請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63097完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔣丙煌 | |
| dc.contributor.author | Yu-Ju Lin | en |
| dc.contributor.author | 林育如 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:22:34Z | - |
| dc.date.available | 2023-12-31 | |
| dc.date.copyright | 2013-02-21 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-01-28 | |
| dc.identifier.citation | 吳哲誠。以Wnt/β-catenin訊息路徑探討薑中活性成份對於大腸直腸癌預防功效與機轉之研究。國立臺灣大學食品科技研究所碩士論文。2011。
台灣地區2011年主要死因統計(2012)。取自:行政院衛生署衛生統計資訊網。http://www.doh.gov.tw。 Adachi, S.; Shimizu, M.; Shirakami, Y.; Yamauchi, J.; Natsume, H.; Matsushima-Nishiwaki, R.; To, S.; Weinstein, I. B.; Moriwaki, H.; Kozawa, O. (-)-Epigallocatechin gallate downregulates EGF receptor via phosphorylation at Ser1046/1047 by p38 MAPK in colon cancer cells. Carcinogenesis 2009, 30, 1544-1552. Aggarwal, B. B.; Bhardwaj, A.; Aggarwal, R. S.; Seeram, N. P.; Shishodia, S.; Takada, Y. Role of Resveratrol in Prevention and Therapy of Cancer: Preclinical and Clinical Studies. Anticancer Res. 2004, 24, 2783-2840. Ahmad, N.; Gupta, S.; Mukhtar, H. Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor kappaB in cancer cells versus normal cells. Arch. Biochem. Biophys. 2000, 376, 338-346. Banerjee, T.; DuHadaway, J. B.; Gaspari, P.; Sutanto-Ward, E.; Munn, D. H.; Mellor, A. L.; Malachowski, W. P.; Prendergast, G. C.; Muller, A. J. A key in vivo antitumor mechanism of action of natural product-based brassinins is inhibition of indoleamine 2,3-dioxygenase. Oncogene 2007, 27, 2851-2857. Berg, D. Managing the side effects of chemotherapy for colorectal cancer. Semin. Oncol. 1998, 25, 53-59. Brandacher, G.; Perathoner, A.; Ladurner, R.; Schneeberger, S.; Obrist, P.; Winkler, C.; Werner, E. R.; Werner-Felmayer, G.; Weiss, H. G.; Georg, G. Prognostic value of indoleamine 2, 3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin. Cancer. Res. 2006, 12, 1144-1151. Chen, A.; Xu, J. Activation of PPAR{gamma} by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR. Am J Physiol Gastrointest Liver Physiol 2005a, 288, 447-456. Chen, A.; Xu, J.; Johnson, A. C. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 2006, 25, 278-287. Chen, J. C.; Ho, F. M.; Chao, P. D. L.; Chen, C. P.; Jeng, K. C. G.; Hsu, H. B.; Lee, S. T.; Wu, W. T.; Lin, W. W. Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of I [kappa] B kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur. J. Pharmacol. 2005b, 521, 9-20. Chen, Z. P.; Schell, J. B.; Ho, C.-T.; Chen, K. Y. Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett. 1998, 129, 173-179. Cheng, A. L.; Hsu, C. H.; Lin, J. K.; Hsu, M. M.; Ho, Y. F.; Shen, T. S.; Ko, J. Y.; Lin, J. T.; Lin, B. R.; Ming-Shiang, W.; Yu, H. S.; Jee, S. H.; Chen, G. S.; Chen, T. M.; Chen, C. A.; Lai, M. K.; Pu, Y. S.; Pan, M. H.; Wang, Y. J.; Tsai, C. C.; Hsieh, C. Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001, 21, 2895-2900. Cheng, C. W.; Shieh, P. C.; Lin, Y. C.; Chen, Y. J.; Lin, Y. H.; Kuo, D. H.; Liu, J. Y.; Kao, J. Y.; Kao, M. C.; Way, T. D. Indoleamine 2,3-dioxygenase, an immunomodulatory protein, is suppressed by (-)-epigallocatechin-3-gallate via blocking of gamma-interferon-induced JAK-PKC-delta-STAT1 signaling in human oral cancer cells. J. Agric. Food Chem. 2010, 58, 887-894. Cobbold, S. P.; Adams, E.; Farquhar, C. A.; Nolan, K. F.; Howie, D.; Lui, K. O.; Fairchild, P. J.; Mellor, A. L.; Ron, D.; Waldmann, H. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc. Natl. Acad. Sci. 2009, 106, 12055-12060. Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C.; Chau, I.; Van Cutsem, E. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. The New England journal of medicine 2004, 351, 337-345. Dairam, A.; Fogel, R.; Daya, S.; Limson, J. L. Antioxidant and iron-binding properties of curcumin, capsaicin, and S-allylcysteine reduce oxidative stress in rat brain homogenate. J. Agric. Food Chem. 2008, 56, 3350-3356. De Vita, F.; Orditura, M.; Galizia, G.; Romano, C.; Infusino, S.; Auriemma, A.; Lieto, E.; Catalano, G. Serum interleukin-10 levels in patients with advanced gastrointestinal malignancies. Cancer 1999, 86, 1936-1943. De Vita, F.; Orditura, M.; Galizia, G.; Romano, C.; Lieto, E.; Iodice, P.; Tuccillo, C.; Catalano, G. Serum interleukin-10 is an independent prognostic factor in advanced solid tumors. Oncol. Rep. 2000, 7, 357-361. De Waal Malefyt, R.; Haanen, J.; Spits, H.; Roncarolo, M. G.; Te Velde, A.; Figdor, C.; Johnson, K.; Kastelein, R.; Yssel, H.; De Vries, J. E. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J. Exp. Med. 1991, 174, 915-924. Diederichsen, A. C.; Hjelmborg, J.; Christensen, P. B.; Zeuthen, J.; Fenger, C. Prognostic value of the CD4+/CD8+ ratio of tumour infiltrating lymphocytes in colorectal cancer and HLA-DR expression on tumour cells. Cancer immunology, immunotherapy : CII 2003, 52, 423-428. Dummer, W.; Bastian, B. C.; Ernst, N.; Schanzle, C.; Schwaaf, A.; Brocker, E. B. Interleukin-10 production in malignant melanoma: Preferential detection of IL-10-secreting tumor cells in metastatic lesions. Int. J. Cancer 1996, 66, 607-610. Ferdinande, L.; Decaestecker, C.; Verset, L.; Mathieu, A.; Moles Lopez, X.; Negulescu, A. M.; Van Maerken, T.; Salmon, I.; Cuvelier, C. A.; Demetter, P. Clinicopathological significance of indoleamine 2,3-dioxygenase 1 expression in colorectal cancer. Br. J. Cancer 2012, 106, 141-147. Ferrali, M.; Signorini, C.; Caciotti, B.; Sugherini, L.; Ciccoli, L.; Giachetti, D.; Comporti, M. Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Lett. 1997, 416, 123-129. Fridrich, D.; Teller, N.; Esselen, M.; Pahlke, G.; Marko, D. Comparison of delphinidin, quercetin and (-)-epigallocatechin-3-gallate as inhibitors of the EGFR and the ErbB2 receptor phosphorylation. Mol. Nutr. Food Res. 2008, 52, 815-822. Gao, Y. F.; Peng, R. Q.; Li, J.; Ding, Y.; Zhang, X.; Wu, X. J.; Pan, Z. Z.; Wan, D. S.; Zeng, Y. X.; Zhang, X. S. The paradoxical patterns of expression of indoleamine 2,3-dioxygenase in colon cancer. Journal of translational medicine 2009, 7, 71. Gaspari, P.; Banerjee, T.; Malachowski, W. P.; Muller, A. J.; Prendergast, G. C.; DuHadaway, J.; Bennett, S.; Donovan, A. M. Structure−Activity Study of Brassinin Derivatives as Indoleamine 2,3-Dioxygenase Inhibitors. J. Med. Chem. 2005, 49, 684-692. Gordon, M. S.; Cunningham, D. Managing patients treated with bevacizumab combination therapy. Oncology 2005, 69, 25-33. Grohmann, U.; Fallarino, F.; Puccetti, P. Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol. 2003, 24, 242-248. Hamalainen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm. 2007, 2007, 45673. Hanahan, D.; Weinberg, Robert A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646-674. Hayaishi, O. My life with tryptophan—Never a dull moment. Protein Sci. 1993, 2, 472-475. Hosono, T.; Fukao, T.; Ogihara, J.; Ito, Y.; Shiba, H.; Seki, T.; Ariga, T. Diallyl trisulfide suppresses the proliferation and induces apoptosis of human colon cancer cells through oxidative modification of β-tubulin. J. Biol. Chem. 2005, 280, 41487-41493. Huang, A.; Fuchs, D.; Widner, B.; Glover, C.; Henderson, D.; Allen-Mersh, T. Serum tryptophan decrease correlates with immune activation and impaired quality of life in colorectal cancer. Br. J. Cancer 2002, 86, 1691-1696. Huang, M.; Wang, J.; Lee, P.; Sharma, S.; Mao, J. T.; Meissner, H.; Uyemura, K.; Modlin, R.; Wollman, J.; Dubinett, S. M. Human non-small cell lung cancer cells express a type 2 cytokine pattern. Cancer Res. 1995, 55, 3847-3853. Hwu, P.; Du, M. X.; Lapointe, R.; Do, M.; Taylor, M. W.; Young, H. A. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J. Immunol. 2000, 164, 3596-3599. Jeong, Y. I.; Jung, I. D.; Lee, J. S.; Lee, C. M.; Lee, J. D.; Park, Y. M. (-)-Epigallocatechin gallate suppresses indoleamine 2, 3-dioxygenase expression in murine dendritic cells: Evidences for the COX-2 and STAT1 as potential targets. BBRC 2007, 354, 1004-1009. Jeong, Y. I.; Kim, S. W.; Jung, I. D.; Lee, J. S.; Chang, J. H.; Lee, C. M.; Chun, S. H.; Yoon, M. S.; Kim, G. T.; Ryu, S. W.; Kim, J. S.; Shin, Y. K.; Lee, W. S.; Shin, H. K.; Lee, J. D.; Park, Y. M. Curcumin suppresses the induction of indoleamine 2,3-dioxygenase by blocking the Janus-activated kinase-protein kinase Cdelta-STAT1 signaling pathway in interferon-gamma-stimulated murine dendritic cells. J. Biol. Chem. 2009, 284, 3700-3708. Johnson, S. M.; Gulhati, P.; Arrieta, I.; Wang, X.; Uchida, T.; Gao, T.; Evers, B. M. Curcumin inhibits proliferation of colorectal carcinoma by modulating Akt/mTOR signaling. Anticancer Res. 2009, 29, 3185-3190. Jung, I. D.; Jeong, Y. I.; Lee, C. M.; Noh, K. T.; Jeong, S. K.; Chun, S. H.; Choi, O. H.; Park, W. S.; Han, J.; Shin, Y. K. COX-2 and PGE2 signaling is essential for the regulation of IDO expression by curcumin in murine bone marrow-derived dendritic cells. Int. Immunopharmacol. 2010, 10, 760-768. Kalvakolanu, D. V. Alternate interferon signaling pathways. Pharmacol. Ther. 2003, 100, 1-29. Kaplan, D. H.; Shankaran, V.; Dighe, A. S.; Stockert, E.; Aguet, M.; Old, L. J.; Schreiber, R. D. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl. Acad. Sci. 1998, 95, 7556-7561. Katz, J. B.; Muller, A. J.; Prendergast, G. C. Indoleamine 2, 3‐dioxygenase in T‐cell tolerance and tumoral immune escape. Immunol. Rev. 2008, 222, 206-221. Kim, S. I.; Jeong, Y. I.; Jung, I. D.; Lee, J. S.; Lee, C. M.; Yoon, M. S.; Seong, E. Y.; Kim, J. I.; Lee, J. D.; Park, Y. M. p-Coumaric acid inhibits indoleamine 2, 3-dioxygenase expression in murine dendritic cells. Int. Immunopharmacol. 2007, 7, 805-815. Kotake, Y.; Masayama, I. The intermediary metabolism of tryptophan. XVIII. The mechanism of formation of kynurenine from tryptophan. Z. Physiol. Chem. 1936, 243, 236-244. Lob, S.; Konigsrainer, A.; Zieker, D.; Brucher, B. L. D. M.; Rammensee, H. G.; Opelz, G.; Terness, P. IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol Immunother. 2009, 58, 153-157. Lawson, L. D.; Gardner, C. D. Composition, stability, and bioavailability of garlic products used in a clinical trial. J. Agric. Food Chem. 2005, 53, 6254-6261. Lee, H. J.; Jeong, Y. I.; Lee, T. H.; Jung, I. D.; Lee, J. S.; Lee, C. M.; Kim, J. I.; Joo, H.; Lee, J. D.; Park, Y. M. Rosmarinic acid inhibits indoleamine 2, 3-dioxygenase expression in murine dendritic cells. Biochem. Pharmacol. 2007, 73, 1412-1421. Leeds, J. M.; Brown, P.; McGeehan, G.; Brown, F.; Wiseman, J. Isotope effects and alternative substrate reactivities for tryptophan 2, 3-dioxygenase. J. Biol. Chem. 1993, 268, 17781-17786. Leopoldini, M.; Russo, N.; Chiodo, S.; Toscano, M. Iron chelation by the powerful antioxidant flavonoid quercetin. J. Agric. Food Chem. 2006, 54, 6343-6351. Li, H.; Li, H. Q.; Wang, Y.; Xu, H. X.; Fan, W. T.; Wang, M. L.; Sun, P. H.; Xie, X. Y. An intervention study to prevent gastric cancer by micro-selenium and large dose of allitridum. Chin Med J (Engl) 2004, 117, 1155-1160. Lob, S.; Konigsrainer, A.; Rammensee, H.-G.; Opelz, G.; Terness, P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat. Rev. Cancer 2009, 9, 445-452. Macchiarulo, A.; Camaioni, E.; Nuti, R.; Pellicciari, R. Highlights at the gate of tryptophan catabolism: a review on the mechanisms of activation and regulation of indoleamine 2,3-dioxygenase (IDO), a novel target in cancer disease. Amino Acids 2009, 37, 219-229. Massague, J. The Transforming Growth Factor-beta Family. Annu. Rev. Cell Biol. 1990, 6, 597-641. Mehta, R. G.; Liu, J.; Constantinou, A.; Thomas, C. F.; Hawthorne, M.; You, M.; Gerhuser, C.; Pezzuto, J. M.; Moon, R. C.; Moriarty, R. M. Cancer chemopreventive activity of brassinin, a phytoalexin from cabbage. Carcinogenesis 1995, 16, 399-404. Mellor, A. L.; Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 2004, 4, 762-774. Miller, C. L.; Llenos, I. C.; Dulay, J. R.; Barillo, M. M.; Yolken, R. H.; Weis, S. Expression of the kynurenine pathway enzyme tryptophan 2, 3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol Dis. 2004, 15, 618-629. Moffett, J. R.; Namboodiri, M. A. Tryptophan and the immune response. Immunol. Cell Biol. 2003, 81, 247-265. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55-63. Mu, M. M.; Chakravortty, D.; Sugiyama, T.; Koide, N.; Takahashi, K.; Mori, I.; Yoshida, T.; Yokochi, T. The inhibitory action of quercetin on lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells. J. Endotoxin Res. 2001, 7, 431-438. Munn, D. H.; Zhou, M.; Attwood, J. T.; Bondarev, I.; Conway, S. J.; Marshall, B.; Brown, C.; Mellor, A. L. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998, 281, 1191. O'Connell, J.; O'Sullivan, G. C.; Collins, J. K.; Shanahan, F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J. Exp. Med. 1996, 184, 1075-1082. Opal, S. M.; Wherry, J. C.; Grint, P. Interleukin-10: Potential benefits and possible risks in clinical infectious diseases. Clin. Infect. Dis. 1998, 27, 1497-1507. Opitz, C. A.; Litzenburger, U. M.; Lutz, C.; Lanz, T. V.; Tritschler, I.; Koppel, A.; Tolosa, E.; Hoberg, M.; Anderl, J.; Aicher, W. K.; Weller, M.; Wick, W.; Platten, M. Toll-Like Receptor Engagement Enhances the Immunosuppressive Properties of Human Bone Marrow-Derived Mesenchymal Stem Cells by Inducing Indoleamine-2,3-dioxygenase-1 via Interferon-β and Protein Kinase R. Stem Cells 2009, 27, 909-919. Opitz, C. A.; Litzenburger, U. M.; Sahm, F.; Ott, M.; Tritschler, I.; Trump, S.; Schumacher, T.; Jestaedt, L.; Schrenk, D.; Weller, M.; Jugold, M.; Guillemin, G. J.; Miller, C. L.; Lutz, C.; Radlwimmer, B.; Lehmann, I.; von Deimling, A.; Wick, W.; Platten, M. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 2011, 478, 197-203. Pages, F.; Berger, A.; Camus, M.; Sanchez-Cabo, F.; Costes, A.; Molidor, R.; Mlecnik, B.; Kirilovsky, A.; Nilsson, M.; Damotte, D.; Meatchi, T.; Bruneval, P.; Cugnenc, P.-H.; Trajanoski, Z.; Fridman, W.-H.; Galon, J. Effector Memory T Cells, Early Metastasis, and Survival in Colorectal Cancer. New Engl. J. Med. 2005, 353, 2654-2666. Pan, M. H.; Hsieh, M. C.; Kuo, J. M.; Lai, C. S.; Wu, H.; Sang, S.; Ho, C. T. 6-Shogaol induces apoptosis in human colorectal carcinoma cells via ROS production, caspase activation, and GADD 153 expression. Mol. Nutr. Food Res. 2008, 52, 527-537. Pan, M. H.; Lai, C. S.; Wu, J. C.; Ho, C. T. Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Mol. Nutr. Food Res. 2011, 55, 32-45. Pappa, G.; Lichtenberg, M.; Iori, R.; Barillari, J.; Bartsch, H.; Gerhauser, C. Comparison of growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae. Mutat. Res. 2006, 599, 76-87. Park, C. H.; Chang, J. Y.; Hahm, E. R.; Park, S.; Kim, H.-K.; Yang, C. H. Quercetin, a potent inhibitor against β-catenin/Tcf signaling in SW480 colon cancer cells. BBRC 2005, 328, 227-234. Parnaud, G.; Li, P.; Cassar, G.; Rouimi, P.; Tulliez, J.; Combaret, L.; Gamet-Payrastre, L. Mechanism of Sulforaphane-Induced Cell Cycle Arrest and Apoptosis in Human Colon Cancer Cells. Nutr. Cancer 2004, 48, 198-206. Platten, M.; Wick, W.; Weller, M. Malignant glioma biology: Role for TGF-β in growth, motility, angiogenesis, and immune escape. Microsc. Res. Tech. 2001, 52, 401-410. Platten, M.; Ho, P. P.; Youssef, S.; Fontoura, P.; Garren, H.; Hur, E. M.; Gupta, R.; Lee, L. Y.; Kidd, B. A.; Robinson, W. H.; Sobel, R. A.; Selley, M. L.; Steinman, L. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 2005, 310, 850-855. Rabinovich, G. A.; Gabrilovich, D.; Sotomayor, E. M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 2007, 25, 267-296. Rafice, S. A.; Chauhan, N.; Efimov, I.; Basran, J.; Raven, E. L. Oxidation of L-tryptophan in biology: a comparison between tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase. Biochem. Soc. Trans. 2009, 37, 408-412. Ralph, P.; Nakoinz, I.; Sampson-Johannes, A.; Fong, S.; Lowe, D.; Min, H. Y.; Lin, L. IL-10, T lymphocyte inhibitor of human blood cell production of IL-1 and tumor necrosis factor. J. Immunol. 1992, 148, 808-814. Ranelletti, F. O.; Ricci, R.; Larocca, L. M.; Maggiano, N.; Capelli, A.; Scambia, G.; Benedetti-Panici, P.; Mancuso, S.; Rumi, C.; Piantelli, M. Growth-inhibitory effect of quercetin and presence of type-II estrogen-binding sites in human colon-cancer cell lines and primary colorectal tumors. Int. J. Cancer 1992, 50, 486-492. Romani, L.; Fallarino, F.; De Luca, A.; Montagnoli, C.; D’Angelo, C.; Zelante, T.; Vacca, C.; Bistoni, F.; Fioretti, M. C.; Grohmann, U. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 2008, 451, 211-215. Rosenberg, S. A.; Yang, J. C.; Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 2004, 10, 909-915. Ruddick, J. P.; Evans, A. K.; Nutt, D. J.; Lightman, S. L.; Rook, G. A.; Lowry, C. A. Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med. 2006, 8, 1-27. Rudolf, E.; Andelova, H.; Cervinka, M. Activation of several concurrent proapoptic pathways by sulforaphane in human colon cancer cells SW620. Food Chem. Toxicol. 2009, 47, 2366-2373. Santos, C. I.; Costa-Pereira, A. P. Signal transducers and activators of transcription-from cytokine signalling to cancer biology. AcBB 2011, 1816, 38-49. Scheithauer, W.; Blum, J. Coming to grips with hand-foot syndrome. Insights from clinical trials evaluating capecitabine. Oncology 2004, 18, 1161-1168, 1173; discussion 1173-1166, 1181-1164. Schroder, K.; Hertzog, P. J.; Ravasi, T.; Hume, D. A. Interferon-γ: an overview of signals, mechanisms and functions. J. Leukocyte Biol. 2004, 75, 163-189. Shan, B.-E.; Wang, M.-X.; Li, R.-q. Quercetin Inhibit Human SW480 Colon Cancer Growth in Association with Inhibition of Cyclin D1 and Survivin Expression through Wnt/β-Catenin Signaling Pathway. Cancer Invest. 2009, 27, 604-612. Shapiro, T. A.; Fahey, J. W.; Dinkova-Kostova, A. T.; Holtzclaw, W. D.; Stephenson, K. K.; Wade, K. L.; Ye, L.; Talalay, P. Safety, Tolerance, and Metabolism of Broccoli Sprout Glucosinolates and Isothiocyanates: A Clinical Phase I Study. Nutr. Cancer 2006, 55, 53-62. Sharma, M. D.; Hou, D. Y.; Liu, Y.; Koni, P. A.; Metz, R.; Chandler, P.; Mellor, A. L.; He, Y.; Munn, D. H. Indoleamine 2, 3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 2009, 113, 6102-6111. Shen, G.; Khor, T. O.; Hu, R.; Yu, S.; Nair, S.; Ho, C. T.; Reddy, B. S.; Huang, M. T.; Newmark, H. L.; Kong, A. N. Chemoprevention of familial adenomatous polyposis by natural dietary compounds sulforaphane and dibenzoylmethane alone and in combination in ApcMin/+ mouse. Cancer Res. 2007, 67, 9937-9944. Shimizu, M.; Deguchi, A.; Joe, A. K.; McKoy, J. F.; Moriwaki, H.; Weinstein, I. B. EGCG inhibits activation of HER3 and expression of cyclooxygenase-2 in human colon cancer cells. J Exp Ther Oncol 2005, 5, 69-78. Shimizu, M.; Shirakami, Y.; Sakai, H.; Adachi, S.; Hata, K.; Hirose, Y.; Tsurumi, H.; Tanaka, T.; Moriwaki, H. (−)-Epigallocatechin Gallate Suppresses Azoxymethane-Induced Colonic Premalignant Lesions in Male C57BL/KsJ-db/db Mice. Cancer Prev. Res. 2008, 1, 298-304. Shin, M. S.; Kim, H. S.; Lee, S. H.; Park, W. S.; Kim, S. Y.; Park, J. Y.; Lee, J. H.; Lee, S. K.; Lee, S. N.; Jung, S. S.; Han, J. Y.; Kim, H.; Lee, J. Y.; Yoo, N. J. Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res. 2001, 61, 4942-4946. Shukla, Y.; Kalra, N. Cancer chemoprevention with garlic and its constituents. Cancer Lett. 2007, 247, 167-181. Shull, M. M.; Ormsby, I.; Kier, A. B.; Pawlowski, S.; Diebold, R. J.; Yin, M.; Allen, R.; Sidman, C.; Proetzel, G.; Calvin, D.; Annunziata, N.; Doetschman, T. Targeted disruption of the mouse transforming growth factor-[beta]1 gene results in multifocal inflammatory disease. Nature 1992, 359, 693-699. Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Heme-containing oxygenases. Chem. Rev. 1996, 96, 2841-2887. Stone, T. W.; Darlington, L. G. Endogenous kynurenines as targets for drug discovery and development. Nat. Rev. Drug Discov. 2002, 1, 609-620. Su, C. C.; Chen, G. W.; Lin, J. G.; Wu, L. T.; Chung, J. G. Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B/p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions. Anticancer Res. 2006, 26, 1281-1288. Suganuma, M.; Okabe, S.; Sueoka, N.; Sueoka, E.; Matsuyama, S.; Imai, K.; Nakachi, K.; Fujiki, H. Green tea and cancer chemoprevention. Mutat. Res. 1999, 428, 339-344. Sugimoto, H.; Oda, S.; Otsuki, T.; Hino, T.; Yoshida, T.; Shiro, Y. Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proc Natl Acad Sci U S A 2006, 103, 2611-2616. Taylor, M. W.; Feng, G. Relationship between interferon-gamma, indoleamine 2, 3-dioxygenase, and tryptophan catabolism. The FASEB journal 1991, 5, 2516-2522. Tessitore, L.; Davit, A.; Sarotto, I.; Caderni, G. Resveratrol depresses the growth of colorectal aberrant crypt foci by affecting bax and p21CIP expression. Carcinogenesis 2000, 21, 1619-1622. Thackray, S. J.; Mowat, C. G.; Chapman, S. K. Exploring the mechanism of tryptophan 2,3-dioxygenase. Biochem. Soc. Trans. 2008, 36, 1120-1123. Thomas, S. R.; Salahifar, H.; Mashima, R.; Hunt, N. H.; Richardson, D. R.; Stocker, R. Antioxidants inhibit indoleamine 2,3-dioxygenase in IFN-gamma-activated human macrophages: posttranslational regulation by pyrrolidine dithiocarbamate. J. Immunol. 2001, 166, 6332-6340. Uyttenhove, C.; Pilotte, L.; Theate, I.; Stroobant, V.; Colau, D.; Parmentier, N.; Boon, T.; Van den Eynde, B. J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2, 3-dioxygenase. Nat. Med. 2003, 9, 1269-1274. von Bubnoff, D.; Matz, H.; Frahnert, C.; Rao, M. L.; Hanau, D.; de la Salle, H.; Bieber, T. FcepsilonRI induces the tryptophan degradation pathway involved in regulating T cell responses. J. Immunol. 2002, 169, 1810-1816. Voorzanger, N.; Touitou, R.; Garcia, E.; Delecluse, H. J.; Rousset, F.; Joab, I.; Favrot, M. C.; Blay, J. Y. Interleukin (IL)-10 and IL-6 are produced in vivo by non-Hodgkin's lymphoma cells and act as cooperative growth factors. Cancer Res. 1996, 56, 5499-5505. Wegrowski, Y.; Paltot, V.; Gillery, P.; Kalis, B.; Randoux, A.; Maquart, F. X. Stimulation of sulphated glycosaminoglycan and decorin production in adult dermal fibroblasts by recombinant human interleukin-4. Biochem. J. 1995, 307 ( Pt 3), 673-678. Widner, B.; Werner, E. R.; Schennach, H.; Wachter, H.; Fuchs, D. Simultaneous Measurement of Serum Tryptophan and Kynurenine by HPLC. Clin. Chem. 1997, 43, 2424-2426. Wirleitner, B.; Schroecksnadel, K.; Winkler, C.; Schennach, H.; Fuchs, D. Resveratrol suppresses interferon-γ-induced biochemical pathways in human peripheral blood mononuclear cells in vitro. Immunol. Lett. 2005, 100, 159-163. Wolter, F.; Akoglu, B.; Clausnitzer, A.; Stein, J. Downregulation of the cyclin D1/Cdk4 complex occurs during resveratrol-induced cell cycle arrest in colon cancer cell lines. J. Nutr. 2001, 131, 2197-2203. Yamamoto, S.; Hayaishi, O. Tryptophan pyrrolase of rabbit intestine. D- and L-tryptophan-cleaving enzyme or enzymes. J. Biol. Chem. 1967, 242, 5260-5266. Zhang, K. S.; Li, G. C.; He, Y. W.; Yi, Y. M.; Liao, S. L.; Wang, Z.; Du, J. Curcumin inhibiting the expression of indoleamine 2,3-dioxygenase induced by IFN-gamma in cancer cells. Zhong Yao Cai. 2008, 31, 1207-1211. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63097 | - |
| dc.description.abstract | 癌細胞經常利用許多方式來抑制病人的免疫系統以躲避免疫系統的清除,其中一個免疫抑制的機制即是透過抑制indoleamine-2,3-dioxygenase (IDO)此酵素之活性。IDO會將tryptophan降解成kynurenine,而造成微環境中tryptophan缺乏的現象,又因tryptophan是T細胞的必需胺基酸,且其下游代謝產物kynurenines會誘導T細胞走向凋亡,因此是一種具抑制免疫能力的酵素。過去文獻指出,除腫瘤組織浸潤的dendritic cells可能表現較高的IDO活性外,癌細胞本身也會表現IDO,使得腫瘤組織逃過免疫系統的監控及毒殺。文獻指出大腸直腸癌病人中高IDO表現可能與低T細胞數量有關,不利於預後,因此本研究選擇目前已知具抗癌能力的植化素(phytochemical),以大腸直腸癌細胞模式來篩選可能抑制大腸直腸癌中IDO活性的植化素,並探討其可能的作用機制。研究結果顯示,大腸直腸癌細胞株HCT116及LoVo皆因interferon-γ (IFN-γ)之誘導而表現IDO之mRNA,且可於細胞培養液中偵測到tryptophan的減少及kynurenine的增加,而LoVo還表現tryptophan-2,3-dioxygenase (TDO)此與IDO作用類似的酵素的mRNA。而人體息肉ex vivo的實驗中可以發現該樣本亦因IFN-γ之誘導而表現IDO之mRNA。第二部份使用此兩株細胞株針對9種植化素:Epigallocatechin gallate (EGCG)、curcumin、 resveratrol、quercetin、sulforaphane、6-shogaol、diallyl trisulfide (DATS)、brassinin及其化學衍生物5-br-brassinin,進行抑制IDO活性的實驗,結果發現EGCG、6-shogaol、brassinin、5-br-brassinin、sulforaphane、DATS可顯著使細胞培養液中kynurenine減少。第三部份探討EGCG及DATS之抑制機制,實驗結果顯示EGCG具抑制IDO及TDO mRNA表現的活性,然而DATS並不具抑制IDO或TDO mRNA的效果,因此DATS產生抑制活性之機制仍待深入探討。 | zh_TW |
| dc.description.abstract | Tumor cells display multiple immunosuppressive mechanisms against the host immune system. One of the tumor immunosuppression mechanisms involves the immunoregulatory enzyme indoleamine-2,3-dioxygenase (IDO). IDO degrades tryptophan which results tryptophan starvation of local environment. Tryptophan starvation and the proapoptotic tryptophan catabolites, kynurenine, consequently inhibit T cell response and proliferation. Recent studies indicated that many tumor cells constantly express IDO which enable tumor cells to avoid immune attack of T cells. In several colorectal cancer case studies, it has been proposed that high-IDO expression was associated with significantly low T cells, which may correlate to poor prognosis and liver metastasis. Phytochemicals are chemical compounds that occur naturally in plants and have been reported to have antitumor activity. According to recent studies, some of the phytochemicals have ability to inhibit IDO activity in cancer cells. The aim of this research was to use colonrectal cancer cell lines to identify the phytochemicals which have anti-IDO effects on colorectal cancer.
We first prepared two colorectal cancer cell lines, LoVo and HCT116, and used them as IDO-expressing cell models. We found that these two cell lines express IDO mRNA by the induction of interferon-γ (IFN-γ). In addition, IFN-γ decreased tryptophan and increased kynurenine concentratins in the culture medium.We further found that LoVo cells expressed tryptophan-2,3-dioxygenase (TDO) mRNA. In our human colon polyp ex vivo study, it showed that IDO mRNA was also induced by IFN-γ stimulation. In the second part of our research, we tested 9 phytochemicals including EGCG, curcumin, resveratrol, quercetin, sulforaphane, 6-shogaol, diallyl trisulfide (DATS), brassinin andits derivate 5-br-brassinin, to see if they were able to inhibit colorectal cancer cells to convert tryptophan to kynurenine. Results showed that EGCG, 6-shogaol, brassinin, 5-br-brassinin, sulforaphane, DATS were able to inhibit both LoVo and HCT116 cells to release kynurenine into cell medium. In the third part, we investigated the inhibition mechanism of EGCG and DATS. Results indicated that EGCG showed IDO and TDO mRNA inhibiting activity. However, DATS did not show inhibition effect on IDO or TDO gene expression. The mechanism of how DATS inhibits IDO activity in colorectal cancer cells is still unclear and needs further study. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:22:34Z (GMT). No. of bitstreams: 1 ntu-102-R99641028-1.pdf: 3107322 bytes, checksum: 5b666b429d07181efae546ec41f3f106 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄
壹、 文獻回顧 1 一、 大腸直腸癌簡介 1 (一) 大腸直腸癌的概況 1 (二) 大腸直腸癌的治療 4 二、 癌症的免疫抑制機制 5 (一) 癌症對於免疫系統的影響 5 (二) 癌症的免疫編輯(cancer immunoediting)及免疫抑制(immunosuppression)現象 6 (三) 癌症相關之免疫抑制因子 8 三、 Indoleamine-2,3-dioxygenase (IDO)簡介 10 (一) IDO之蛋白質結構及化學特性 10 (二) IDO的作用機制及其對tryptophan的代謝路徑 12 (三) IDO的產物對免疫系統的影響 14 (四) IDO的訊息傳導路徑:Janus-activated Kinase-protein kinase Cδ-STAT signaling pathway (JAK-PKC-δ-STAT1 pathway) 15 (五) IDO的活性與大腸直腸癌的關係 16 (六) Tryptophan-2,3-dioxygenase (TDO) 簡介 18 四、 植化素 (phytochemicals)簡介 19 (一) 植化素的分類 19 (二) 植化素之抗大腸直腸癌之作用機轉 20 (三) 植化素對於IDO之免疫調節作用研究現況 26 貳、 研究目的與實驗架構 29 一、 研究目的 29 二、 實驗架構 30 (一) 建立細胞模式 30 (二) 以植化素抑制大腸直腸癌細胞株中IDO的活性 30 (三) 探討該EGCG及DATS之可能的IDO及TDO抑制機制 31 參、 實驗材料與方法 32 一、 實驗材料 32 (一) 細胞株來源 32 (二) 藥品試劑 32 二、 儀器與廠牌 33 三、 實驗方法 34 (一) 細胞培養 34 (二) 誘導大腸直腸癌細胞株及人體大腸息肉組織表現IDO活性 35 (三) 以植化素抑制大腸直腸癌細胞株中IDO的活性 41 (四) EGCG及DATS對於大腸直腸癌細胞株中IDO及TDO活性之機制探討 42 (五) 統計分析 43 肆、 結果與討論 44 一、 誘導大腸直腸癌細胞株啟動kynurenine pathway 44 (一) 不同大腸直腸癌細胞株經由IFN-γ誘導後對於IDO基因表現之影響 44 (二) 不同大腸直腸癌細胞株經由IFN-γ誘導後對於培養液中kynurenine產生量及tryptophan殘存量之影響 47 (三) 不同大腸直腸癌細胞株經由IFN-γ誘導後對於TDO基因表現之影響 50 (四) 人體大腸息肉組織經由IFN-γ誘導後對於IDO及TDO基因表現之影響 52 (五) 小結 53 二、 以植化素抑制大腸直腸癌細胞株中IDO的活性 54 (一) EGCG對於培養液中kynurenine產生量及tryptophan殘存量之影響 55 (二) Curcumin對於培養液中kynurenine產生量及tryptophan殘存量之影響 57 (三) Brassinin及5-Br-brassinin對於培養液中kynurenine產生量及tryptophan殘存量之影響 59 (四) Resveratrol對於培養液中kynurenine產生量及tryptophan殘存量之影響 63 (五) Quercetin對於培養液中kynurenine產生量及tryptophan殘存量之影響 65 (六) Sulforaphane對於培養液中kynurenine產生量及tryptophan殘存量之影響 67 (七) 6-Shogaol對於培養液中kynurenine產生量及tryptophan殘存量之影響 69 (八) DATS對於培養液中kynurenine產生量及tryptophan殘存量之影響 71 (九) 小結 73 三、 EGCG及DATS抑制大腸直腸癌細胞株中IDO及TDO活性之機制探討 76 (一) EGCG對於LoVo及HCT116之IDO、TDO mRNA基因表現量之影響 76 (二) DATS對於LoVo及HCT116之IDO、TDO mRNA基因表現量之影響 78 伍、 綜合討論 80 陸、 結論 84 柒、 參考文獻 86 圖表目錄 圖一、 大腸直腸位置及解剖圖 2 圖二、 AJCC定義之大腸直腸癌分期說明 3 圖三、 免疫編輯過程 6 圖四、 IDO之3D化學結構(Macchiarulo et al., 2009) 10 圖五、 IDO的酵素催化路徑圖(Thackray et al., 2008) 11 圖六、 L-tryptophan之化學結構 12 圖七、 Kynurenine pathway之代謝路徑圖(Lob et al., 2009) 13 圖八、 IFN-γ調控之JAK-STAT1訊息傳導路徑(Santos and Costa-Pereira, 2011) 15 圖九、 EGCG之化學結構 20 圖十、 Sulforaphane的化學結構 21 圖十一、 6-Shogaol的化學結構 21 圖十二、 Curcumin的化學結構 22 圖十三、 Resveratrol的化學結構 23 圖十四、 大蒜中有機含硫化合物之代謝路徑及其化學結構(Lawson et al., 2005) 23 圖十五、 Brassinin的化學結構 24 圖十六、 Quercetin的化學結構 25 圖十七、 EGCG抑制IDO活性之機制(Cheng et al., 2010) 27 圖十八、 5-Br-brassinin之化學結構圖 28 圖十九、 (A) LoVo (B) HCT116 之細胞培養液之HPLC圖譜 37 圖二十、 不同IFN-γ濃度對於大腸直腸癌細胞株LoVo之IDO mRNA表現的影響 45 圖二十一、 不同IFN-γ濃度對於大腸直腸癌細胞株HCT116之IDO mRNA表現的影響 46 圖二十二、 不同IFN-γ濃度對於大腸直腸癌細胞株LoVo之培養液中tryptophan殘存量及kynurenine產生量的影響 48 圖二十三、 不同IFN-γ濃度對於大腸直腸癌細胞株HCT116之培養液中kynurenine產生量及tryptophan殘存量的影響 49 圖二十四、 不同IFN-γ濃度對於大腸直腸癌細胞株LoVo之TDO mRNA表現的影響 51 圖二十五、 人類大腸息肉組織經IFN-γ刺激後之IDO及TDO 的mRNA表現 52 圖二十六、 EGCG對於 (A) LoVo存活率 (B) HCT116存活率 (C) LoVo培養液中tryptophan殘留率 (D) HCT116培養液中tryptophan殘留率 (E) LoVo產生kynurenine抑制率 (F) HCT116產生kynurenine抑制率 之影響 56 圖二十七、 Curcumin對於 (A) LoVo存活率 (B) HCT116存活率 (C) LoVo培養液中tryptophan殘留率 (D) HCT116培養液中tryptophan殘留率 (E) LoVo產生kynurenine抑制率 (F) HCT116產生kynurenine抑制率 之影響 58 圖二十八、 Brassinin對於(A) LoVo存活率 (B) HCT116存活率 (C) LoVo培養液中tryptophan殘留率 (D) HCT116培養液中tryptophan殘留率 (E) LoVo產生kynurenine抑制率 (F) HCT116產生kynurenine抑制率 之影響 61 圖二十九、 5-Br-brassinin對於(A) LoVo存活率 (B) HCT116存活率 (C) LoVo培養液中tryptophan殘留率 (D) HCT116培養液中tryptophan殘留率 (E) LoVo產生kynurenine抑制率 (F) HCT116產生kynurenine抑制率 之影響 62 圖三十、 Resveratrol對於(A) LoVo存活率 (B) HCT116存活率 (C) LoVo培養液中tryptophan殘留率 (D) HCT116培養液中tryptophan殘留率 (E) LoVo產生kynurenine抑制率 (F) HCT116產生kynurenine抑制率 之影響 64 圖三十一、 Quercetin對於(A) LoVo存活率 (B) HCT116存活率 (C) LoVo培養液中tryptophan殘留率 (D) HCT116培養液中tryptophan殘留率 (E) LoVo產生kynurenine抑制率 (F) HCT116產生kynurenine抑制率 之影響 66 圖三十二、 Sulforaphane對於(A) LoVo存活率 (B) HCT116存活率 (C) LoVo培養液中tryptophan殘留率 (D) HCT116培養液中tryptophan殘留率 (E) LoVo產生kynurenine抑制率 (F) HCT116產生kynurenine抑制率 之影響 68 圖三十三、 6-Shogaol對於(A) LoVo存活率 (B) HCT116存活率 (C) LoVo培養液中tryptophan殘留率 (D) HCT116培養液中tryptophan殘留率 (E) LoVo產生kynurenine抑制率 (F) HCT116產生kynurenine抑制率 之影響 70 圖三十四、 DATS對於(A) LoVo存活率 (B) HCT116存活率 (C) LoVo培養液中tryptophan殘留率 (D) HCT116培養液中tryptophan殘留率 (E) LoVo產生kynurenine抑制率 (F) HCT116產生kynurenine抑制率 之影響 72 圖三十五、 EGCG對於 (A) LoVo中IDO及TDO mRNA的影響 (B) HCT116中IDO mRNA的影響 77 圖三十六、 DATS對於 (A) LoVo中IDO及TDO mRNA的影響 (B) HCT116中IDO mRNA的影響 79 圖三十七、 (A) 九種植化素對於LoVo及HCT116之不同影響 (B) EGCG及DATS對於LoVo及HCT116之IDO或TDO mRNA表現之影響 85 表一、 IDO於不同癌症組織中的表現量(Uyttenhove et al., 2003) 16 表二、 以植化素抑制IDO活性之研究現況 26 表三、 不同植化素對於LoVo及HCT116培養液中tryptophan殘留率及kynurenine抑制率之整理 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | indoleamine-2 | en |
| dc.subject | Colorectal cancer | en |
| dc.subject | Tryptophan-2 | en |
| dc.subject | 3-dioxygenase | en |
| dc.subject | 3-dioxygenase | en |
| dc.subject | phytochemicals | en |
| dc.title | "植化素抑制大腸直腸癌中indoleamine-2,3-dioxygenase活性之探討" | zh_TW |
| dc.title | Inhibition effects of phytochemicals on indoleamine-2,3-dioxygenase activity in colorectal cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何其儻,鍾景光,吳明賢 | |
| dc.subject.keyword | 大腸直腸癌,Indoleamine-2,3-dioxygenase,植化素,Tryptophan-2,3-dioxygenase, | zh_TW |
| dc.subject.keyword | Colorectal cancer,indoleamine-2,3-dioxygenase,phytochemicals,Tryptophan-2,3-dioxygenase, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-01-29 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
