Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62004
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳鈞
dc.contributor.authorChieh Yuen
dc.contributor.author于傑zh_TW
dc.date.accessioned2021-06-16T13:22:46Z-
dc.date.available2015-07-30
dc.date.copyright2013-07-30
dc.date.issued2013
dc.date.submitted2013-07-24
dc.identifier.citation第6章 文獻回顧
1. J. R. Davis, ” ASM Specialty Handbook – Stainless steels”, ASM International, 1994.
2. 潘永村, “鋼鐵材料設計與應用”, 中國鋼鐵股份有限公司, 民85.
3. D. Peckner and I. M. Bernstein, “Handbook of stainless steel”, McGraw-Hill Inc., 1977.
4. E.Folkhard et. al., “Welding Metallurgy of stainless steel”, Springer-Verlagwien, 1988.
5. F. B. Pickering, “Physical metallurgy and the design of steels”, Applied Science Publishers, 1978.
6. B. Walden and J.M. Nicholls, Sandvik Steel Report, S51-54-ENG, (1994), 1.
7. K. Y. Kim, P. Q. Zhang, T. H. Ha, and Y. H. Lee, Corros., 54, 11(1998) 910.
8. K. Ichii and K Ota, ” Microstructure and Properties of High Silicon Duplex Stainless Steels” , Trans. J. Iron Steel Inst., 23(1983) 1019.
9. K. J. Irvin, D. T. Llewellyn and F. B. Pickering, JISI, 199 (1961) 153.
10. K. J. Irvin, T. Gladman and F. B. Pickering, JISI, (1969) 1017.
11. T. Angel, J. Iron Steel Inst., 177 (1954) 165. 12. P. C. Maxwell, A. Goldberg and J. C. Shyne, “Influence of martensite formed during deformation on the mechanical behavior of Fe-Ni-C Alloys”, Metall. Trans., 5B (1974) 1319. 13. P. C. Maxwell, A. Goldberg and J. C. Shyne, “Stress-Assisted and strain-induced martensites in FE-NI-C alloys”, Metall. Trans., 5B (1974) 1305. 14. D. Hennessy, G. Steckel and C. Altstetter, “Phase transformation of stainless steel during fatigue”, Metall. Trans. 7A (1976) 415. 15. F. Lecroisey and A.Pineau, “Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C system”, Metall. Trans., 2B (1972) 391. 16. H. Fujita and S. Ueda, “Stacking faults and f.c.c. (γ) → h.c.p. (ε) transformation in 18-8 type stainless steel”, Acta Metall., 20 (1972) 759. 17. T. Kruml, J. Polak, S. Degallaix, “Microstructure in 316LN stainless steel fatigued at low temperature”, Mater. Sci. and Eng., 293A (2000) 275.
18. C.X. Huang, G. Yang, Y.L. Gao, S.D. Wu, S.X. Li, J. Mater. Res., 22 (2007) 724. 19. K. Spencer, M. Veron, K. Yu-Zhang, J.D. Embury, “The strain induced martensite transformation in austenitic stainless steels Part 1 - Influence of temperature and
125
strain history”, Mater. Sci. Tech., 25 (2009) 7. 20. W.-S. Lee, C.-F. Lin, “The morphologies and characteristics of impact-induced martensite in 304L stainless steel”, Scripta Mater., 43 (2000) 777. 21. A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborti, S. Tarafder,” Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel”, Mater. Sci. and Eng., 486A (2008) 283. 22. K. Spencer, J.D. Embury, K.T. Conlon, M. Veron, Y. Brechet, “Strengthening via the formation of strain-induced martensite in stainless steels”, Mater. Sci. and Eng., 387–389A (2004) 873. 23. T. Fukuda, T. Kakeshita, K. Kindo, Mater. Sci. and Eng., “Effect of high magnetic field and uniaxial stress at cryogenic temperatures on phase stability of some austenitic stainless steels”, 438–440A (2006) 212. 24. M. Humbert, B. Petit, B. Bolle and N. Gey, “Analysis of the γ → ε → α' variant selection induced by 10% plastic deformation in 304 stainless steel at -60℃”, Mater. Sci. and Eng., 454-455A (2007) 508. 25. M. Hadji and R. Badji, J. of Mater. Eng. and Performance, “Microstructure and mechanical properties of austenitic stainless steels after cold rolling”, 11(2) (2002), 145.
