Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62599
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛人愷
dc.contributor.authorTze-Yang Yehen
dc.contributor.author葉子暘zh_TW
dc.date.accessioned2021-06-16T16:05:19Z-
dc.date.available2015-07-03
dc.date.copyright2013-07-03
dc.date.issued2013
dc.date.submitted2013-06-21
dc.identifier.citation參考文獻
1. M.J. Donachie, Titanium: A Technical Guide. 2 ed. 2000: ASM International.
2. G. Lutjering and J.C. Williams, Titanium. 2 ed. 2007: Springer-Verlag.
3. J.L. Walter, M.R. Jackson, and C.T. Sims, Titanium and its alloys: Principles of Alloying Titanium. 1988: ASM International.
4. D.W. Shoesmith and J.J. Noel, 3.10 - Corrosion of Titanium and its Alloys, in Shreir's Corrosion, J.A.R. Editor-in-Chief: Tony, Editor. 2010, Elsevier: Oxford. p. 2042-2052.
5. G. Mabilleau, et al., Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. Acta Biomaterialia, 2006. 2(1): p. 121-129.
6. M.T. Whittaker, W. Harrison, P.J. Hurley, and S. Williams, Modelling the behaviour of titanium alloys at high temperature for gas turbine applications. Materials Science and Engineering: A, 2010. 527(16–17): p. 4365-4372.
7. R.R. Boyer, An overview on the use of titanium in the aerospace industry. Materials Science and Engineering: A, 1996. 213(1–2): p. 103-114.
8. D. Iijima, et al., Wear properties of Ti and Ti–6Al–7Nb castings for dental prostheses. Biomaterials, 2003. 24(8): p. 1519-1524.
9. L. Bolzoni, E.M. Ruiz-Navas, E. Neubauer, and E. Gordo, Mechanical properties and microstructural evolution of vacuum hot-pressed titanium and Ti–6Al–7Nb alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2012. 9(0): p. 91-99.
10. W.-S. Lee, C.-F. Lin, T.-H. Chen, and H.-H. Hwang, Effects of strain rate and temperature on mechanical behaviour of Ti–15Mo–5Zr–3Al alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2008. 1(4): p. 336-344.
11. S.H. Lee, et al., Biocompatible low Young's modulus achieved by strong crystallographic elastic anisotropy in Ti–15Mo–5Zr–3Al alloy single crystal. Journal of the Mechanical Behavior of Biomedical Materials, 2012. 14(0): p. 48-54.
12. H.-M. Kim, et al., Formation of a bioactive graded surface structure on Ti–15Mo–5Zr–3Al alloy by chemical treatment. Biomaterials, 2000. 21(4): p. 353-358.
13. J.R. Davis, Metals Handbook. 1998: ASM International.
14. Y.Q. Xie, H.J. Peng, X.B. Liu, and K. Peng, Atomic states, potential energies, volumes, stability and brittleness of ordered FCC Ti3Al-type alloys. Physica B: Condensed Matter, 2005. 362(1–4): p. 1-17.
15. 吳政淵, 使用鈦基填料紅外線硬銲鈦合金之研究. 2009: 國立台灣大學博士論文.
16. M.M. Schwartz, Introduction to Brazing and Soldering. Vol. 6. 1993: ASM Handbook.
17. A. Guedes, A. Pinto, M. Vieira, and F. Viana, The effect of brazing temperature on the titanium/glass-ceramic bonding. Journal of Materials Processing Technology, 1999. 92–93(0): p. 102-106.
18. H.B. Liu, et al., Vacuum brazing of SiO2 glass ceramic and Ti–6Al–4V alloy using AgCuTi filler foil. Materials Science and Engineering: A, 2008. 498(1–2): p. 321-326.
19. W.H. Kohl, Soldering and brazing. Vacuum, 1964. 14(5): p. 175-198.
20. X. Yue, et al., Microstructure and interfacial reactions of vacuum brazing titanium alloy to stainless steel using an AgCuTi filler metal. Materials Characterization, 2008. 59(12): p. 1721-1727.
21. J.S.C. Jang and H.P. Shih, Study of the nano-structured nickel-based brazing filler synthesized by mechanical alloying. Materials Chemistry and Physics, 2001. 70(2): p. 217-222.
22. Y.V. Naidich, et al., Liquid metal wettability and advanced ceramic brazing. Journal of the European Ceramic Society, 2008. 28(4): p. 717-728.
