請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63443完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王俊能 | |
| dc.contributor.author | Meng-Jung Ho | en |
| dc.contributor.author | 何孟容 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:42:05Z | - |
| dc.date.available | 2015-08-27 | |
| dc.date.copyright | 2012-08-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-27 | |
| dc.identifier.citation | References
Bolduc N, Hake S (2009) The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. The Plant Cell 21: 1647-1658 Burtt BL (1970) Studies in the Gesneriaceae of the old World XXXI: some aspect of functional evolution. Notes Royal Botanic Garden, Edinburgh 30: 1-10 Carzoli FG, Michelotti V, Fambrini M, Salvini M, Pugliesi C (2009) Molecular cloning and organ-specific expression of two gibberellin 20-oxidase genes of Helianthus annuus. Plant Molecular Biology Reporter 27: 144-152 D’ Agostino IB, Deruère J and Kieber J (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiology 124: 1706-1717 Galinha C, Bilsborough G, Tsiantis M (2009) Hormonal input in plant meristems: A balancing act. Seminars in Cell & Developmental Biology 20: 1149-1156 Hake S, Smith HMS, Holtan H, Magnani E, Mele G, Ramirez J (2004) The role of KNOX genes in plant development. Annual Review of Cell and Developmental Biology 20: 125-151 Harrison J, Möller M, Jangdale J, Cornk Q, Hudson A (2005) The role of KNOX genes in the evolution of morphological Novelty in Streptocarpus. The Plant Cell 17(2): 430-443 Hay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M (2002) The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Currently Biology 12: 1557-1565 Hay A, Craft J, Tsiantis M (2004) Plant hormones and homeoboxes: bridging the gap? BioEssays 26: 395-404 Hayashi T, Polonenko DR, Camirand A (1986) Pea xyloglucan and cellulose IV. Assembly of b-glucans by pea protoplasts. Plant Physiology 82: 301-306 Huang BH (2009) Loss of anisocotyly in European Gesneriaceae and its evolutionary consequence. M. Sc. Thesis. National Taiwan University Imaichi R, Nagumo S, Kato M (2000) Ontogenetic anatomy of Streptocarpus grandis (Gesneriaceae) with implications for evolution of Monophylly. Annals of Botany 86: 37-46 Inada S, ShimmenT (2000) Regulation of elongation growth by gibberellin in root segments of Lemna minor. Plant Cell Phytologist 41(8): 932-939 Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Pillips A, Hedden P, Tsiantis P (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Current Biology 15: 1560- 1565 Jong K (1970) Developmental aspects of vegetative morphology of Streptocarpus. PhD dissertation, University of Edinburgh Jong K, Burtt BL (1975) The evolution of morphological novelty exemplified in the growth patterns of some Gesneriaceae. New Phytologist 75: 297-311 Kang HG, Jun SH, Kim J, Kawaide H, Kamiya Y, An G (1999) Cloning and molecular analyses of a gibberellin 20-oxidase gene expressed specifically in developing seeds of watermelon. Plant Physiology 121: 373-382 Lee DJ, Zevaart AD (2005) Molecular cloning of GA 2-oxidase3 from Spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiology 138: 243-254 Mantegazza R, Möller M, Harrison CJ, Fior S, De Luca C, Spada A (2007) Anisocotyly and meristem initiation in an unorthodox plant, Streptocarpus rexii (Gesneriaceae). Planta 225: 653-663 Mantegazza R, Tononi P, Möller M, Spada A (2009) WUS and STM homologs are linked to the expression of lateral dominance in the acaulescent Streptocarpus rexii (Gesneriaceae). Planta 230: 529-542 Murashige T and Skoog F (1962) A revised medium for rapid growth and bio assays with Tobacco tissue cultures. Physiologia Plantarum 15: 473-497 Möller M, Cronk QCB (2001) Evolution of morphological novelty: A phylogenetic a nalysis of growth pattern in Streptocarpus (Gesneriaceae). Evolution 55(5): 918- 929 Nishii K, Kuwabara A, Nagata T (2004) Characterization of anisocotylous leaf formation in Streptocarpus wendlandii (Gesneriaceae): Significance of plant growth regulators. Annals of Botany 94: 457-467 Nishii K, Nagata T (2007) Development analyses of the phyllomorph formation in the rosulate species Streptocarpus rexii (Gesneriaceae). Plant Systematics and Evolution 265: 135-145 Nishii K, Nagata T, Wang CN (2009) High morphological plasticity in Gesneriaceae meristems: Reversions in vegetative and floral development. Trends in Developmental Biology 4: 33-40 Nishii K, Möller M, Kidner C, Spada A, Mantegazza