26. S. S. Hecker, M. G. Stout, K. P. Staudhammer and J. L. Smith, “Effects of strain state and strain rate on deformation-Induced transformation in 304 stainless steel: Part I. Magnetic Measurements and Mechanical Behavior”, Metall. Trans., 13A (1982) 619.
27. S. S. Hecker, M. G. Stout, K. P. Staudhammer and J. L. Smith, “Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: part II. microstructural study”, Metall. Trans., 13A (1982) 627.
28. G. B. Olson, G. Krauss, Ed., “Transformation plasticity and the stability of plastic flow”, in deformation, processing and structure, Chapter 9, 1982 ASM Materials Science Seminar, ed. G. Krauss, ASM” (1984) 391.
29. J. H. Huang, C.J. Altstetter, “Internal Hydrogen-induced subcritical crack growth in austenitic stainless steels”, Metallurgical Transactions A, V22A (1991) 2605.
30. C. San Marchi, T. Michler, K.A. Nibur, B.P. Somerday, “On the physical differences between tensile testing of type 304 and 316 austenitic stainless steels
126
with internal hydrogen and in external hydrogen”, international journal of hydrogen energy 35 (2010) 9736. 31. G. M. Pressouyre, “A Classification of Hydrogen traps in Steel”, Metall. Trans. 10A (1979) 1571. 32. G. M. Pressouyre and I. M. Bernstein, “A kinetic Trapping model for hydrogen-induced cracking”, Acta Metall., 27(1) (1979) 89.
33. G. M. Pressouyre, J. P. Fidelle and R. A. Laurent, Hydrogen Effect in Metal, edit by I. M. Bernstein and A. W. Thompson, (1980) 27. 34. J. D. Fast, Interaction of Metals and Gases, Philips Tech. Library, Vol. 1 (1965) 379. 35. N. R. Quick and H. H. Johnson, “Hydrogen and deuterium in iron, 49–506°C”, Acta. Metall., 26 (1978) 903.
36. M. Martin, S. Weber, W. Theisen, T. Michler, J. Naumann, “Effect of alloying elements on hydrogen environment embrittlement of AISI type 304 austenitic stainless steel”, international journal of hydrogen energy, 36 (2011) 1588 37. C. A. Zapffe and C.E. Sims, “Hydrogen embrittlement, internal stress and defects in steel”. Transactions of the American Institute of Mining and Metallurgical Engineers, 145 (1941) 225. 38. G. E. Kerns, R. W. Staehle, “Slow crack growth in hydrogen and hydrogen sulfide gas environments”, Scri Metall., 6 (1972) 631.
39. M. Smialowski, Proc. Conf. on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, NACE (1977) 405.
40. N. J. Petch and P. Stables, “Delayed Fracture of Metals under Static Load”, Nature, 169 (1952) 842.
41. H. H. Johnson, J. G. Morlet and A. R. Troiano, Transactions of the American Institute of Mining and Metallurgical Engineers, 212 (1958) 528.
42. C. D. Beachem, “A new model for hydrogen assisted cracking - Hydrogen embrittlement”, Metall. Trans., 3A (1972) 437.
43. E. Sirois and H. K. Birnbaum, ” Effects of hydrogen and carbon on thermally activated deformation in nickel”, Acta Metall. Mater., 40 (1992) 1377.
44. T. Toh and W. M. Bladwin, Stress Corrosion Cracking and Embrittlement, edit by W. D. Robertson, John Wiley and Sons, New York, (1956) 326.
45. R. P. Gangloff, PHD Dissertation, Lehigh University, 1974.
127
46. V. R. Sawicki, PHD Dissertation, Cornell University, 1971.
47. D. P. Williams and H. G. Nelson, “Embrittlement of 4130 steel by low-pressure gaseous”, Hydrogen,Metall. Trans. 1B (1970) 63.
48. A. W. Thompson, I. M. Bernstein, Adv. Corros. Sci. Tech., 7 (1980) 53.
49. Angelo Fernando PADILHA, Ronald Lesley PLAUT and Paulo Rangel RIOS, “Annealing of Cold-worked Austenitic Stainless Steels”, ISIJ International, Vol. 43 (2003), No. 2, pp. 135–143.
50. I. M. Bernstein, “Handbook of Stainless Steel”, Mc Graw-Hill Book Company, 1977.
51. E.P. Butler and M.G. Burke, “Chromium depletion and martensite formation at grain boundaries in sensitized austenitic stainless steel”, Actea metal, Vol. 34, No. 3, pp. 557-570, 1986.
52. D.G. Ulmer and C.J. Altstetter, “Hydrogen-induced strain localization and failure of austenitic stainless steels at high hydrogen concentrations”, Actea metal, mater Vol. 39, No. 6 pp. 1237-1248, 1991.
53. P.J. Ferreir, I.M. Robertson and H.K. Birnbaum, “Hydrogen Effects on the Interaction betwween Dislocations”, Acta mater, 46 (1998) 1749.
54. H.K. Birnbaum and P. Sofronis, “Hydrogen-enhanced localized plasticity – a mechanism for hydrogen – related frature”, Mater. Sci. Eng. A, 176 (1994) 191.
55. P. Sofronis, Y. Liang and N. Aravas, “Hydrogen induced shear localization of the plastic flow in metals and alloys”, Eur. J. Mech. A/Solids, 20 (2001) 857.
56. I. M. Robertson, ”The effect of hydrogen on dislocation dynamics”, Eng. Fract. Mech., 68 (2001) 671.
57. Lin Zhang, Masaaki Imade, Bai An, Mao Wen, Takashi Iijima, Seiji Fukuyama, Kiyoshi Yokogawa, “Internal reversible hydrogen embrittlement of austenitic stainless steels based on type 316 at low temperatures”, ISIJ International, Vol. 52 (2012), No. 2, pp. 240–246.
58. C.L. Briant, “Hydrogen assisted cracking of type 304 stainless steel”, Metallurgicall Transactions A, 10A, 1979 181. 59. G. B. Olson and M. Cohen, J. Less-Common Metals, 28 (1972) 107. 60. G. Han, “Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures”, Acta Mater.,46 (1998) 4559.
128
61. T. Kruml, J. Polak, S. Degallaix, “Microstructure in 316LN stainless steel fatigued at low temperature”, Mater. Sci. Eng. A, 293 (2000) 275.
62. G. B. Olson and M. Cohen, “Stress-assisted isothermal martensitic Transformation: Application to TRIP steels”, Metall Trans. A, 13 (1982) 1907.
63. C.K. Mukhopadhyay, T. Jayakumar, K. V. Kasiviswan, Baldev Raj, “Study of ageing-induced α'-martensite formation in cold-worked AISI type 304 stainless steel using an acoustic emission technique”, Journal of materials science 30 (1995) 4556 4560.
64. 褚武揚, “氫損傷和滯後斷裂”, 冶金工業出版社, 1988.
65. Lin Zhang, Zhiyuan Li, Jinyang Zheng , Yongzhi Zhao, Ping Xu, Chilou Zhou, Xiao Li, “Effect of strain-induced martensite on hydrogen embrittlement of austenitic stainless steels investigated by combined tension and hydrogen release methods”, international journal of hydrogen energy (2013) 1-7. 66. V. G. Gavriljuk, V. N. Shivanyuk and J. Foct, “Diagnostic experimental results on the hydrogen embrittlement of austenitic steels”, Acta Mater., 51 (2003) 1293.
67. S. Jani, M. Marek, R. F. Hochman and E. I. Meletis, “A mechanistic study of transgranular stress corrosion cracking of type 304 stainless steel”, Metall Trans. A, 22 (1991) 1453.
68. M. R. Louthan, G. R. Casky, J. A. Donovav and D. E. Rawl, “Hydrogen embrittlement of metals”, Mater. Sci. Eng, 10 (1972) 357.
69. J. A. Brooks and A. J. West, “Hydrogen induced ductility losses in austenitic stainless steel welds”, Metall Trans. A, 12 (1981) 213.
70. J. C. Lippold, and D. J. Kotecki, “Welding Metallurgy and Weldability of Stainless Steel”, New Jersey, John Wiley & Sons (2005) 153.
71. M. I. Luppo, A. Hazarabedian and J. Ovejero, “Effects of delta ferrite on hydrogen embrittlement of austenitic stainless steel welds”, Corros. Sci., 41 (1999) 87.
72. S. Brauser, Th. Kannengiesser, Int. J. Hydrogen Energy, 35 (2010) 4368.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62004-
dc.description.abstract中文摘要
AISI 301不銹鋼係屬介穩定型沃斯田鐵系不銹鋼,其受到應變發生麻田散鐵變態之Md30溫度約67°C,故於室溫下輥軋或拉伸,會產生應變誘發之 α' 與 ε 麻田散鐵 (α'- and ε- martensites)。本研究針對301不銹鋼母材與雷射銲接試片,經30%厚度縮減 (Thickness reduction) 之25°C冷軋與150°C溫軋後,進行300°C熱充氫與一般大氣 (不充氫) 之熱處理試驗,量測大氣中之缺口拉伸性質,並評估不同條件處理試片之內部氫脆 (Internal hydrogen embrittlement) 敏感性。經300°C一般熱處理者,各試片之缺口拉伸性質與未經熱處理之對應試片,並無明顯差異。當熱處理溫度提高至450°C,母材及銲道冷軋試片之拉伸強度大幅下降,此係因冷軋造成試片內部大量缺陷,降低碳化物 (Cr23C6) 的析出溫度,弱化了晶界所致。
301不銹鋼母材試片於300°C熱充氫後,氫原子被捕集於晶界或雙晶晶界,進行缺口拉伸試驗時,這些位置優先應變誘發 α' 麻田散鐵,於拉伸過程中易發生破裂。母材試片經不同條件輥軋,其氫脆敏感性與顯微組織有密切關係。冷軋之母材試片有26%之 α',且 α' 的抗氫脆性較 γ 與 ε 為差,而降低了抗氫脆性;溫軋之母材試片僅有 ε 相生成,基地大部分仍為 γ 相,故氫脆敏感性相較於冷軋母材試片為低。銲道試片方面,由於銲接凝固過程會有少量δ-ferrite殘留,增加了氫捕集的γ/δ 界面,使銲道試片及其經輥軋試片之氫脆敏感性,均較相對應之母材試片為低。
未經輥軋之母材或銲道試片,經一般熱處理後,均無碳化物析出者,缺口拉伸之破斷面皆呈現韌窩狀破斷形貌。若晶界有碳化物析出 (如冷軋試片經450°C一般大氣熱處理),破斷面則呈現沿晶破斷形貌。熱充氫測試者,在受氫影響區域之破斷面呈現脆性破斷形貌,並有許多二次裂縫,且 α' 變態集中於斷面兩旁的狹窄區域,可印証氫促進局部塑性變形的效應,此與HELP理論相符。若提高熱充氫溫度,各試片之氫含量增加,α' 變態量減少,而導致氫促進局部塑性變形現象更加明顯。
zh_TW
dc.description.abstractAbstract
AISI 301 stainless steel is a metastable austenitic stainless steel and has the Md30 temperature of approximately 67°C, i.e., the temperature at which 50% of the austenite phase transforms into martensite during tensile testing at a true strain of 0.3. As a result, rolling and tension testing of 301 stainless steel would strain-induce transformation of γ to α'- and ε- martensites at room temperature. In the present study, the base metal (the B specimen) and laser welded specimen (the W specimen) were subjected to either cold rolling at 25°C (the B-CR and W-CR specimens) or warm rolling at 150°C (the B-HR and W-HR specimens) to reach a 30% reduction in thickness. The specimens were then thermally hydrogen charged at 300°C, or treated with an air furnace heat at 300°C (without hydrogen charging). Under various processing conditions, the internal hydrogen embrittlement (IHE) of the specimens was evaluated by the notch tensile test in air. The notch tensile properties of the specimens after heat treating at 300°C in air furnace showed insignificant differences to the specimens without heat treatment. Increasing the heat treatment temperature to 450°C, the tensile strength of the B-CR and W-CR specimens significantly reduced because the carbides (Cr23C6) precipitated at the grain boundaries. After cold rolling , the specimens generated many defects in the matrix, which resulted in a decrease in temperature for carbide precipitation, leading to weakened grain boundary regions.
For the B specimen, hydrogen atoms were trapped at the grain and twain boundaries after thermal hydrogen charging at 300°C. These locations fractured easily during the notch tensile test due to the formation of brittle α'-martensite. The susceptibility to IHE of the B specimens under various rolling conditions was closely related to their microstructure. The B-CR specimen transformed into about 26% of α', which has worse resistance to IHE than the γ and ε phases. The B-HR only formed ε-martensite, the martrix was mainly γ phase so that exhibited lower susceptibility to IHE than the B-CR specimen. The strain-induced α'-martensite led to higher IHE of the B-CR specimen. As for the welded specimens, a small amount of residual δ-ferrite still existed during the weld solidification process. The γ/δ interfaces increased the trapping sites for hydrogen, as a result, the W specimen and its rolled specimens (the W-CR and W-HR specimens) would exhibit lower IHE than corresponding base metal specimens (the B, B-CR and B-HR specimens).
The notch fracture surface of the B and W specimens without carbides precipitation showed dimple fracture after the air furnace heat treatment. The fracture surface displayed intergranular fracture (as seen in B-CR specimen after air furnace heat treatment at 450°C) was resulted from the carbides precipitated at grain boundaries. As for the thermal hydrogen charging specimens, the fracture surface of regions that were influenced by hydrogen exhibited brittle fracture with many secondary cracks. The strain-induced α' transformation localized in a narrow region in front of the notch tips indicates that hydrogen promotes localized plastic deformation, which agrees with the Hydrogen Enhanced Localized Plasticity (HELP) theory. If the thermal hydrogen charging temperature was increased, the hydrogen content in all specimens increased and the amount of α' transformation decreased, resulting in the localized plastic deformation more obviously.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:22:46Z (GMT). No. of bitstreams: 1
ntu-102-R00527038-1.pdf: 12359045 bytes, checksum: 2ba5dc0762ce9a976094827f0ef43b88 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
致謝 i
中文摘要 ii
Abstract iii
第1章 前言 1
第2章 文獻回顧 2
2-1 不銹鋼之發展 2
2-1-1 合金元素對不銹鋼性質之影響 4
2-1-2 沃斯田鐵型不銹鋼之機械特性 6
2-2 內部氫脆現象 10
2-2-1 氫脆機構 14
2-2-2 氫脆對金屬材料機械性質之影響 15
第3章 實驗方法 18
3-1 實驗流程 18
3-2試片編號說明 18
3-3 顯微組織觀察 25
3-3-1 金相觀察與變態量量測 25
3-3-2 TEM顯微結構觀察 25
3-4 機械性質量測 25
3-4-1 硬度量測 25
3-4-2 缺口拉伸試驗 25
3-4-3 SEM破斷面觀察 25
3-5 氫含量分析 28
第4章 結果與討論 29
4-1熱充氫溫度對301不銹鋼母材氫脆之影響 29
4-1-1金相觀察與硬度及磁性量測 29
4-1-2熱處理對301不銹鋼母材之影響 29
4-1-3缺口拉伸測試與氫含量分析 29
4-1-4破斷面觀察 35
4-2 不同條件輥軋對301不銹鋼母材氫脆之影響 49
4-2-1顯微組織觀察與硬度及磁性量測 49
4-2-2熱處理對母材經輥軋試片之影響 56
4-3 熱充氫溫度對母材經不同條件輥軋試片氫脆之影響 77
4-3-1缺口拉伸測試與氫含量分析 77
4-3-2破斷面觀察 77
4-4-1金相觀察與硬度及磁性量測 87
4-4-2缺口拉伸測試與氫含量分析 87
4-4-3破斷面觀察 94
4-5 不同條件輥軋對301不銹鋼銲道試片氫脆之影響 94
4-5-1顯微組織觀察與硬度及磁性量測 94
4-5-2缺口拉伸測試與氫含量分析 102
4-5-3破斷面觀察 102
4-6 熱充氫溫度對銲道經不同輥軋條件試片氫脆之影響 111
4-6-1缺口拉伸測試與氫含量分析 111
4-6-2破斷面觀察 111
第5章 結論 123
第6章 文獻回顧 124
dc.language.isozh-TW
dc.title301不銹鋼及其雷射銲件經輥軋後之內部氫脆研究zh_TW
dc.titleInternal Hydrogen Embrittlement of 301 Stainless Steel and its Laser Welds after Rollingen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡履文,薛人愷
dc.subject.keyword301不銹鋼,雷射銲接,輥軋,麻田散鐵相變態,氫脆,缺口拉伸強度,zh_TW
dc.subject.keyword301 stainless steel,laser welding,rolling,strain-induced martensite,internal hydrogen embrittlement,notched tensile strength,en
dc.relation.page128
dc.rights.note有償授權
dc.date.accepted2013-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
12.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved