). Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies. The New Phytologist 182, 751-762. Preston, J.C., Martinez, C.C., and Hileman, L.C. (2011). Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome. Proceedings of the National Academy of Sciences of the United States of America 108, 2343-2348. Reardon, W., Fitzpatrick, D.A., Fares, M.A., and Nugent, J.M. (2009). Evolution of flower shape in Plantago lanceolata. Plant Molecular Biology 71, 241-250. Robey, M.J., and Robey, N.P. (1988). African violets: gifts from nature. Cornwall Books, New York, USA. Sargent, R.D. (2004). Floral symmetry affects speciation rates in angiosperms. Proceedings of the Royal Society of London Series B: Biological Sciences 271, 603-608. Song, C.F., Lin, Q.B., Liang, R.H., and Wang, Y.Z. (2009). Expressions of ECE-CYC2 clade genes relating to abortion of both dorsal and ventral stamens in Opithandra (Gesneriaceae). BMC Evolutionary Biology 9, 244. Stebbins, G.L. (1974). Flowering plants: evolution above the species level. Harvard University Press, Cambridge, Massachusetts, USA. Ushimaru, A., Dohzono, I., Takami, Y., and Hyodo, F. (2009). Flower orientation enhances pollen transfer in bilaterally symmetrical flowers. Oecologia 160, 667-674. Wang, C.N., Cronk, Q.C.B. (2003). Meristem fate and bulbil formation in Titanotrichum (Gesneriaceae). American Journal of Botany 90, 1696-1708. Wang, C.N., Moller, M., and Cronk, Q.C.B. (2004). Phylogenetic position of Titanotrichum oldhamii (Gesneriaceae) inferred from four different gene regions. Systematic Botany 29, 407-418. Wang, Y.Z., Liang, R.H., Wang, B.H., Li, J.M., Qiu, Z.J., Li, Z.Y., and Weber, A. (2010). Origin and phylogenetic relationships of the Old World Gesneriaceae with actinomorphic flowers inferred from ITS and trnL-trnF sequences. Taxon 59, 1044-1052. Wang, Z., Luo, Y., Li, X., Wang, L., Xu, S., Yang, J., Weng, L., Sato, S., Tabata, S., Ambrose, M., et al. (2008). Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proceedings of the National Academy of Sciences of the United States of America 105, 10414-10419. Yang, X., Pang, H.B., Liu, B.L., Qiu, Z.J., Gao, Q., Wei, L., Dong, Y., and Wang, Y.Z. (2012). Evolution of double positive autoregulatory feedback loops in CYCLOIDEA2 clade genes is associated with the origin of floral zygomorphy. The Plant Cell 24, 1834-1847. Zhang, W., Kramer, E.M., and Davis, C.C. (2010). Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism. Proceedings of the National Academy of Sciences of the United States of America 107, 6388-6393. Zhou, X.R., Wang, Y.Z., Smith, J.F., and Chen, R. (2008). Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (Gesneriaceae). The New Phytologist 178, 532-543. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63446 | - |
dc.description.abstract | 花的對稱性在被子植物的演化中是一個非常重要的性狀。而苦苣苔科的非洲菫原本花形為兩側對稱,但栽培品種因為人為的偏好,栽培出的許多花形轉變為輻射對稱的品系。由於此轉變發生在同屬的不同品系間,使我們可以在基因背景相似的情形下探討花對稱形態如何從兩側對稱轉變為輻射對稱。野生型非洲菫 (Wild type) 的腹側花瓣大於背側花瓣且只能看到兩枚雄蕊位於腹側;另對比兩種人擇後不同輻射對稱性品系花發育過程發現:(1) ‘ Little rick’ 品系:五枚花瓣皆一樣大,類似野生型的腹側花瓣,有五枚可見雄蕊;(2) ‘No-stamen’ 品系:花瓣大小皆一樣小,類似野生型的背側花瓣,雄蕊皆敗育不可見。由於前人研究指出在金魚草中, CYCLOIDEA (CYC) 和 DICHOTOMA (DICH) 基因皆表現在花的背側,共同促進 RADIALIS (RAD) 的表現,來抑制可能促進花腹側發育的 DIVARICATA (DIV) 擴散至背側,進而使花的背腹側形態分化。因此我們推測非洲菫在人擇栽培過程中,花對稱性轉變跟上述基因的表現模式改變有關。Real time PCR 基因表現結果顯示在發育早期,Wild type 非洲菫的 SaCYC1A 及 SaCYC1B 集中在背側花瓣表現;對比在 ‘No-stamen’ 品系的 SaCYC1A 及 SaCYC1B 卻在所有花瓣皆增量表現;而 ‘ Little rick’ 品系中的 SaCYC1A 及 SaCYC1B 在花瓣背側的表現量較 Wild type 少。由於非洲菫在花瓣及雄蕊花原基形成的時期便已建立其對稱形態,因此 ‘No-stamen’ 品系可能在花原基發育時期 SaCYC1A 及 SaCYC1B 擴張至全花表現使所有雄蕊敗育,並使所有花瓣相對於野生型縮小,形成腹側形態背側化的輻射對稱;而 ‘Little rick’ 品系可能因為 SaCYC1A 及 SaCYC1B 在花原基發育時期於花背側的表現減少而使五枚雄蕊都能發育,使所有花瓣小增大,形成背側形態腹側化的另一種輻射對稱型;但由於仍有 CYC 在花背側表現,所以 ‘Little rick’ 花的雄蕊間仍有殘存之兩側對稱性 (背側雄蕊明顯小於腹側四枚雄蕊)。本研究報導了花對稱相關基因表現在空間上 (Heterotopic) 及時間 (Heterochronic) 上的改變及表現量的改變,可能會引起花對稱性狀在兩側對稱及輻射對稱間轉變。 | zh_TW |
dc.description.abstract | Flower bilateral symmetry (zygomorphy) is among the major evolutionary trends in angiosperms as it greatly facilitates the interaction with pollinators thus creates the floral diversity. The wild type flower of the African violet (Saintpaulia sp.; Gesneriaceae) is zygomorphic, but flowers of its domesticated cultivars are mostly actinomorphic, which appears to be favoured by humans. This provides us a great opportunity to study the developmental transition between zygomorphy and actinomorphy, given their similar genetic background. Wild type flowers show zygomorphy in that two dorsal petals are samller than lateral and ventral ones and only two stamens developed in ventral parts. Two independently domesticated cultivars showed drastic differences in flower morphology: (1) Ventralized effect, Saintpaulia sp. cf. Little rick: five petals are large and equally proportionate, like the ventral petals of the wild type, and five stamens developed instead of two. (2) Dorsalized effect, Saintpaulia sp. cf. No-stamen: five petals are equally small, comparable in relative size to the dorsal petals of the wild type, and no stamens develop. It is known that the dorsally expressed flower genes CYCLOIDEA (CYC) and the its downstream gene RADIALIS (RAD) together with the ventral identity flower genes DIVARICATA (DIV) interact to create zygomorphy in Antirrhinum majus. I examined their expressions via real time PCR throughout the duration of anthesis between the wild type and two cultivars. In the wild type, SaCYC1A and SaCYC1B were expressed in dorsal petals at early stages, In contrast, in ‘No-stamen’, SaCYC1A and SaCYC1B expressed in all petals in early stages. In ‘Little rick’, we found SaCYC1A and SaCYC1B only expressed dorsally in early stages but their expression amount is less than wild type. Our results revealed that these differences became pronounced as early as the initiation of petal and stamen primordia. When correlating to SEM pictures of the flower development pattern, in ‘No stamen’ cultivar over-expression of SaCYC1A and SaCYC1B to all petals started as early as primordia initiated, this perhaps create the actinomorphic flower through the dorsalized effect. On the other hand, in ‘Little rick’, reduction of SaCYC1A and SaCYC1B expression was observed when primordia initiated, perhaps causes ventralized effect to generate the actinomorphic flower. Our results demonstrate that altering of genes in aspects of heterochrony, heterotopy and expression amount could trigger developmental transition between floral zygomorphy and actinomorphy during African violet domestications. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T16:42:17Z (GMT). No. of bitstreams: 1 ntu-101-R99b44017-1.pdf: 10765702 bytes, checksum: 29f20faf778d2dc607a2fe4fc8f56a18 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT IV 目錄 VI 附錄目錄 VIII 圖目錄 IX 表目錄 IX 第一章 前言 1 第二章 文獻回顧 4 一、兩側對稱花形物種有演化優勢 4 二、花對稱性調控分子機制 6 豆科 (Fabaceae) 7 車前草科 (Plantaginaceae) 8 苦苣苔科 (Gesneriaceae) 9 三、花對稱性調控基因 10 TCP 基因家族-CYCLOIDEA 10 MYB 基因家族-RADIALIS 12 MYB 基因家族-DIVARICATA 13 四、非洲菫屬植物 (SAINTPAULIA SP.) 14 第三章 材料與方法 16 一、植物材料來源與生長環境及栽培方法 16 二、形態觀察方法 17 花原基發育過程觀察 18 三、非洲菫倍體數分析 19 四、基本分生方法 20 DNA萃取 20 RNA萃取 21 RQ1 DNase 處理 22 RNA反轉錄為cDNA (Reverse transcription) 23 聚合酵素連鎖反應 (Polymerase chain reaction reaction, PCR) 24 洋菜膠電泳分析(Agarose gel electrophoresis) 25 Cloning 26 引子設計 28 五、同源基因分離 29 3’Race PCR 29 DNA定序 30 親緣分析 30 六、基因表現分析方法 31 反轉錄聚合酵素連鎖反應 (RT-PCR) 31 即時聚合酵素連鎖反應 (Real-time PCR) 32 第四章 結果 34 一、花原基發育過程 34 二、倍體數分析 38 三、分離調控非洲菫花對稱性的同源基因 39 四、花對稱性調控基因表現量分析 44 在花序上的基因表現量結果 48 整輪花瓣的基因表現量結果 50 在不同花瓣上的基因表現量結果 52 五、遺傳分析 57 第五章 討論 58 一、非洲菫在花原基形成及發育時便已建立其對稱性形態 58 二、非洲菫中 CYC-LIKE 基因相似金魚草的模型,調控 WILD TYPE 的背側花瓣形成,但其擴張表現造成背側化特別的輻射對稱花形 ‘NO-STAMEN’ 59 三、CYC-LIKE 基因可能不是 RAD-LIKE 及 DIV-LIKE 基因的直接上游調控基因,和金魚草的模型不同 61 四、‘NO-STAMEN’中SACYC1A及SACYC1B基因擴張表現可能受到上游基因的調控 63 五、‘LITTLE RICK’ 的腹側化花形可能和SACYC1A及SACYC1B基因表現減少有關 64 第六章 結論 67 第七章 未來展望 68 參考資料 69 附錄 76 | |
dc.language.iso | zh-TW | |
dc.title | 非洲菫花對稱性轉換的分子發育機制探討 | zh_TW |
dc.title | Developmental transition and molecular basis of floral symmetry during African violet domestication | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 趙淑妙,陳虹樺,蔡文杰,陳仁治 | |
dc.subject.keyword | 兩側對稱,輻射對稱,非洲菫,CYC,RAD,DIV, | zh_TW |
dc.subject.keyword | zygomorphy,actinormophy,African violet,CYC,RAD,DIV, | en |
dc.relation.page | 111 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-27 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
顯示於系所單位: | 生態學與演化生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 10.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。