R, Wang CN, Nagata T (2010) A complex case of leaves: indeterminate leaves co-express ARP and KNOX1 genes. Development Genes Evolution 220: 25-40 Nishii K, Wang CN, Spada A, Nagata T, Möller M (2012a) Gibberellin as a suppressor of lateral dominance and inducer of apical growth in the unifoliate Streptocarpus wendlandiiI (Gesneriaceae). New Zealand Journal of Botany 1-21 Nishii K, Nagata T, Wang CN, Möller M (2012b) Light as environmental regulator for germination and macrocotyledon development in Streptocarpus rexii. South African Jounal of Botany 81: 50-60 Oehlkers F (1923) Entwicklungsgeschichte von Monophyllaea horsfieldii. Beih. Z. Bot. Centralbl. I. Abt. 39: 128-151 Riou-Khamlichi C, Huntley R, Jacqmard A, Hurray JA (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283: 1541-1544 Roach PL, Clifton IJ, Fülöp V, Harlos K, Barton GJ, Hadju J, Andersson I, Schofield CJ, Baldwin JE (1995) Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature 375: 700-704 Rosenblum IM, Basile DV (1984) Hormonal regulation of morphogenesis in Streptocarpus and its relevance to evolutionary history of the Gesneriaceae. Botanical Society of America 71(1): 52-64 Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M (2001a) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Development 15: 581-590 Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001b) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiology 125: 1508-1516 Saueregger J, Weber A (2004) Factors controlling initiation and orientation of the macrocotyledon in anisocotylous Gesneriaceae. Edinburgh Journal of Botany 60(3): 467-482 Scofield S, Dewitte W, Murray JAH (2008) A model for Arabidopsis class-1 KNOX gene function. Plant Signaling & Behavior 3(4): 257-259 Shani E, Yanai O, Naomi O (2006) The role of hormone in shoot apical meristem function. Current Opinion in Plant Biology 9: 484-489 Takei K, Sakakibara H, Sugiyama T (2001) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. The Journal of Biological Chemistry 276(28): 26405- 26410 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular and Biology Evolution 28(10): 2731-2739 Thomas SG, Pilips AL. Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidase, multifunctional enzymes involved in gibberellin deactivation. Proceedings of the National Academy Sciences of the United States America 96: 4698-4703 Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specific gap penalties and weight matrix choice. Nucleic Acids Researches 22(22): 4673-4680 Tononi P, Möller M, Bencivenga S, Spada A (2010) GRAMINIFOLIA homolog expression in Streptocarpus rexii is associated with the basal meristems in phyllomorphs, a morphological novelty in Gesneriaceae. Evolution & Development 12(1): 61-73 Tsukaya H (1997) Determination of the unequal fate of cotyledons of a one-leaf plant, Monophyllaea. Development 124: 1275-1280 Varner JE (1965) Gibberellin acid controlled synthesis of α-amylase in barley endosperm. Plant Physiology 39(3):413-415 Wang CN, Chen YJ, Chang YC, Wu CH (2008) A step-by-step optimization guide for applying tissue specific RNA in-situ hybridization to non-model plant species. Taiwania 53(4): 383-393 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63443 | - |
| dc.description.abstract | 在苦苣苔科 (Gesneriaceae) 中,子葉不等大為其特有的現象。在種子萌芽後,其中一片子葉基部的分生組織 (basal meristem) 會持續不斷生長成大子葉,另一小子葉則逐漸停止生長、最後凋亡。在前人研究中,施加吉貝素 (GA3) 會抑制basal meristem的活力,使菫蘭不等大子葉的現象消失,形成二片小子葉的型態,這和一般植物中維持頂端分生組織活力需要有低濃度的吉貝素,似乎有著相似的模式。在本研究中,我們藉由吉貝素處理後與正常型堇蘭的形態觀察差異為基礎,進行RT-PCR、RNA原位雜交的試驗,嘗試解開吉貝素在大小子葉中所扮演的角色。我們分離出在菫蘭 (Streptocarpus rexii) 中降解吉貝素的酵素基因SrGA2ox以及合成吉貝素的酵素基因SrGA20ox;在堇蘭幼苗形成不等大子葉的時期,SrGA2ox表現在basal meristem以及groove meristem (形成新葉phyllomorph及長成花序的分生組織) 的位置,證實basal meristem的形成是需要SrGA2ox的表現降解吉貝素,以低濃度的吉貝素來維持basal meristem的活力,而產生持續不斷生長的大子葉;SrGA20ox則表現在小子葉和大子葉的尖端,推測可能參與細胞分裂區外的細胞生長部份。此外,我們也檢測菫蘭的胚胎時期,吉貝素降解基因SrGA2ox表現在二子葉及子葉的近軸面,意味著二片子葉皆具有分生組織的能力,所以大小子葉現象是種子萌芽後才受到環境調控形成;而吉貝素合成基因SrGA20ox在胚胎時期集中表現在shoot meristem (兩片子葉中間) 的位置和子葉的遠軸面,可能因累積了高濃度的吉貝素在將來莖頂分生組織位置,使植株無法形成正常頂芽現象。因為細胞分裂素(CK)處理會使大小子葉現象消失但相反的形成兩片大子葉現象,未來可繼續研究細胞分裂素在堇蘭子葉生長過程中所扮演的角色,試著去解開吉貝素及細胞分裂素與苦苣苔科植物不等大子葉如何發育的謎團。 | zh_TW |
| dc.description.abstract | Anisocotyly is an unorthodox phenomenon among angiosperms, found only in the family members of Gesneriaceae. The rosulate species Streptocarpus rexii exhibits an anisocotylous growth pattern as one of its cotyledons (macrocotyledon) grows continuously via sustained basal meristem (BM) activity at the proximal end. Previous findings suggest that exogenous gibberellin (GA3) can inhibit anisocotyly via suppression of the formation of the BM, causing two equal-sized, small microcotyledons. This study is therefore aimed to shed light on the role of gibberellin (GA) in anisocotyly by revealing the expression pattern of GA catabolism and biosynthesis genes, SrGA2ox and SrGA20ox, to determine how they regulate the unusual basal meristem activity that gives rise to anisocotyly in S. rexii. RT-PCR and RNA in situ hybridization demonstrated that in the macrocotyledon, SrGA2ox shows restricted expression in the basal meristem and also in a shoot apical meristem (SAM) equivalent groove meristem (GM), where further phyllomorph and inflorescence are produced. On the contrary, SrGA20ox transcripts, distributed in the microcotyledon and the distal end of the macrocotyledon, never distributed in the meristem area. These results show agreement with that of model plants, which also suggest that a low concentration of GA is necessary for maintaining meristem activity. Moreover, this mutually exclusive expression pattern between SrGA2ox and SrGA20ox was established since the embryo stage. SrGA2ox was expressed on the adaxial side of both cotyledons, whereas SrGA20ox was distributed in the shoot meristem (SM) and abaxial side of the cotyledons during the embryo stage. The expression of SrGA20ox in the SM may explain the lack of normal shoot initiation in S. rexii seedlings. Because it is also known that exogenous cytokinin (CK) can induce both cotyledons into macrocotyledons, further investigation on the expression profiles of CK genes and their interaction with GA genes is important to fully uncover the developmental mechanism of anisocotyly. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:42:05Z (GMT). No. of bitstreams: 1 ntu-101-R99b44012-1.pdf: 2015950 bytes, checksum: 53881a4a70c0cbf5d7917333149fced6 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Content
Acknowledgment...................................................................................................................i 中文摘要...............................................................................................................................ii Abstract................................................................................................................................iii Content.................................................................................................................................iv Index of Figures and Tables..............................................................................................vii Chapter 1. Introduction.......................................................................................................1 1.1 The uniqueness of Streptocarpus rexii............................................................................1 1.2 Phytohormones’ role in anisocotyly................................................................................3 1.3 Maintaining the meistem activity in model plants...........................................................4 1.4 KNOX gene in Streptocarpus rexii..................................................................................6 Chapter 2. Materials and Methods....................................................................................10 2.1 Plant materials................................................................................................................10 2.2 Plant-hormone treatment................................................................................................10 2.3 Assessment of meristematic activity..............................................................................11 2.3.1 Cell division observation.............................................................................................11 2.3.2 Meristem positions ascertainment.................................................................12 2.4 Cloning of GA2-oxidase and GA20-oxidase genes homologs from Streptocarpus rexii12 2.4.1 Isolation of SrGA2ox gene...........................................................................................13 2.4.1.1 RNA extraction.........................................................................................................13 2.4.1.2 First strand cDNA synthesis.....................................................................................14 2.4.1.3 SrGA2ox isolation.....................................................................................................15 2.4.2 Isolation of SrGA20ox gene.........................................................................................15 2.4.2.1 DNA extraction........................................................................................................15 2.4.2.2 SrGA20ox isolation..................................................................................................16 2.4.3 Standard polymerase chain reaction (PCR).................................................................16 2.4.4 Homologous assessment of the SrGA2ox and SrGA20ox genes.................................17 2.4.4.1 Phylogenetic tree construction of SrGA2ox and SrGA20ox.....................................17 2.4.5 3’ rapid amplification of the DNA ends (3’ RACE)...................................................17 2.5 Reverse transcription-PCR (RT-PCR)...........................................................................18 2.6 In situ hybridization.......................................................................................................18 2.6.1 Fixation and embedding of samples...........................................................................19 2.6.2 Preparation of RNA probes.........................................................................................20 2.6.3 Preparing for in situ hybridization..............................................................................25 2.6.4 Section, deparaffinization and rehydration.................................................................25 2.6.5 Pre-hybridization........................................................................................................26 2.6.6 Post-hybridization......................................................................................................29 Chapter 3. Results..............................................................................................................32 3.1 Basal meristem developing process in Streptocarpus rexii...........................................32 3.1.1 Germination and development process of Streptocarpus rexii...................................32 3.1.2 Meristem activity........................................................................................................32 3.1.3 Basal meristem position..............................................................................................35 3.2 The homologs of gibberellin genes in S. rexii analysis.................................................37 3.2.1 Isolation of SrGA2ox and SrGA20ox..........................................................................37 3.2.2 Homology assessment of SrGA2ox and SrGA20ox....................................................37 3.2.2.1 Sequence identity......................................................................................................37 3.2.2.2 Phylogenetic tree construction of gibberellins genes..............................................38 3.2.2.3 Verification of SrGA2ox and SrGA20ox from conserved domain shared...............42 3.3 The temporal expression analysis of SrGA2ox and SrGA20ox by RT-PCR..................45 3.4 The spatial expression analysis of SrGA2ox and SrGA20ox by RNA in situ hybridization...................................................................................................................47 3.4.1 Gibberellin genes expressions in the basal meristem result in anisocotyly during seedling stages............................................................................................................47 3.4.2 Gibberellin genes expressions in embryo stages related to cotyledon determination.50 Chapter 4. Discussion.........................................................................................................53 4.1 SrGA2ox and SrGA20ox are homologs to other model species......................................53 4.2 SrGA2ox involved in basal meristem maintenance for anisocotyly formation...............53 4.3 SrGA2ox exhibited lateral dominance.............................................................................54 4.4 Macrocotyledon still needs a certain amount of gibberellin...........................................55 4.5 Cotyledon fate was established after germination but not determined in embryo stage.56 4.6 SrGA20ox expression in the embryoic shoot meristem correlation to the loss of apical dominance in Streptocarpus rexii...................................................................................57 4.7 The determined cotyledon fate is irreversible................................................................58 Chapter 5. Conclusion and Future Prospects..................................................................60 Chapter 6. Appendices........................................................................................................62 6.1 The metabolic pathway of gibberellin.............................................................................62 6.2 Typical and atypical results of surgical treatment in Streptocarpus rexii......................63 6.3 The proportion of the different growth patterns after the surgical treatment.................64 6.4 The remaining cotyledon area measurement at the different removal times of Streptocarpus rexii.........................................................................................................65 6.5 The differences in growth pattern between Streptocarpus rexii seedlings without an excised cotyledon versus those with excised cotyledon.................................................66 6.6 The different primer sites of the partial length sequence of SrGA2ox............................68 6.7 The different primer sites of the full length sequence of SrGA20ox..............................69 Chapter 7. References........................................................................................................70 Index of Figures and Tables Figures Fig. 1 Illustration of the phyllomorphic organization in Streptocarpus rexii........................9 Fig. 2 The gibberellin treatment in Streptocarpus rexii.........................................................9 Fig. 3 Model of interactions between KNOX protein, gibberellin genes and cytokinin gene in the shoot apical meristem.........................................................................................9 Fig. 4 The germination process in anisocotyly of Streptocarpus rexii.................................33 Fig. 5 Meristem activity detected by Aniline Blue staining.................................................34 Fig. 6 Meristem position revealed by DAPI staining...........................................................36 Fig. 7 Phylogenetic tree of SrGA2ox....................................................................................40 Fig. 8 Phylogenetic tree of SrGA20ox..................................................................................41 Fig. 9 Conserved region and sequence identity of SrGA2ox................................................43 Fig. 10 Conserved region and sequence identity of SrGA20ox............................................44 Fig. 11 RT-PCR revealed SrGA genes’ temporal expressions.............................................46 Fig. 12 Spatial localization of the gibberellin genes expressed in the developing seedling by RNA in situ hybridization........................................................................................48 Fig. 13 Spatial localization of the gibberellin genes expressed in the different embryo stages by RNA in situ hybridization...................................................................................51 Tables Table. 1 The list of primer pairs for different purposes regarding SrGA genes...................61 | |
| dc.language.iso | zh-TW | |
| dc.subject | GA20-oxidase | zh_TW |
| dc.subject | 子葉不等大 | zh_TW |
| dc.subject | Streptocarpus rexii | zh_TW |
| dc.subject | basal meristem | zh_TW |
| dc.subject | groove meristem | zh_TW |
| dc.subject | GA2-oxidase | zh_TW |
| dc.subject | Anisocotyly | en |
| dc.subject | GA20-oxidase | en |
| dc.subject | GA2-oxidase | en |
| dc.subject | basal meristem | en |
| dc.subject | Streptocarpus rexii | en |
| dc.subject | groove meristem | en |
| dc.title | 吉貝素在堇蘭不等大子葉發育中扮演的角色 | zh_TW |
| dc.title | The role of gibberellin metabolic genes in anisocotyly development of Streptocarpus rexii (Gesneriaceae) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 趙淑妙,蔡文杰,陳淑華,陳仁治 | |
| dc.subject.keyword | 子葉不等大,Streptocarpus rexii,basal meristem,groove meristem,GA2-oxidase,GA20-oxidase, | zh_TW |
| dc.subject.keyword | Anisocotyly,Streptocarpus rexii,basal meristem,groove meristem,GA20-oxidase,GA2-oxidase, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-27 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