23. J. Li, et al., Microstructure of high temperature Ti-based brazing alloys and wettability on SiC ceramic. Materials & Design, 2009. 30(2): p. 275-279.
24. M.M. Schwartz, Brazing. 2003: ASM International.
25. R.W. Messler Jr, Chapter 7 - Brazing: A Subclassification of Welding, in Joining of Materials and Structures. 2004, Butterworth-Heinemann: Burlington. p. 349-387.
26. W. Dai, et al., Torch brazing 3003 aluminum alloy with Zn—Al filler metal. Transactions of Nonferrous Metals Society of China, 2012. 22(1): p. 30-35.
27. I.-T. Hong and C.-H. Koo, Vacuum-furnace brazing of C103 and Ti–6Al–4V with Ti–15Cu–15Ni filler-metal. Materials Science and Engineering: A, 2005. 398(1–2): p. 113-127.
28. High vacuum furnace for brazing aero-space alloys. Vacuum, 1977. 27(7–8): p. 483.
29. O. Botstein, A. Schwarzman, and A. Rabinkin, Induction brazing of Ti-6Al-4V alloy with amorphous 25Ti-25Zr-50Cu brazing filler metal. Materials Science and Engineering: A, 1996. 206(1): p. 14-23.
30. T. Noda, T. Shimizu, M. Okabe, and T. Iikubo, Joining of TiAl and steels by induction brazing. Materials Science and Engineering: A, 1997. 239–240(0): p. 613-618.
31. H. Ji, M. Li, Y. Lu, and C. Wang, Mechanical properties and microstructures of hybrid ultrasonic resistance brazing of WC-Co/BeCu. Journal of Materials Processing Technology, 2012. 212(9): p. 1885-1891.
32. R.K. Shiue, S.K. Wu, and Y.T. Chen, Strong bonding of infrared brazed α2-Ti3Al and Ti–6Al–4V using Ti–Cu–Ni fillers. Intermetallics, 2010. 18(1): p. 107-114.
33. R.K. Shiue, S.K. Wu, Y.T. Chen, and C.Y. Shiue, Infrared brazing of Ti50Al50 and Ti–6Al–4V using two Ti-based filler metals. Intermetallics, 2008. 16(9): p. 1083-1089.
34. M.-K. Jeon, W.-B. Kim, G.-C. Han, and S.-J. Na, A study on heat flow and temperature monitoring in the laser brazing of a pin-to-plate joint. Journal of Materials Processing Technology, 1998. 82(1–3): p. 53-60.
35. L.-q. Li, X.-s. Feng, and Y.-b. Chen, Influence of laser energy input mode on joint interface characteristics in laser brazing with Cu-base filler metal. Transactions of Nonferrous Metals Society of China, 2008. 18(5): p. 1065-1070.
36. K. Pearmain, B.A. Unvala, and B.H. Barter, A laboratory technique for electron beam brazing. Vacuum, 1973. 23(11): p. 423.
37. I.L. Pobol, A.A. Shipko, and I.G. Nesteruk, Investigation of contact phenomena at cubic boron nitride-filler metal interface during electron beam brazing. Diamond and Related Materials, 1997. 6(8): p. 1067-1070.
38. A. Rabinkin, Brazing Filler Metals, in Encyclopedia of Materials: Science and Technology (Second Edition), K.H.J.B. Editors-in-Chief: , et al., Editors. 2002, Elsevier: Oxford. p. 1-8.
39. A. Elrefaey and W. Tillmann, Effect of brazing parameters on microstructure and mechanical properties of titanium joints. Journal of Materials Processing Technology, 2009. 209(10): p. 4842-4849.
40. Y.C. Du and R.K. Shiue, Infrared brazing of Ti–6Al–4V using two silver-based braze alloys. Journal of Materials Processing Technology, 2009. 209(11): p. 5161-5166.
41. S.-h. Chen, L.-q. Li, Y.-b. Chen, and D.-j. Liu, Si diffusion behavior during laser welding-brazing of Al alloy and Ti alloy with Al-12Si filler wire. Transactions of Nonferrous Metals Society of China, 2010. 20(1): p. 64-70.
42. D.W. Liaw, Z.Y. Wu, R.K. Shiue, and C.S. Chang, Infrared vacuum brazing of Ti–6Al–4V and Nb using the Ti–15Cu–15Ni foil. Materials Science and Engineering: A, 2007. 454–455(0): p. 104-113.
43. J.G. Lee, et al., Low-temperature brazing of titanium by the application of a Zr–Ti–Ni–Cu–Bebulk metallic glass (BMG) alloy as a filler. Intermetallics, 2010. 18(1): p. 70-73.
44. N.S. Reddy, C.S. Lee, J.H. Kim, and S.L. Semiatin, Determination of the beta-approach curve and beta-transus temperature for titanium alloys using sensitivity analysis of a trained neural network. Materials Science and Engineering: A, 2006. 434(1–2): p. 218-226.
45. Z. Zhang, et al., Effect of β heat treatment temperature on microstructure and mechanical properties of in situ titanium matrix composites. Materials & Design, 2010. 31(9): p. 4269-4273.
46. Y. Deng, G. Sheng, and C. Xu, Evaluation of the microstructure and mechanical properties of diffusion bonded joints of titanium to stainless steel with a pure silver interlayer. Materials & Design, 2013. 46(0): p. 84-87.
47. X. Fu, et al., Experimental study on the phase equilibria of the Ag–Ti system. Materials Science and Engineering: A, 2005. 408(1–2): p. 190-194.
48. C. Guo, et al., Microstructure and tribological properties of TiAg intermetallic compound coating. Applied Surface Science, 2011. 257(24): p. 10692-10698.
49. H. Flandorfer and E. Hayer, Partial and integral enthalpy of molten Ag–Al–Cu alloys. Journal of Alloys and Compounds, 2000. 296(1–2): p. 112-118.
50. V.T. Witusiewicz, U. Hecht, S.G. Fries, and S. Rex, The Ag–Al–Cu system: Part I: Reassessment of the constituent binaries on the basis of new experimental data. Journal of Alloys and Compounds, 2004. 385(1–2): p. 133-143.
51. S.S. Wang, M.D. Cheng, L.C. Tsao, and T.H. Chuang, Corrosion behavior of Al–Si–Cu–(Sn, Zn) brazing filler metals. Materials Characterization, 2001. 47(5): p. 401-409.
52. G.-f. Zhang, W. Su, J.-x. Zhang, and A. Suzumura, Development of Al-12Si-xTi system active ternary filler metals for Al metal matrix composites. Transactions of Nonferrous Metals Society of China, 2012. 22(3): p. 596-603.
53. S.-l. Xiao, L.-j. Xu, Y.-y. Chen, and H.-b. Yu, Microstructure and mechanical properties of TiAl-based alloy prepared by double mechanical milling and spark plasma sintering. Transactions of Nonferrous Metals Society of China, 2012. 22(5): p. 1086-1091.
54. Z. Oksiuta, J.R. Dabrowski, and A. Olszyna, Co–Cr–Mo-based composite reinforced with bioactive glass. Journal of Materials Processing Technology, 2009. 209(2): p. 978-985.
55. Y. Song, et al., Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys. Materials Science and Engineering: A, 1999. 260(1–2): p. 269-274.
56. J. Strnad, et al., Bio-activated titanium surface utilizable for mimetic bone implantation in dentistry—Part III: Surface characteristics and bone–implant contact formation. Journal of Physics and Chemistry of Solids, 2007. 68(5–6): p. 841-845.
57. S. Ren, R.W. Mee, and P.D. Frymier, Using factorial experiments to study the toxicity of metal mixtures. Ecotoxicology and Environmental Safety, 2004. 59(1): p. 38-43.
58. H.T. Wolterbeek and T.G. Verburg, Predicting metal toxicity revisited: general properties vs. specific effects. Science of The Total Environment, 2001. 279(1–3): p. 87-115.
59. K. Hayashi, et al., Bone-implant interface mechanics of in vivo bio-inert ceramics. Biomaterials, 1993. 14(15): p. 1173-1179.
60. A. Krajewski and A. Ravaglioli, Interpretation of difficulties in the initial adhesion of bio-active glasses to bone. Biomaterials, 1988. 9(5): p. 449-453.
61. Z.Y. Wu, R.K. Shiue, and C.S. Chang, Transmission Electron Microscopy Study of the Infrared Brazed High-strength Titanium Alloy. Journal of Materials Science & Technology, 2010. 26(4): p. 311-316.
62. C.T. Chang, T.Y. Yeh, R.K. Shiue, and C.S. Chang, Microstructural Evolution of Infrared Brazed CP-Ti Using Ti-Cu-Ni Brazes. Journal of Materials Science & Technology, 2011. 27(2): p. 131-138.
63. C.T. Chang, Z.Y. Wu, R.K. Shiue, and C.S. Chang, Infrared brazing Ti–6Al–4V and SP-700 alloys using the Ti–20Zr–20Cu–20Ni braze alloy. Materials Letters, 2007. 61(3): p. 842-845.
64. Y. Guanjun and H. Shiming, Study on the phase equilibria of the Ti–Ni–Nb ternary system at 900°C. Journal of Alloys and Compounds, 2000. 297(1–2): p. 226-230.
65. C.C. Lin, C. Chen, R.K. Shiue, and S.C. Shi, Vacuum brazing Mo using Ti–Ni–Nb braze alloys. International Journal of Refractory Metals and Hard Materials, 2011. 29(5): p. 641-644.
66. 鍾偉志, SP-700鈦合金雷射銲件之熱處理及顯微組織研究. 2006: 國立台灣大學碩士論文.
67. P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams. 1995: ASM International.
68. T.B. Massalski, Binary Alloy Phase Diagrams. 1990: ASM International.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62599-
dc.description.abstract傳統上用以硬銲鈦合金之商用鈦基填料,以鈦、銅和鎳三元合金填料為主,相關研究也侷限於使用此三元填料之硬銲製程及結構分析。本研究選用鈦、鋯、銅和鎳四元合金系統,藉由鋯之添加產生之四元共晶效應,可有效降低硬銲工作溫度攝氏六十度以上,以減少母材晶粒粗化現象。實驗過程使用CP-Ti及Ti-15V-3Cr-3Al-3Sn兩種母材,搭配Ti-20Zr-20Cu-20Ni及Ti-37.5Zr-15Cu -10Ni兩種填料合金,經不同硬銲溫度及持溫時間,觀察銲道顯微組織演化過程並進行相鑑定。顯微組織觀察主要以電子微探分析儀(EPMA)完成,配合WDS分析技術對大尺寸析出物進行化學成份分析,精確的相鑑定以穿隧式電子顯微鏡(TEM)完成,利用擇區繞射圖形配合EDS成份分析確認不同結晶構造之析出物形貌及組成關係。實驗中發現Ti2Ni、Ti2Cu及(Ti,Zr)2Ni等介金屬,於不同硬銲參數時會以不同比例析出。CP-Ti(α-Ti)為母材時,銲道主要可分為三個區域:(1)連續(Ti,Zr)2Ni脆性介金屬相於銲道中央析出、(2)由高溫冷卻凝固過程中β-Ti共析反應析出α-Ti及不同介金屬相、(3)銲道邊緣針狀α-Ti成長區域。Ti-15V-3Cr- 3Al-3Sn(β-Ti)為母材時,銲道中央連續(Ti,Zr)2Ni介金屬相析出,此相和周圍母材間有平整界面,塊狀Ti2Cu、Ti2Ni主要分布於此界面附近,而母材中亦有不同介金屬相會於晶粒內部析出。zh_TW
dc.description.abstractThe most popular Ti-based braze alloys in brazing Titanium alloys are Ti-Cu-Ni alloy systems. The brazing temperature of the Ti-Cu-Ni fillers is decreased by adding Zr into Ti-Cu-Ni alloy system. Lower brazing temperature, more than 60 ℃, leads to minor grain size coarsening of substrate and prevents its mecanical properties deterioration. Ti-20Zr-20Cu-20Ni and Ti-37.5Zr-15Cu-10Ni foils are used to braze CP-Ti and Ti-15V-3Cr-3Al-3Sn plates. Microstructural evolution and phase identification are assessed in the experiment. Specimens prepared with srandard metallographic procedure are examined using electron probe microanalyzer (EPMA) equipped with the wavelength dispersive spectroscope for microstructural evolution observation and quantitative chemical analysis. TEM equipped with energy dispersive spectroscope (EDS) is used for detailed phase identification. Intermetallics of Ti2Ni, Ti2Cu and (Ti,Zr)2Ni in different amounts are widely observed in specimens brazed with various thermal cycles. Three zones can be identified from the joint of CP-Ti, including continuous phase of (Ti,Zr)2Ni at the central area, eutectoid of α-Ti and intermetallics transformed from prior β-Ti, and acicular α-Ti. As for the joint of Ti-15V-3Cr-3Al-3Sn, continuous phase of (Ti,Zr)2Ni can also be found at the central area of the joint but with a rather smooth boundary between (Ti,Zr)2Ni and the substrate. Blocks of Ti2Cu and Ti2Ni are dispersed primarily near the boundary and numerous plate-shaped Ti2Cu particles precipitate in the substrate.en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:05:19Z (GMT). No. of bitstreams: 1
ntu-102-F95527007-1.pdf: 24751054 bytes, checksum: 02765bc1f6a368af1090cbb13a518feb (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目 錄
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 iv
表目錄 vii
第一章 前言 1
第二章 文獻回顧 3
2-1 鈦及鈦合金 3
2-1-1 鈦及鈦合金簡介 3
2-1-2 鈦的基本性質 4
2-1-3 合金元素的影響 5
2-1-4 鈦合金的分類 6
2-2 硬銲接合 7
2-3 硬銲製程設備 11
2-4 鈦合金硬銲 13
2-5 生醫材料的介紹 16
2-6 本研究中使用之鈦合金 17
2-6-1 CP-Ti 17
2-6-2 Ti-15-3 17
2-6-3 Ti-6Al-7Nb 18
2-7 本研究中使用之硬銲填料 19
2-7-1 Ti-Zr-Cu-Ni系填料 19
2-7-2 Ti-Ni-Nb系填料 19
第三章 實驗方法與步驟 26
3-1 實驗目的 26
3-2 Ti-Zr-Cu-Ni四元合金填料硬銲 26
3-2-1 實驗材料及流程 27
3-3 Ti-6Al-7Nb基材及Ti-Ni-Nb填料合金 28
第四章 實驗結果與討論 32
4-1 CP-Ti/Ti-20Zr-20Cu-20Ni/CP-Ti 銲道 32
4-1-1 CP-Ti/Ti-20Zr-20Cu-20Ni/CP-Ti銲道相鑑定 32
4-1-2 CP-Ti/Ti-20Zr-20Cu-20Ni/CP-Ti銲道顯微組織演化 35
4-2 CP-Ti/Ti-37.5Zr-15Cu-10Ni/CP-Ti 銲道 38
4-2-1 CP-Ti/Ti-37.5Zr-15Cu-10Ni/CP-Ti銲道相鑑定 38
4-2-1 CP-Ti/Ti-37.5Zr-15Cu-10Ni/CP-Ti銲道顯微組織演化 40
4-3 Ti-15-3/Ti-20Zr-20Cu-20Ni/Ti-15-3 銲道 42
4-3-1 Ti-15-3/Ti-20Zr-20Cu-20Ni/Ti-15-3銲道相鑑定 43
4-3-2 Ti-15-3/Ti-20Zr-20Cu-20Ni/Ti-15-3銲道顯微組織演化 44
4-4 Ti-15-3/Ti-37.5Zr-15Cu-10Ni/Ti-15-3 銲道 46
4-3-1 Ti-15-3/Ti-37.5Zr-15Cu-10Ni/Ti-15-3銲道相鑑定 46
4-3-2 Ti-15-3/Ti-37.5Zr-15Cu-10Ni/Ti-15-3銲道顯微組織演化 47
4-5 Ti-6Al-7Nb硬銲接點顯微結構分析 49
4-5-1 Ti-6Al-7Nb母材晶粒顯微組織觀察 50
4-5-2 Ti-6Al-7Nb/Ti-35Ni-25Nb/Ti-6Al-7Nb銲道顯微組織觀察 50
4-5-3 Ti-6Al-7Nb/Ti-35Ni-15Nb/Ti-6Al-7Nb銲道顯微組織觀察 52
4-5-4 Ti-6Al-7Nb/Ti-25Ni-15Nb/Ti-6Al-7Nb銲道顯微組織觀察 52
第五章 結論與未來研究重點 112
5-1 CP-Ti以Ti-Zr-Cu-Ni四元填料合金硬銲 112
5-1-1 CP-Ti/Ti-20Zr-20Cu-20Ni/CP-Ti 112
5-1-2 CP-Ti/Ti-37.5Zr-15Cu-10Ni/CP-Ti 112
5-2 Ti-15-3 以 Ti-Zr-Cu-Ni四元填料合金硬銲 112
5-2-1 Ti-15-3/Ti-20Zr-20Cu-20Ni/Ti-15-3 112
5-2-2 Ti-15-3/Ti-37.5Zr-15Cu-10Ni/Ti-15-3 113
5-3 Ti-6Al-7Nb以Ti-Ni-Nb三元填料合金硬銲 113
5-4 未來研究重點 114
參考文獻 115
個人簡歷及論文著作 120
圖目錄
圖2-1 鈦合金中兩種主要結構 (a) HCP, α相 (b)BCC, β相 20
圖2-2 冷卻通過β轉換溫度時β相(110)面轉變為α相(0001)面對應關係 21
圖2-3 鈦添加α穩定元素相圖 22
圖2-4 鈦添加β安定元素相圖:(a) b isomorphous、(b) b eutectoid 23
圖2-5 填隙型元素含量對未合金化純Ti(a)強度、(b)延性之影響 24
圖2-6 潤溼角量測和表面張力之示意圖 25
圖4-1 CP-Ti/Ti-20Zr-20Cu-20Ni/CP-Ti傳統爐真空硬銲870℃持溫1800秒銲道顯微組織觀察及WDS化學成分分析 54
圖4-2 CP-Ti/Ti-20Zr-20Cu-20Ni/CP-Ti傳統爐真空硬銲870℃持溫1800秒TEM明視野影像及EDS化學成份分析 55
圖4-3 CP-Ti/Ti-20Zr-20Cu-20Ni/CP-Ti傳統爐真空硬銲870℃持溫1800秒(Ti,Zr)2Ni析出TEM分析 56
圖4-4 Ni-Ti-Zr於700℃三元平衡相圖 57
圖4-5 CP-Ti/Ti-20Zr-20Cu-20Ni/CP-Ti傳統爐真空硬銲870℃持溫1800秒(Ti,Zr)2Ni+α-Ti共析TEM分析 58
圖4-6 CP-Ti/Ti-20Zr-20Cu-20Ni/CP-Ti傳統爐真空硬銲870℃持溫1800秒Ti2Ni析出TEM分析 59
圖4-7 Cu-Ni-Ti於800°C三元平衡相圖 60
圖4-8 CP-Ti/Ti-20Zr-20Cu-20Ni/CP-Ti傳統爐真空硬銲870℃持溫1800秒Ti2Cu析出TEM分析 61
圖4-9 Cu-Ti-Zr於703°C三元平衡相圖 62
圖4-10 CP-Ti/Ti-20Zr-20Cu-20Ni/CP-Ti傳統爐真空硬銲870℃持溫1800秒Ti2Cu+α-Ti共析TEM分析 63
圖4-11 CP-Ti/Ti-20Zr-20Cu-20Ni/CP-Ti紅外線硬銲850℃銲道顯微組織觀察及WDS化學成分分析 64
圖4-12 CP-Ti/Ti-20Zr-20Cu-20Ni/CP-Ti紅外線硬銲870℃銲道顯微組織觀察 65
圖4-13 CP-Ti/Ti-20Zr-20Cu-20Ni/CP-Ti紅外線硬銲890℃銲道顯微組織觀察 66
圖4-14 CP-Ti/Ti-20Zr-20Cu-20Ni/CP-Ti紅外線硬銲910℃銲道顯微組織觀察 67
圖4-15 CP-Ti/Ti-20Zr-20Cu-20Ni/CP-Ti紅外線硬銲890℃,持溫3600秒,從銲道中心向外90μm Cu、Ni定量分析 68
圖4-16 Ti-Cu-Ni三元相圖液相線投影圖 69
圖4-17 二元平衡相圖(a)Ti-Cu、(b)Ti-Ni 70
圖4-18 CP-Ti/Ti-37.5Zr-15Cu-10Ni/CP-Ti傳統爐真空硬銲870℃持溫1800秒銲道顯微組織觀察及WDS化學成分分析 71
圖4-19 CP-Ti/Ti-37.5Zr-15Cu-10Ni/CP-Ti傳統爐真空硬銲870℃持溫1800秒TEM明視野影像及EDS化學成份分析 72
圖4-20 CP-Ti/Ti-37.5Zr-15Cu-10Ni/CP-Ti傳統爐真空硬銲870℃持溫1800秒(Ti,Zr)2Ni與α-Ti共析TEM分析 73
圖4-21 CP-Ti/Ti-37.5Zr-15Cu-10Ni/CP-Ti傳統爐真空硬銲870℃持溫1800秒(Ti,Zr)2Ni析出TEM分析 74
圖4-22 CP-Ti/Ti-37.5Zr-15Cu-10Ni/CP-Ti傳統爐真空硬銲870℃持溫1800秒Ti2Cu與α-Ti共析TEM分析 75
圖4-23 CP-Ti/Ti-37.5Zr-15Cu-10Ni/CP-Ti傳統爐真空硬銲870℃持溫1800秒Ti2Cu於α-Ti晶界析出 TEM分析 76
圖4-24 CP-Ti/Ti-37.5Zr-15Cu-10Ni/CP-Ti傳統爐真空硬銲870℃持溫1800秒α-Ti基底TEM分析 77
圖4-25 CP-Ti/Ti-37.5Zr-15Cu-10Ni/CP-Ti紅外線硬銲850℃,銲道顯微組織觀察及WDS化學成分分析 78
圖4-26 CP-Ti/Ti-37.5Zr-15Cu-10Ni/CP-Ti紅外線硬銲870℃,銲道顯微組織觀察 79
圖4-27 CP-Ti/Ti-37.5Zr-15Cu-10Ni/CP-Ti紅外線硬銲890℃,銲道顯微組織觀察 80
圖4-28 CP-Ti/Ti-37.5Zr-15Cu-10Ni/CP-Ti紅外線硬銲910℃,銲道顯微組織觀察 81
圖4-29 CP-Ti/Ti-37.5Zr-15Cu-10Ni/CP-Ti紅外線硬銲890℃持溫3600秒,由銲道中心開始向外63μm之Cu、Ni元素WDS化學成分分析 82
圖4-30 Ti-15-3/Ti-20Zr-20Cu-20Ni/Ti-15-3傳統爐真空硬銲870℃持溫1800秒銲道顯微組織觀察及WDS化學成分分析 83
圖4-31 Ti-15-3/Ti-20Zr-20Cu-20Ni/Ti-15-3傳統爐真空硬銲870℃持溫1800秒銲道中心連續(Ti,Zr)2Ni相TEM分析 84
圖4-32 Ti-15-3/Ti-20Zr-20Cu-20Ni/Ti-15-3傳統爐真空硬銲870℃持溫1800秒Ti2Ni析出TEM分析 85
圖4-33 Ti-15-3/Ti-20Zr-20Cu-20Ni/Ti-15-3傳統爐真空硬銲870℃持溫1800秒Ti2Cu於銲道周圍β-Ti晶粒內部析出TEM分析 86
圖4-34 Ti-15-3/Ti-20Zr-20Cu-20Ni/Ti-15-3傳統爐真空硬銲870℃持溫1800秒(Ti,Zr)2Ni於銲道周圍β-Ti晶界處析出TEM分析 87
圖4-35 Ti-15-3/Ti-20Zr-20Cu-20Ni/Ti-15-3傳統爐真空硬銲870℃持溫1800秒銲道周圍母材β-Ti的TEM分析 88
圖4-36 Ti-15-3/Ti-20Zr-20Cu-20Ni/Ti-15-3紅外線硬銲850℃,銲道顯微組織觀察及WDS化學成分分析 89
圖4-37 Ti-15-3/Ti-20Zr-20Cu-20Ni/Ti-15-3紅外線硬銲870℃,銲道顯微組織觀察 90
圖4-38 Ti-15-3/Ti-20Zr-20Cu-20Ni/Ti-15-3紅外線硬銲890℃,銲道顯微組織觀察及WDS化學成分分析 91
圖4-39 Ti-15-3/Ti-20Zr-20Cu-20Ni/T-15-3紅外線硬銲890℃持溫3600秒,由銲道中心開始向外84μm之Cu、Ni元素WDS化學成分分析 92
圖4-40 Ti-15-3/Ti-37.5Zr-15Cu-10Ni/Ti-15-3傳統爐真空硬銲870℃持溫1800秒銲道顯微組織觀察及WDS化學成分分析 93
圖4-41 Ti-15-3/Ti-37.5Zr-15Cu-10Ni/Ti-15-3傳統爐真空硬銲870℃持溫1800秒銲道中央連續(Ti,Zr)2Ni相TEM分析 94
圖4-42 Ti-15-3/Ti-37.5Zr-15Cu-10Ni/Ti-15-3傳統爐真空硬銲870℃持溫1800秒長條狀α-Ti於β-Ti 中析出TEM分析 95
圖4-43 Ti-15-3/Ti-37.5Zr-15Cu-10Ni/Ti-15-3傳統爐真空硬銲870℃持溫1800秒基底β-Ti TEM分析 96
圖4-44 Ti-15-3/Ti-37.5Zr-15Cu-10Ni/Ti-15-3傳統爐真空硬銲870℃持溫1800秒(Ti,Zr)2Ni於β-Ti中析出TEM分析 97
圖4-45 Ti-15-3/Ti-37.5Zr-15Cu-10Ni/Ti-15-3紅外線硬銲850℃銲道顯微組織觀察及WDS化學成分分析 98
圖4-46 Ti-15-3/Ti-37.5Zr-15Cu-10Ni/Ti-15-3紅外線硬銲870℃銲道顯微組織觀察及WDS化學成分分析 99
圖4-47 Ti-15-3/Ti-37.5Zr-15Cu-10Ni/Ti-15-3紅外線硬銲890℃銲道顯微組織觀察及WDS化學成分分析 100
圖4-48 Ti-15-3/Ti-37.5Zr-15Cu-10Ni/Ti-15-3紅外線硬銲910℃銲道顯微組織觀察及WDS化學成分分析 101
圖4-49 Ti-15-3/Ti-37.5Zr-15Cu-10Ni/T-15-3紅外線硬銲890℃持溫1800秒由銲道中心向外87μm之合金元素EPMA定量分析 102
圖4-50 (a) Ti-Nb二元相圖、(b) Ti-Al 二元相圖 103
圖4-51 Ti-6Al-7Nb母材於不同溫度熱處理顯微組織觀察 104
圖4-52 Ti-6Al-7Nb/Ti-35Ni-25Nb/Ti-6Al-7Nb銲道顯微組織觀察及WDS化學成分分析(950℃、975℃) 105
圖4-53 Ti-6Al-7Nb/Ti-35Ni-25Nb/Ti-6Al-7Nb銲道顯微組織觀察及WDS化學成分分析(1000℃、1025℃、1050℃) 106
圖4-54 Ti-6Al-7Nb/Ti-35Ni-25Nb/Ti-6Al-7Nb銲道,1075℃持溫3600秒由銲道中心向外500μm EPMA分析 107
圖4-55 Ti-6Al-7Nb/Ti-35Ni-15Nb/Ti-6Al-7Nb銲道顯微組織觀察及WDS化學成分分析( (950℃、975℃) 108
圖4-56 Ti-6Al-7Nb/Ti-35Ni-15Nb/Ti-6Al-7Nb銲道顯微組織觀察(1000℃、1025℃) 109
圖4-57 Ti-6Al-7Nb/Ti-25Ni-15Nb/Ti-6Al-7Nb銲道顯微組織觀察及WDS化學成分分析( (950℃、975℃) 110
圖4-58 Ti-6Al-7Nb/Ti-25Ni-15Nb/Ti-6Al-7Nb銲道顯微組織觀察(1025℃、1050℃、1075℃) 111
表目錄
表2-1 純鈦的基本物理性質 4
表2-2 鈦合金硬銲中不同填料合金之硬銲溫度 14
表2-3 Ti-15-3的基本物理性質 18
表2-4 Ti-6Al-7Nb的基本物理性質 18
表3-1 Ti-Zr-Cu-Ni四元填料硬銲參數 30
表3-2 Ti-Nb-Ni三元填料硬銲參數 31
dc.language.isozh-TW
dc.subject鈦基填料zh_TW
dc.subject鈦合金zh_TW
dc.subjectTEMzh_TW
dc.subject硬銲zh_TW
dc.subject介金屬化合物zh_TW
dc.subjectIntermetallicsen
dc.subjectBrazingen
dc.subjectTEMen
dc.subjectTi alloysen
dc.subjectTi-based fillersen
dc.title使用鈦基填料真空硬銲鈦合金之研究zh_TW
dc.titleThe Study of Vacuum Brazing Titanium Alloys Using Ti-based Fillersen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee林新智,溫政彥,蔡履文,郭東昊
dc.subject.keyword鈦基填料,鈦合金,TEM,硬銲,介金屬化合物,zh_TW
dc.subject.keywordTi-based fillers,Ti alloys,TEM,Brazing,Intermetallics,en
dc.relation.page122
dc.rights.note有償授權
dc.date.accepted2013-06-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
24.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved